
NeuroPod: a real-time neuromorphic spiking CPG

applied to robotics

Daniel Gutierrez-Galana, Juan P. Dominguez-Moralesa, Fernando
Perez-Peñab, Alejandro Linares-Barrancoa

aRobotics and Computer Technology Lab. Universidad de Sevilla, Spain.
bDepartment of Computer Architecture and Technology, Universidad de Cádiz, Spain.

Abstract

Initially, robots were developed with the aim of making our life easier, carry-
ing out repetitive or dangerous tasks for humans. Although they were able
to perform these tasks, the latest generation of robots are being designed
to take a step further, by performing more complex tasks that have been
carried out by smart animals or humans up to date. To this end, inspiration
needs to be taken from biological examples. For instance, insects are able
to optimally solve complex environment navigation problems, and many re-
searchers have started to mimic how these insects behave. Recent interest in
neuromorphic engineering has motivated us to present a real-time, neuromor-
phic, spike-based Central Pattern Generator of application in neurorobotics,
using an arthropod-like robot. A Spiking Neural Network was designed and
implemented on SpiNNaker. The network models a complex, online-change
capable Central Pattern Generator which generates three gaits for a hexa-
pod robot locomotion. Reconfigurable hardware was used to manage both
the motors of the robot and the real-time communication interface with the
Spiking Neural Networks. Real-time measurements confirm the simulation
results, and locomotion tests show that NeuroPod can perform the gaits
without any balance loss or added delay.

Keywords: Neurorobotics, SpiNNaker, Central Pattern Generator, Spiking
Neural Network, Neuromorphic Hardware, FPGA

Email address: dgutierrez@atc.us.es (Daniel Gutierrez-Galan)

Preprint submitted to Neurocomputing April 26, 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/288003301?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1. Introduction

A Central Pattern Generator (CPG) is a neural structure located at a
spinal cord level. It can generate rhythm patterns which might be used for
movements, such as the generation of various gaits, or swimming [1]. There
is proven evidence of such structures in small animals [2] and possibly in
humans [3, 4]. The activity of these structures is released and mediated by
the brain stem and other sub-cortical regions of the brain. Regarding the
feedback, the CPG receives sensory information to adapt its output to the
environment.

Locomotion is probably one of the most complex tasks to be developed by
roboticists due to stability issues when several legs are involved [5]. There-
fore, from a neurorobotics point of view, the idea of these CPGs is borrowed
from biology to implement locomotion in small robots with several legs. The
reason for this is that these structures can generate a very stable pattern
even without sensory information or brain activity. In fact, some cats that
suffered severe spinal cord injuries, recovered their gaits after treadmill train-
ing sessions [6]. In this paper, we borrow this CPG feature: the ability to
generate patterns in an open-loop manner. This can be useful as a first ap-
proach for the use of CPGs in neurorobotics, which is the target field of this
paper.

There are many works where a CPG has been used within robotics; some
of them mimic the idea of a CPG, although without implementing a spiking
neural network. Instead, they modelled the CPG using differential equations
of coupled oscillators. Examples are: [7], where the authors used a hexapod
robot and they included feedback, [8], where the Van der Pol oscillator model
was used and implemented on a Field Programmable Gate Array (FPGA),
and [9], where the authors used a swimming and crawling fish robot and im-
plemented the CPG on a microcontroller by solving the equations of coupled
oscillators.

More closely related works, where neuromorphic hardware was used or a
Spiking Neural Network (SNN) was proposed, are: [10], where the authors
developed an analog neuromorphic dedicated chip which allocates coupled
oscillators and a learning procedure to have the desired output, although
they did not use well-known neuron models, and [11], in which the authors
designed and implemented several CPGs segments to drive a lamprey-like
robot. The CPGs were implemented using neuromorphic hardware in [12],
although online changes of the pattern generated by the CPG are not pro-

2

vided. Likewise, the work presented in [13] proposed the implementation of
the CPG using a SNN implemented on SpiNNaker [14], although it does not
offer real time nor online change of the pattern produced by the CPG.

The work presented in this paper is based on the one presented in [13].
The objective is to implement a CPG closely related to its biological coun-
terpart including plausible biological features in SpiNNaker and ready to be
used within robotics: a hexapod robot was used to validate the design. The
novelties of this research are: real-time operation of the CPG and online
reconfiguration of the gait produced by the CPG.

This paper is structured as follows: subsection 2.1 describes the materials
used and subsection 2.2 describes how the research was conducted and all the
details needed to replicate the experiments. Then, the results achieved by the
implementation of the CPG in a small robotic platform using neuromorphic
hardware are described in section 3. Finally, section 4 presents a discussion
over the obtained results and the conclusions drawn from this study.

2. Materials and Methods

This section describes the materials that were used in this project to
design, assemble, and control this neuromorphic robot, as well as the methods
applied to obtain the results shown in section 3.

2.1. Materials

The NeuroPod robot is divided into three main parts, and each of these
has a specific role or functionality. These parts are the CPG, designed us-
ing a SNN and implemented on a neuromorphic hardware platform. This
CPG generates the gait patterns. The movement controller takes the move-
ment information from the CPG and controls a set of servomotors through
an FPGA-based board. Finally, the skeleton defines the shape of the robot
and also performs the movements. Further details are provided in the follow-
ing sections. Figure 1 shows a global overview of the NeuroPod as a block
diagram; it also shows the main parts and how they interface with each other.

2.1.1. Robotic platform

An hexapod robot is a six-legged robot inspired by arthropod insects,
such as ants or flies, among others. According to biology, the body of these
insects can be divided into three different regions: the head, the thorax

3

FPGA
SpiNN

hardware
interface

4-chip
SpiNNaker

board20-pin
connector

Hexapod board
controller

20-pin
connector

4-chip
SpiNNaker

board

FPGA

Hexapod board
controller

SpiNN
hardware
interface

ZTEX 2.13

Xilinx Artix 7

SpiNN-3

Pattern
selector

sCPGsSp
iN

N
ak

er
 li

n
k

Sp
iN

N
ak

er
 li

n
k

20
-p

in
 c

o
n

ne
ct

o
r

Hexapod controller
board

SpiNNaker
interface

Neuropod

I/O

External devices

Figure 1: Block diagram of the entire system. It is composed of the SpiNNaker board, an
FPGA-based board, and a 3D-printed hexapod robot frame.

and the abdomen. Moreover, each part could be sub-divided in segments
according to their features.

The head is composed of eyes (located in the ocular segment) and a pair
of antennae. Both the eyes and the antennae are used to collect sensory
information about the environment, allowing the movement of the insect in
complex scenarios by performing an obstacle avoidance task [15][16]. The
thorax is composed of three segments: the prothorax, the mesothorax and
the metathorax. Each segment has a pair of legs, and there are six in total.
Up to five parts can be identified in each leg, although only three of these
parts are relevant to motion: coxa, femur and tibia. Finally, the abdomen
contains the vital organs of the insect, such as the respiratory or reproductive
systems.

Recent focus on the development of smart robots by mimicking biological
processes has motivated many research groups to develop accurate models
of hexapod insects. HECTOR [17] is an example of that, where both the
body features and the movements were inspired by the morphological details
of the stick insect Carausius morosus.

In this work, a 3D-printed hexapod robot was used, based on the model
featured in [13]. The original design1 was adapted by designing a new body
frame to allocate the electronic devices on it. The frame dimensions are 20
x 89 x 90 mm (height, width, depth), without the legs.

According to [18], insect legs are defined as multi-segmented limbs. Each
leg consists of more than 5 segments, as it is represented in Fig.2A. However,
only three of them are used when performing a movement: the coxa, the

1https://www.thingiverse.com/thing:1021540 (checked on April’2019)

4

CFL CFR

CML

CBL

CMR

CBR

FFL

FML

FBL FBR

FMR

FFR

C - Coxa (horizontal)

F - Femur (vertical)

F - Front

M - Middle

B - Back

R - Right

L - Left

A B C

coxa

trochanter

A B

tarsus

body

ThC-joint

CTr-joint

FTi-joint

Figure 2: A) Biological representation of an arthropod’s leg anatomy. B) Hexapod robot
leg actuator IDs.

femur and the tibia. This is due to the fact that three main leg joints can be
found in an insect leg: the thoraco-coxal (ThC-) joint, the coxa-trochanteral
(CTr-) joint and the femur-tibia (FTi-) joint. The ThC-joint is responsible
for carrying out back and forth movements (horizontal axis), the CTr-joint
enables elevation and depression and the FTi-joint allows extension and flex-
ion (both in the vertical axis).

The leg of each hexapod has three degrees of freedom (DOF), one per
joint. However, to develop NeuroPod we only considered two of them because
the movement of the robot can be performed mainly using the coxa and the
femur [19]. Thus, only twelve DOF were taken into account, instead of
eighteen, to implement the gait patterns.

In order to provide motion, one servomotor was placed on each joint,
making a total of twelve servomotors (Ref. SG90). The maximum rotation
angle is 180 degrees, although this range could be reduced due to mechanical
constraints of the body design and the position of the servo on it.

Therefore, a calibration is required. After the calibration process, and
knowing that the theoretical operation speed of the selected servos is 0.12
s/60 degrees, we were able to estimate the pattern period, which can be
defined as the minimum time the robot needs to reach the backward position,

5

starting from the forward position, and then reach the forward position again.
Measurements of these pattern periods are presented in section 3.

2.1.2. SpiNNaker

The SpiNNaker project is based on a massive parallel multicore computing
system that is able to run very large SNNs in real time [20]. The architecture
of the SpiNNaker chip, which has an asynchronous packet switching network,
makes it very efficient for neuromorphic applications [21].

In this work, the SpiNN-3 machine (4 SpiNNaker chips, 72 200MHz
ARM9 cores) was used to implement the SNN model, which is described in
section 2.2. The device is shown in Fig. 3. This board has an interface, 100
Mbps Ethernet link, which is used to control the SpiNNaker machine from
the computer. It also has two spinn-link connectors that enable a connection
to external devices such as FPGAs and neuromorphic sensors: retinas or
cochleas. This board was connected to an FPGA for real-time input/output
communication.

SpiNNaker link connectors

20-pin header

SpiNN-3 board

ZTEX 2.13

Artix7

Figure 3: SpiNN-3 machine and ZTEX 2.13 board.

2.1.3. Reconfigurable hardware board

An FPGA-based board was used to implement a digital system design,
which controls the neuromorphic robot platform. This approach was con-
sidered in other similar works to implement a hardware version of CPGs,

6

such as [8] and [19], and also in the field of neurorobotics and neuromorphic
engineering[22]. This reconfigurable hardware offers flexibility against analog
designs and adaptability in real time, in case of system failures.

From the Xilinx Artix-7 family, the XC7A75T chip was used, mounted on
the ZTEX 2.13 USB-FPGA board with a 48 MHz clock source. This FPGA
chip offers around 75500 logic cells, 100 GPIOs, USB 2.0 interface and DDR3
SDRAM memory. This board serves as a daughter board located on a custom
base-board provided with several components: LEDs, user buttons, an AER
20-pin interface and a SpiNNaker link interface. Those interfaces will be used
by the SpiNNaker machine to manage the hexapod robot through the FPGA
board. An extended explanation is provided in section 2.2.2.

2.2. Methods

2.2.1. CPG

A CPG is a neural network in which interconnected excitatory and in-
hibitory neurons produce an oscillatory, rhythmic output as a motor pattern,
such as walking, flying, running or swimming, with the absence of rhythmic
inputs. In this work, we focus on three specific gaits: walk, trot and run,
which are selected based on previous working bio-inspired implementations
for hexapods [19, 13].

Fig. 4 (bottom) shows the basic structure for each of the CPGs imple-
mented in this work. It consists of eight neurons: two neurons for the Spiking
Central Pattern Generator (sCPG) and six output neurons to command the
servomotors. The green and red neurons (Fig. 4) make the other neurons,
ranging from 0 to 5, fire within different timings generating the selected gait.
Each of these six neurons are then connected to two output neurons which
will command two different servomotors. This is achievable due to the sym-
metry of the robot: pairs of servomotors always perform the chosen gait,
independently of the selected sCPG.

Three sCPGs following this basic architecture (one per gait) are enclosed
within a global SNN model shown in Fig. 4 (top). This global network acts
as a mechanism to select which of the sCPGs has to be enabled in order
to start generating the gait, inhibiting the other two at the same time. It
receives a single spike from the FPGA with a specific neuron address (0, 1 or
2) (the Address Event Representation (AER) protocol is used) indicating the
gait pattern that needs to be generated. When this spike reaches the pattern
selector population (the three neurons that are closest to the sCPGs), this
group of neurons transmit this spike to the correct sCPG, while inhibiting

7

1

0

2

1

2

0

CPG Trot

CPG Run

CPG Walk

Input + Pattern selector Central Pattern Generators
Output neurons to

command servomotors

FR
O

M

 F
P

G
A

1 2 3 4 5

Inh

Exc

0

FR
O

M
 P

A
TT

E
R

N
 S

E
LE

C
TO

R

TO OUTPUT NEURONS

Inhibitory projection

Excitatory projection

CFR

CMR

CBR

FFR

FMR

FBR

CFL

CML

CBL

FFL

FML

FBL

Phased-CPG pattern

CPG pattern

Figure 4: Diagram of the spiking neural network model used (top) with an in-depth view
of the CPG architecture (bottom).

the other two. This mechanism allows real-time gait changes by activating
the appropriate sCPGs without introducing a long delay (hundreds of ms),
which is really important for real-time robotics applications.

A single spike is needed by the selected sCPG to start generating the
spiking pattern. The spikes fired by the six sCPG neurons are sent to the
last layer of the model, which consists of twelve neurons corresponding to
each of the hexapod servomotors. These spikes are transmitted back to the
FPGA, where a circuit commands each of the servomotors using the live

8

output spikes.
As is shown in Fig. 4, each neuron of the output layer, has two outputs

from SpiNNaker to the FPGA. The first one is the regular spiking pattern
generated by the sCPG to command the servomotors (extension action). The
second one is exactly the same pattern, but phased with a delay of 1 tick,
needed by the FPGA to command the servomotors back to the standard
position (performing the flexion action).

2.2.2. Digital system

As previously mentioned in section 2.1.3, a digital system is needed to im-
plement the neuromorphic robotic controller. This task is often carried out by
using an FPGA-based board, running a custom digital system. Designs are
generally implemented using Hardware Description Language (HDL), which
allows defining any digital circuit model by describing either its behavior
or its components’ interconnection. Each component of the design is also
known as a module, and many functional modules can be encapsulated by a
top module, which defines both the input and output signals of the digital
circuit.

Fig. 5 shows an overview of the proposed implementation of the Neuro-
Pod control system top module. It performs three main functions: to select
the gait which the sCPG implemented on SpiNNaker will generate, to send
the gait information to the SpiNNaker machine, receive the live output pat-
tern from it and, finally, to generate the Pulse Width Modulation (PWM)
signals to control the servomotors. Further details are given next, starting
with the pattern selector and then following accordingly with the work flow.

First, the CPG pattern selector module was implemented as a 2-bit
up/down unsigned counter. Both up and down signals are declared as input
and they are directly mapped to two buttons located on the base board in
which the ZTEX board is connected. The current counter value indicates
the gait: 0 for walking, 1 for trotting and 2 for running. This information is
shown to the user by means of a pair of LEDs in binary format.

Every time the CPG pattern selector changes its value, an interruption
is generated through the signal new mode to notify that there is a new data
available to the next module. This component is the AER out module,
which converts a 2-bit value to a 16-bit AER event, and also handles the
AER handshake protocol (REQUEST and ACK signals). This conversion
to AER is carried out since the system needs to send information to the
SpiNNaker to generate the pattern.

9

The SpiNNaker link interface is based on the 2-of-7 protocol. Then,
since most of the neuromorphic sensors use the AER protocol, to allow the
communication in real-time between AER devices and the SpiNNaker, an
AER-SpiNN HDL module was developed by the SpiNNaker team [23].

It takes AER events as input following the AER protocol, and generates
packets under the 2-of-7 protocol for the communication from the AER device
to the SpiNNaker board. For the reverse communication, it takes 2-of-7
packets and generates AER events. In addition, this module provides four
status signals to check in real-time if the communication is working properly.

AER events received by the SpiNNaker, generated by the AER-SpiNN
module, are captured by the AER in module, which implements the hand-
shake and sets the value of the event as a 16-bit output signal. In the same
way as the AER out module, an interruption is enabled every time the AER
in module receives a new input event.

AER-
SpiNNaker
software
interface

AER out
CPG

pattern
selector

cpgsel_up

new_mode

mode
/2

aer_data
/16

ack

req

data
/7

ack

ack

data
/7

active errorreset dump

aer_data
/16

ack

req

PWM CFR

PWM FFR

PWM CMR

PWM FMR

...
PWM CBL

PWM FBL

AER in
new_aer

aer
/16

actions
/24

cpgmod
/2

event
/5

fw

bw

fw

bw

fw

bw

fw

bw

fw

bw

fw

bw

CPG
pattern
decoder

cpgsel_down

PWM generator bank

fblcfr cmr fmrffr cbr cfl fflfbr cml cblfml

Figure 5: NeuroPod FPGA top module overview.

Those input events correspond to the spikes fired by the output layer

10

neurons of the SNN implemented on SpiNNaker. Since each output neuron
manages the position of one servomotor, these events have to be mapped to
the correct one. Therefore, depending on the address of the event, an action
is performed over a servomotor.

There are two actions available: either move the servomotor towards the
forward position or move the servomotor towards the backward position. A
decoding scheme is summarized in Table 1, where each column represents
the joints of the NeuroPod following the same nomenclature as in Fig. 2:
the FW row means forward action, the BW row means backward action, and
each value is the AER event which triggers the action.

The commands received are converted to motion through a PWM gen-
erator block, which receives the decoded AER events by means of a 24-bit
signal (one enabling signal per action). This PWM generator block was im-
plemented instantiating as many PWM generators as the number of joints
there are in the NeuroPod.

Table 1: AER decodification scheme.

CFR FFR CMR FMR CBR FBR CFL FFL CML FML CBL FBL
FW 0 1 2 3 4 5 6 7 8 9 10 11
BW 12 13 14 15 16 17 18 19 20 21 22 23

The PWM generator implemented includes some features that make the
NeuroPod motion control easier: up to three pulse width values can be set
in the same VHDL module instead of only one. These values were used to
define the positions that the servomotor had to reach. Those positions are:
forward, backward (corresponding to the actions) and home. Two control
signals were added to the PWM generator to select the configuration of the
module: fw, which enables the generation of the PWM signal associated to
the FW position, and bw, which enables the generation of the PWM signal
associated to the BW position.

This module has two input signals, which are connected following the
scheme shown in Table 1. When a control signal is set to high, either through
a single pulse or constant signal, the pulse width value associated to that con-
trol signal is loaded in the configuration register. Then, the PWM output
signal changes automatically, moving the servomotor to the commanded po-
sition. That output signal is held until the module receives a different action
command. Finally, the home position is only activated when the global reset
signal is released.

11

3. Results

The results obtained for the simulation of each of the gait patterns on
SpiNNaker are shown in Fig. 6. This figure shows the output spikes that the
sCPG generates.

Input spike

Inactivity

8 ms

Instability

11 ms

Stable pattern

Phased output spikes -flexion action- (See Fig. 4)Output spikes -extension action-

Figure 6: Output spikes for each gait pattern simulated on SpiNNaker.

Then, in Fig. 7, the same plot is shown for a different scenario in which
we simulated and tested the behavior of the SNN when forcing the system
to change from a specific sCPG to a different one. The figure shows how

12

the system is able to change from walk to trot and then to run, generating a
stable pattern for each gait after a specific period of time, which, in this case,
is 23 milliseconds. This delay is the time that the network takes to inhibit
the neurons related to the previous gait that was being executed plus the
time that the neurons related to the current pattern take to start generating
the correct firing output in a stable way. Different delays related to these
simulations were measured and are presented in the image.

8 11 46 13 1337

WALK TROT RUN

[0] [1] [2]

Inactivity

Instability

Stable pattern [X] Input spike from FPGA with address X (See Fig. 4)

Phased output spikes -flexion action- (See Fig. 4)

Output spikes -extension action- (See Fig. 4)

ms ms msms ms ms ms ms

Figure 7: Output spikes from the SpiNNaker simulations that show the gait pattern change
behavior.

It is important to mention that these delays were measured in simulation.
For a real-time scenario, the delays do not match these values since, due to
the fact that the servomotors were not able to work at such speed, we had
to set the time scale factor parameter on the SpiNNaker board to 100. This
made the whole simulation run 100 times slower in real time, which is very
convenient for this approach.

Regarding the FPGA, a study of the VHDL module was carried out. A
post-implementation resources consumption report was generated, and also

13

Table 2: FPGA resources consumption and delays

Resources consumption Delays
LUTs Registers Time (Clock cycles)

CPG pattern
selector

2 (<0.01%) 4 (<0.01%) 20.83 ns (1)

AER
out

7 (0.01%) 5 (<0.01%) 104.15 ns (5)

AER-SpiNN
interface

213 (0.45%) 272 (0.29%) 1374.78 ns (66)

AER
in

7 (0.01%) 10 (0.01%) 41.66 ns (2)

CPG pattern
decoder

12 (0.03%) 24 (0.03%) 20.83 ns (1)

PWM generator
block

720 (1.53%) 576 (0.61%) 1895.53 ns (91)

NeuroPod
Top

986 (2.09%) 893 (0.95%) 3457.78 ns (166)

post-implementation simulations were performed to measure the delays of
every single VHDL module. The obtained results from those analysis are
shown in Table 2. To obtain these times, a clock source of 48MHz was used.

The amount of resources used by the top module is around 2.1 % of the
available LUTs and around 1% of the available number of registers. This
low resources consumption allows implementing more complex spike-based
motor control modules [24] as well as improving the NeuroPod top module
by including input information about the environment. In addition, the delay
added by the full design, in the worst case, is almost 3.5 µs, which is irrelevant
compared to the delays presented in Fig. 7.

After the simulation results were obtained, a real-time analysis of the full
system was carried out.

Both the latency from a high level command to the generation of the
CPG and the actual motion of the leg were measured using an oscilloscope.
These delays can be discarded since they are three orders of magnitude lower
than the time taken by the SpiNNaker to generate the sCPG which is 800
ms (the simulated time updated with the time scale factor).

According to that latency and the time that a gait cycle takes to be per-

14

formed, we can conclude that the theoretical maximum value of the move-
ment speed is 1.66 cm/s.

After that, we compared the simulation time with the real-time delays.
To this end, four cases of study were defined: resting to moving, stabilization
time, movement’s period, and change time between two different gaits.

There were time differences since the parameter time scale factor was set
to 100 in the SpiNNaker script in order to slowdown the SpiNNaker output.

4. Discussion and conclusions

A real time sCPG using neuromorphic hardware is presented. As was
stated in the introduction, several legs, up to six, are controlled. The delays
introduced in the open-loop control are very low, in the order of ms (see
Table 2). Previous works have a 50ms delay of propagation [11], or a converge
time of 5 seconds in [25]. Our results show a time of 23 ms (worst case) to
converge and approx. 20ms to propagate the gait.
Another difference with [11] is that we propose to use SpiNNaker [26] instead
of the neuromorphic chip ROLLS [12]. Also, six neurons less than [11] are
used in this work.

As a future work, we propose to use some voice commands and a neuro-
morphic auditory sensor [27] to change the gait. This real-time change will
be available based on the classification achieved by an SNN connected to the
sCPG.
Furthermore, feedback will be introduced in the sCPG by including either
touch or elevation sensors in the lower part of the leg of the robot. This
feedback will be used to learn in order to provide learning capabilities to the
system.

In this work, we presented and achieved what we believe is the first imple-
mentation of a real-time neuromorphic spiking CPG to command a hexapod
robot using SpiNNaker. Furthermore, we included the possibility to change
between three different gaits online.

Demonstration video is also available2.

2https://youtu.be/YZYAPDJHvLI

15

https://youtu.be/YZYAPDJHvLI

Acknowledgements

This work was supported by the Spanish grant (with support from the
European Regional Development Fund) COFNET (TEC2016-77785-P). The
work of D. Gutierrez-Galan was supported by a ”Formación de Personal
Investigador” Scholarship from the Spanish Ministry of Education, Culture
and Sport. This work was carried out during a research internship of D.
Gutierrez-Galan and Juan P. Dominguez-Morales in the Department of Com-
puter Architecture and Technology (Universidad de Cádiz, Spain).

References

References

[1] S. Grillner, P. Wallén, K. Saitoh, A. Kozlov, B. Robertson, Neural bases
of goal-directed locomotion in vertebratesan overview, Brain research
reviews 57 (2008) 2–12.

[2] J. Duysens, H. W. Van de Crommert, Neural control of locomotion;
Part 1: The central pattern generator from cats to humans, Gait &
Posture 7 (1998) 131–141.

[3] P. A. Guertin, The mammalian central pattern generator for locomotion,
Brain Research Reviews 62 (2009) 45–56.

[4] K. Minassian, U. S. Hofstoetter, F. Dzeladini, P. A. Guertin, A. Ijspeert,
The human central pattern generator for locomotion: Does it exist and
contribute to walking?, The Neuroscientist 23 (2017) 649–663.

[5] M. Schilling, T. Hoinville, J. Schmitz, H. Cruse, Walknet, a bio-inspired
controller for hexapod walking, Biological Cybernetics 107 (2013) 397–
419.

[6] R. J. Vogelstein, F. V. Tenore, L. Guevremont, R. Etienne-Cummings,
V. K. Mushahwar, A silicon central pattern generator controls locomo-
tion in vivo, IEEE transactions on biomedical circuits and systems 2
(2008) 212–222.

[7] G. Sartoretti, S. Shaw, K. Lam, N. Fan, M. Travers, H. Choset, Central
pattern generator with inertial feedback for stable locomotion and climb-
ing in unstructured terrain, in: 2018 IEEE International Conference on
Robotics and Automation (ICRA), IEEE, pp. 1–5.

16

[8] J. H. Barron-Zambrano, C. Torres-Huitzil, B. Girau, Hardware imple-
mentation of a CPG-based locomotion control for quadruped robots, in:
International Conference on Artificial Neural Networks, Springer, pp.
276–285.

[9] A. Crespi, D. Lachat, A. Pasquier, A. J. Ijspeert, Controlling swim-
ming and crawling in a fish robot using a central pattern generator,
Autonomous Robots 25 (2008) 3–13.

[10] S. Still, B. Schölkopf, K. Hepp, R. J. Douglas, Four-legged walking gait
control using a neuromorphic chip interfaced to a support vector learning
algorithm, in: Advances in neural information processing systems, pp.
741–747.

[11] E. Donati, F. Corradi, C. Stefanini, G. Indiveri, A spiking implementa-
tion of the lamprey’s Central Pattern Generator in neuromorphic VLSI,
in: IEEE 2014 Biomedical Circuits and Systems Conference, BioCAS
2014 - Proceedings, pp. 512–515.

[12] N. Qiao, H. Mostafa, F. Corradi, M. Osswald, F. Stefanini, D. Sumis-
lawska, G. Indiveri, A reconfigurable on-line learning spiking neuromor-
phic processor comprising 256 neurons and 128k synapses, Frontiers in
neuroscience 9 (2015) 141.

[13] B. Cuevas-Arteaga, J. P. Dominguez-Morales, H. Rostro-Gonzalez,
A. Espinal, A. F. Jimenez-Fernandez, F. Gomez-Rodriguez, A. Linares-
Barranco, A SpiNNaker application: design, implementation and valida-
tion of SCPGs, in: International Work-Conference on Artificial Neural
Networks, Springer, pp. 548–559.

[14] S. B. Furber, F. Galluppi, S. Temple, L. A. Plana, The SpiNNaker
Project, Proceedings of the IEEE (2014).

[15] J. K. Douglass, N. J. Strausfeld, Visual motion detection circuits in
flies: peripheral motion computation by identified small-field retinotopic
neurons, Journal of Neuroscience 15 (1995) 5596–5611.

[16] M. B. Milde, O. J. Bertrand, R. Benosman, M. Egelhaaf, E. Chicca,
Bioinspired event-driven collision avoidance algorithm based on optic
flow, in: Event-based Control, Communication, and Signal Processing
(EBCCSP), 2015 International Conference on, IEEE, pp. 1–7.

17

[17] A. Schneider, J. Paskarbeit, M. Schaeffersmann, J. Schmitz, Hector, a
new hexapod robot platform with increased mobility-control approach,
design and communication, in: Advances in Autonomous Mini Robots,
Springer, 2012, pp. 249–264.

[18] A. Büschges, T. Akay, J. P. Gabriel, J. Schmidt, Organizing network
action for locomotion: insights from studying insect walking, Brain
research reviews 57 (2008) 162–171.

[19] H. Rostro-Gonzalez, P. A. Cerna-Garcia, G. Trejo-Caballero, C. H.
Garcia-Capulin, M. A. Ibarra-Manzano, J. G. Avina-Cervantes,
C. Torres-Huitzil, A CPG system based on spiking neurons for hexapod
robot locomotion, Neurocomputing 170 (2015) 47–54.

[20] S. B. Furber, D. R. Lester, L. A. Plana, J. D. Garside, E. Painkras,
S. Temple, A. D. Brown, Overview of the SpiNNaker system architec-
ture, IEEE Transactions on Computers 62 (2013) 2454–2467.

[21] L. A. Plana, S. B. Furber, S. Temple, M. Khan, Y. Shi, J. Wu, S. Yang,
A GALS infrastructure for a massively parallel multiprocessor, IEEE
Design & Test of Computers 24 (2007).

[22] A. Yousefzadeh, M. Jab loński, T. Iakymchuk, A. Linares-Barranco,
A. Rosado, L. A. Plana, S. Temple, T. Serrano-Gotarredona, S. B.
Furber, B. Linares-Barranco, On multiple AER handshaking channels
over high-speed bit-serial bidirectional LVDS links with flow-control and
clock-correction on commercial FPGAs for scalable neuromorphic sys-
tems, IEEE transactions on biomedical circuits and systems 11 (2017)
1133–1147.

[23] L. Plana, J. Heathcote, J. Pepper, S. Davidson, J. Garside, S. Temple,
S. Furber, spI/O: A library of FPGA designs and reusable modules for
I/O in SpiNNaker systems (2014).

[24] A. Jimenez-Fernandez, G. Jimenez-Moreno, A. Linares-Barranco, M. J.
Dominguez-Morales, R. Paz-Vicente, A. Civit-Balcells, A neuro-inspired
spike-based PID motor controller for multi-motor robots with low cost
FPGAs, Sensors 12 (2012) 3831–3856.

18

[25] A. Crespi, A. J. Ijspeert, et al., AmphiBot II: An amphibious snake
robot that crawls and swims using a central pattern generator, in: Pro-
ceedings of the 9th international conference on climbing and walking
robots (CLAWAR 2006), volume 11, pp. 19–27.

[26] S. B. Furber, F. Galluppi, S. Temple, L. A. Plana, The SpiNNaker
project, Proceedings of the IEEE 102 (2014) 652–665.

[27] A. Jiménez-Fernández, E. Cerezuela-Escudero, L. Miró-Amarante, M. J.
Domı́nguez-Morales, F. de Aśıs Gómez-Rodŕıguez, A. Linares-Barranco,
G. Jiménez-Moreno, A binaural neuromorphic auditory sensor for
FPGA: a spike signal processing approach, IEEE transactions on neural
networks and learning systems 28 (2017) 804–818.

19

	1 Introduction
	2 Materials and Methods
	2.1 Materials
	2.1.1 Robotic platform
	2.1.2 SpiNNaker
	2.1.3 Reconfigurable hardware board

	2.2 Methods
	2.2.1 CPG
	2.2.2 Digital system

	3 Results
	4 Discussion and conclusions

