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Abstract: At present, the research on invariant functions for algebras is very extended since Hrivnák
and Novotný defined in 2007 the invariant functions ψ and ϕ as a tool to study the Inönü–Wigner
contractions (IW-contractions), previously introduced by those authors in 1953. In this paper, we introduce
a new invariant two-parameter function of algebras, which we call ψ̄, as a tool which makes easier the
computations and allows researchers to deal with contractions of algebras. Our study of this new function
is mainly focused in Malcev algebras of the type Lie, although it can also be used with any other types of
algebras. The main goal of the paper is to prove, by means of this function, that the five-dimensional
classical-mechanical model built upon certain types of five-dimensional Lie algebras cannot be obtained
as a limit process of a quantum-mechanical model based on a fifth Heisenberg algebra. As an example of
other applications of the new function obtained, its computation in the case of the Lie algebra induced
by the Lorentz group SO(3, 1) is shown and some open physical problems related to contractions are
also formulated.
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1. Introduction

Regarding the concept of limit process between physical theories in terms of contractions of their
associated symmetry groups, formulated by Erdal Inönü and Eugene Wigner [1,2], these authors
introduced the so-called Inönü–Wigner contractions (IW-contractions) in 1953. Later, other extensions
of these IW-contractions have also been addressed, for instance the generalized Inönü–Wigner contractions,
introduced by Melsheiner [3], the parametric degenerations [4–6], widely used in the Algebraic Invariants
Theory, and the singular contractions [2]. To study these contractions, Hrivnák and Novotný introduced the
invariant functions ψ and ϕ as a tool in 2007 [7]. These invariant functions depend on one parameter.

Continuing with this topic, the main goal of this paper is to introduce a new invariant function,
in this case depending on two parameters, which we call the two-parameter invariant function ψ̄, to get
some advances on this research. Indeed, the objective is to prove, by means of this function, that the
five-dimensional classical-mechanical model built upon certain types of five-dimensional Lie algebras
cannot be obtained as a limit process of a quantum-mechanical model based on a fifth Heisenberg algebra.
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Indeed, the study of this function is mainly focused in the frame of the Malcev algebras of the type
Lie. Thus, this paper can be considered as the natural continuation of a previous one dealing with Lie
algebras [8]. We try to generalize the properties obtained on that to the case of Malcev algebras.

The structure of the paper is as follows. In Section 2, we recall some preliminaries on the mathematical
objects dealt with in this paper, Lie algebras and Malcev algebras. Section 3 is devoted to introducing
and proving the main properties of the two-parameter invariant function ψ̄. For computations, we used
the SAGE symbolic computation package and in this section we prove that this new function is different
from others previously defined, which are used as a tool to study contractions of algebras. We also prove
the main result of the paper: no proper contraction between a fifth Heisenberg algebra and a filiform Lie
algebra of dimension 5 exists. It implies that the five-dimensional classical-mechanical model built upon
a five-dimensional filiform Lie algebra cannot be obtained as a limit process of a quantum-mechanical
model based on a fifth Heisenberg algebra. In this way, the new function allows us to step forward in the
research on contractions. In Section 4, we show some of our discussion and conclusions regarding the
research done. Finally, in Section 5, we give some comments on the materials and methods used in such
a research.

2. Preliminaries

We show in this section some preliminaries on Lie algebras, Malcev algebras and on Heisenberg
algebras, which are the main mathematical objects used in the paper.

2.1. Preliminaries on Lie Algebras

In this subsection, we show some preliminaries on Lie algebras. For a further review on this topic,
the reader can consult [9].

An n-dimensional Lie algebra g over a field K is an n-dimensional vector space over K endowed
with a second inner law, named bracket product, which is bilinear and anti-commutative and satisfies the
Jacobi identity

J(u, v, w) = [u, [v, w]] + [v, [w, u]] + [w, [u, v]] = 0, for all u, v, w ∈ g. (1)

The law of the n-dimensional Lie algebra g is determined by the products

[ei, ej] =
n

∑
k=1

ck
ijek, for 1 ≤ i < j ≤ n,

where ck
i,j ∈ K are called structure constants of g. If all these constants are zero, then the Lie algebra is

called abelian.
Two Lie algebras g and h are isomorphic if there exists a vector space isomorphism f between them

such that f ([u, v]) = [ f (u), f (v)], for all u, v ∈ g.
A mapping d : g −→ g is a derivation of g if d([u, v]) = [d(u), v] + [u, d(v)], for all u, v ∈ g. The set of

derivations of g is denoted by Derg.
The lower central series of a Lie algebra g is defined as g1 = g, g2 = [g1, g], . . . , gk = [gk−1, g], . . .
If there exists m ∈ N such that gm ≡ 0, then g is called nilpotent. The nilpotency class of g is the smallest

natural c such that gc+1 ≡ 0.
An n-dimensional nilpotent Lie algebra g is said to be filiform if it is verified that dim gk = n −

k, for all k ∈ {2, . . . , n}. Filiform Lie algebras were introduced by Vergne in her Ph.D. Thesis, in 1966,
later published in [10] in 1970.
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The only n-dimensional filiform Lie algebra for n < 3 is the abelian. For n ≥ 3, it is always possible
to find an adapted basis {e1, . . . , en} of g such that [e1, e2] = 0, [e1, ej] = ej−1, for all j ∈ {3, . . . , n} and
[e2, ej] = [e3, ej] = 0, for all j ∈ {3, . . . , n}.

From the condition of filiformity and the Jacobi identity in Equation (1), the bracket product of g is
determined by

[ei, ej] =
min{i−1,n−2}

∑
k=2

ck
ijek, for 4 ≤ i < j ≤ n,

where ck
i,j ∈ K are called structure constants of g. If all these constants are zero, then the filiform

Lie algebra g is called model. The model algebra is not isomorphic to any other algebra of the same
dimension and every n-dimensional filiform Lie algebra g having an adapted basis {e1, . . . , en} verifies
that g2 = 〈e2, . . . , en−1〉, g3 = 〈e2, . . . , en−2〉, . . . , gn−1 = 〈e2〉, gn = 0.

2.2. Preliminaries on Malcev Algebras

Now, we recall some preliminary concepts on Malcev algebras, taking into account that a general
overview can be consulted in [11]. From here on, we only consider finite-dimensional Malcev algebras
over the complex number field C.

A Malcev algebraM is a vector space with a second bilinear inner composition law ([·, ·]) called the
bracket product or commutator, which satisfies: (a) [u, v] = −[v, u], ∀u, v ∈ M; and (b) [[u, v], [u, w]] =

[[[u, v], w], u] + [[[v, w], u], u] + [[[w, u], u], v], ∀u, v, w ∈ M. Condition (b) is named Malcev identity and we
use the notation M(u, v, w) = [[u, v], [u, w]]− [[[u, v], w], u]− [[[v, w], u], u]− [[[w, u], u], v].

Given a basis {ei}n
i=1 of a n-dimensional Malcev algebraM, the structure constants ch

i,j are defined as

[ei, ej] = ∑n
h=1 ch

i,jeh, for 1 ≤ i, j ≤ n.
It is immediate to see that Malcev algebras and Lie algebras are not disjoint sets. Indeed, every Lie

algebra is a Malcev algebra, but the converse is not true. Therefore, we can distinguish between Malcev
algebras of the type Lie and Malcev algebras of the type non-Lie. Obviously, those Malcev algebras which
are of the type Lie verify both identities: Jacobi and Malcev.

If the Jacobi identity does not hold, then the Malcev algebra is said to have a Jacobi anomaly. In quantum
mechanics, the existence of Jacobi anomalies in the underlying non-associative algebraic structure related
to the coordinates and momenta of a quantum non-Hamiltonian dissipative system was already claimed
by Dirac [12] in the process of taking Poisson brackets. In string theory, for instance, one such anomaly
is involved by the non-associative algebraic structure that is defined by coordinates (~x) and velocities or
momenta (~v) of an electron moving in the field of a constant magnetic charge distribution, at the position
of the location of the magnetic monopole [13]. In particular, J(v1, v2, v3) = −~∇ ◦ ~B(~x), where ~∇ ◦ ~B(~x)
denotes the divergence of the magnetic field ~B(~x). The underlying algebraic structure constitutes a non-Lie
Malcev algebra [14], with the commutation relations [xa, xb] = 0, [xa, vb] = i δab and [va, vb] = i εabc Bc(~x),
where a, b, c ∈ {1, 2, 3}, δab denotes the Kronecker delta and εabc denotes the Levi–Civita symbol. If the
magnetic field is proportional to the coordinates, the latter can be normalized and Bc(~x) can then be
supposed to coincide with xc. The resulting algebra is then called magnetic [15]. A generalization to
electric charges has recently been considered [15] by defining the products [xa, xb] = −i εabc ~Ec(~x,~v),
where the electric field ~E as well as the magnetic field ~B must depend not only on coordinates but also
on velocities. It is worth remarking that both magnetic and electric algebras constitute magma algebras
(see [16] for this last concept).

If g is a Malcev algebra of the type Lie and D ∈ Derg a derivation of g, then, according to the
anti-commutative property of g and the Jacobi identity in Equation (1) of Lie algebras, we get that
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[d[x, y], [x, z]] + [[x, y], d[x, z]] = d[[[x, z], y], x] + d[[[z, x], x], y] ∀x, y, z ∈ g

Starting from here and due to reasons of length, only Malcev algebras of type Lie, that is to say, actually
Lie algebras, are used in this paper. Malcev algebras of type non-Lie will be dealt with in future work.

2.3. Preliminaries on Heisenberg Algebras

Let n be a non-negative integer or infinity. The nth Heisenberg algebra (so-called after Werner
Karl Heisenberg) is the Lie algebra with basis B = {p1, . . . , pn, q1, . . . , qn, z} with the following relations,
known as canonical commutation relations

1. [pi, qj] = cij z, 1 ≤ i, j ≤ n.
2. [pi, z] = [qi, z] = [pi, pj] = [qi, qj] = 0, 1 ≤ i, j ≤ n.

Note that the dimension of an nth Heisenberg algebra is not n, but 2n + 1. In fact, the n in the above
definition is called the rank of the Heisenberg algebra, although it is not, however, a rank in any of the
usual meanings that this word has in the theory of Lie algebras. Thus, this Lie algebra is also known as the
Heisenberg algebra of rank n.

In any case, from here on and to avoid confusions we designate under the notation fifth Heisenberg
algebras to those Heisenberg algebras generated by five generators.

3. Results

In this section, which is divided by subheadings, we provide a concise and precise description of our
experimental results. They are the following.

3.1. Introducing a New Invariant Function

Let g = (V, [ , ]) be a Lie algebra. End g denotes the vector space of all linear operators of g over V.

Definition 1. Let g be a Lie algebra. The set

Der(α,β,γ,τ)g = {d ∈ End g : α[d[x, y], [x, z]] + β[[x, y], d[x, z]] = γd[[[x, z], y]x] + τd[[[z, x], x], y]}

∀(α, β, γ, τ) ∈ C4, is called the set of the (α, β, γ, τ)-derivations of the algebra g. It is denoted by Der(α,β,γ,τ)g.

It is obvious that dim
(

Der(1,1,1,1)g
)
= dim

(
Derg

)
. Then, as dim

(
Derg

)
is an invariant of g, it follows

that dim
(

Der(1,1,1,1)g
)

is an invariant of g. This leads the following result.

Proposition 1. If g is a Lie algebra, then dim(1,1,1,1)g is an algebraic invariant of g. �

Theorem 1. Let g and ḡ be two Malcev algebras of the type Lie and let f : g → ḡ be an isomorphism. Then, the
mapping ρ : End g→ End ḡ, defined by D −→ f D f−1, is an isomorphism between the vector spaces Der(α,β,γ,τ)g

and Der(α,β,γ,τ)ḡ, ∀(α, β, γ, τ) ∈ C4.,

Proof. Let g = (V, ·) and ḡ = (V̄, ∗) be two Malcev algebras of the type Lie and let us consider D ∈
Der(α,β,γ,τ)g, for any (α, β, γ, τ) ∈ C4 and for all x, y, z ∈ ḡ. Then,
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αD
(

f−1(x) · f−1(y)
)
·
(

f−1(x) · f−1(z)
)
+ β

(
f−1(x) · f−1(y)

)
· D
(

f−1(x) · f−1(z)
)
=

γD
(((

f−1(x) · f−1(z)
)
· f−1(y)

)
· f−1(x)

)
+ τD

(((
f−1(z) · f−1(x)

)
· f−1(x)

)
· f−1(y)

)
.

It is deduced that

γD
(((

f−1(x) · f−1(z)
)
· f−1(y)

)
· f−1(x)

)
= γD

((
f−1(x ∗ z) · f−1(y)

)
· f−1(x)

)
=

γD f−1((x ∗ z) ∗ y) · f−1(x)) = γD f−1(((x ∗ z) ∗ y) ∗ x),

and, similarly,

τD
(((

f−1(z) · f−1(x)
)
· f−1(x)

)
· f−1(y)

)
= τD f−1(((z ∗ x) ∗ x) ∗ y)

αD
(

f−1(x) · f−1(y)
)
·
(

f−1(x) · f−1(z)
)
= αD f−1(x ∗ y) · f−1(x ∗ z)

β

(
f−1(x) · f−1(y)

)
· D
(

f−1(x) · f−1(z)
)
= β f−1(x ∗ y) · D f−1(x ∗ z).

Thus,

αD f−1(x ∗ y) · f−1(x ∗ z)+ β f−1(x ∗ y) ·D f−1(x ∗ z) = γD f−1(((x ∗ z) ∗ y) ∗ x)+ τD f−1(((z ∗ x) ∗ x) ∗ y).

Now, the result of applying f to the previous expression is

α

(
fDf−1

)
(x∗y)∗(x∗z)+β(x∗y)∗

(
fDf−1

)
(x∗z) = γ

(
fDf−1

)
(((x∗z)∗y)∗x)+τ

(
fDf−1

)
(((z∗x)∗x)∗y).

Thus, f D f−1 ∈ Der(α,β,γ,τ)ḡ, which concludes the proof.

An immediate consequence of this result is the following.

Corollary 1. Let g be a Lie algebra. The dimension of the vector space Der(α,β,γ,τ)g is an invariant of the algebra,
for all (α, β, γ, τ) ∈ C4.

Lemma 1. (Technical Lemma) Let d be a derivation of a Lie algebra g. The following expressions are verified

1. d[[[z,x],x],y]=d[[x,y],[x,z]]-d[[[y,z],x],x]
2. d[[[y,x],x],z]=d[[x,z],[x,y]]-d[[[z,y],x],x]
3. d[[[x,z],y],x]=d[[x,y],[x,z]]-d[[[z,x],x],y]
4. d[[[x,y],z],x]=d[[x,z],[x,y]]-d[[[y,x],x],z].

Proof. All expressions are immediate consequences of the properties of the derivations (see Section 2).
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Lemma 2. Let g = (V, [, ]) be a Lie algebra. Then,

Der(α,β,γ,τ)g = Der(α+β,α+β,2γ,2τ)g∩ Der(α−β,β−α,0,0)g

Proof. Suppose D ∈ Der(α,β,γ,τ)g. Then, for all (x, y, z) ∈ g, we have

α[d[x, y], [x, z]] + β[[x, y], d[x, z]] = γd[[[x, z], y], x] + τd[[[z, x], x], y].

Charging now y and z between themselves, we have

α[d[x, z], [x, y]] + β[[x, z], d[x, y]] = γd[[[x, y], z], x] + τd[[[y, x], x], z]

and by adding the two first expressions of Lemma 1 and taking the anti-skew property of the Lie bracket
into consideration, we have

(α− β)[d[x, y], [x, z]] + (β− α)[[x, y], d[x, z]] =

γ(d[[[x, z], y]x] + d[[[x, y], z]x]) + τ(d[[[z, x], x], y] + d[[[y, x], x], z]).

Similarly, starting from the two last expressions of Lemma 1, we obtain

d[[[z, x], x], y] + d[[[y, x], x], z] = 0

and by repeating the same procedure we obtain

d[[[x, z], y], x] + d[[[x, y], z], x] = 0.

Now, starting from both expressions, we have

(α− β)[d[x, y], [x, z]] + (β− α)[[x, y], d[x, z]] = 0.

Therefore, D ∈ Der(α−β,β−α,0,0)g.
Now, by subtracting the two first expressions of the proof and taking into account the anti-skew

property, we have (α + β)[d[x, y], [x, z]] + (β + α)[[x, y], d[x, z]] = γ(d[[[x, z], y], x] − d[[[x, y], z], x]) +
τ(d[[[z, x], x], y]− d[[[y, x], x], z]).

We use now in the previous equality the two expressions d[[[y, x], x], z] = −d[[[z, x], x], y] and
d[[[x, y], z], x] = −d[[[x, z], y], x], respectively, obtained from previous expressions.

We have that (α + β)[d[x, y], [x, z]] + (α + β)[[x, y], d[x, z]] = 2γd[[[x, z], y], x] + 2τd[[[z, x], x], y].
It involves that D ∈ Der(α+β,α+β,2γ,2τ)g. Therefore, it is verified that Der(α,β,γ,τ)g ⊂ Der(α+β,α+β,2γ,2τ)g ∩
Der(α−β,β−α,0,0)g.

If D ∈ Der(α+β,α+β,2γ,2τ)g∩ Der(α−β,β−α,0,0)g, then D verifies both equations (α + β)[d[x, y], [x, z]] +
(α + β)[[x, y], d[x, z]] = 2γd[[[x, z], y], x] + 2τd[[[z, x], x], y] and (α − β)[d[x, y], [x, z]] +

(β − α)[[x, y], d[x, z]] = 0.
Then, by adding these last equations and simplifying, we observe that D verifies

α[d[x, y], [x, z]] + β[[x, y], d[x, z]] = γd[[[x, z], y], x] + τd[[[z, x], x], y].

Thus, D ∈ Der(α,β,γ,τ)g = Der(α+β,α+β,2γ,2τ)g∩ Der(α−β,β−α,0,0)g.
Therefore, Der(α,β,γ,τ)g = Der(α+β,α+β,2γ,2τ)g∩ Der(α−β,β−α,0,0)g, which completes the proof.
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Theorem 2. Let g be a Lie algebra. Then, for all (α, β, γ, τ) ∈ C4, it exists (λ1, λ2) ∈ C2 such that Der(α,β,γ,τ)g ⊂
C2 is one of the following four sets: Der(0,0,λ1,λ2)

g; Der(1,−1,λ1,λ2)
g; Der(1,0,λ1,λ2)

g; or Der(1,1,λ1,λ2)
g.

Proof. Consider (α, β, γ, τ) ∈ C4. We distinguish the following cases

Case 1: α + β = 0. We distinguish now the following two subcases:

1.1 α = β = 0. Then, Der(α,β,γ,τ)g = Der(0,0,γ,τ)g. Therefore, γ = λ1 and λ2 = τ.
1.2 α = −β. In this subcase, by Lemma 2, we have that

Der(α,β,γ,τ)g = Der(0,0,2γ,2τ)g∩ Der(−2β,2β,0,0)g = Der(0,0,γ,τ)g∩ Der(−1,1,0,0)g.

Apart from that, it is also verified that

Der(−1,1,γ,τ)g = Der(0,0,2γ,2τ)g∩ Der(−2,2,0,0)g = Der(0,0,γ,τ)g∩ Der(−1,1,0,0)g.

Therefore, Der(α,β,γ,τ)g = Der(−1,1,γ,τ)g. It involves that λ1 = γ and λ2 = τ.

Case 2: α + β 6= 0. Two subcases are also considered:

2.1 α 6= β.

By Lemma 2, we have Der(α,β,γ,τ)g = Der
(1,1, 2γ

α+β , 2τ
α+β )

g∩ Der(1,−1,0,0)g.

Since Der(1,0, γ
α+β , τ

α+β )
g = Der

(1,1, 2γ
α+β , 2τ

α+β )
g ∩ Der(1,−1,0,0)g, it is deduced that Der(α,β,γ,τ)g =

Der(1,0, γ
α+β , τ

α+β )
g. It involves that λ1 = γ

α+β and λ2 = τ
α+β .

2.2 α = β.
In this subcase, Der(α,β,γ,τ)g = Der(1,1, γ

α , τ
α )
g. Therefore, λ1 = γ

α and λ2 = τ
α .

These two two-parameter sets Der(1,0,λ1,λ2)
g and Der(1,1,λ1,λ2)

g previously defined allow us to define
the following invariant two-parameter functions of Lie algebras.

Definition 2. The functions ψ̄g, ψ̄0
g : C2 7→ N defined, respectively, as (ψ̄g)(α, β) = dim Der(1,1,α,β)g

and (ψ̄0
g)(α, β) = dim Der(1,0,α,β)g are called ψ̄g and ψ̄0

g invariant functions corresponding to the
(α, β, γ, τ)-derivations of g.

Corollary 2. If two Malcev algebras of the type Lie g and f are isormorphic, then ψ̄g = ψ̄f and ψ̄0
g = ψ̄0

f .

Note that the function ψ̄ is a two-parameter function, whereas the function ψ by Novotný and
Hrivnák [7] is one-parameter. It implies that both functions are structurally different. However, it can be
thought that ψ could be obtained as a particular case of ψ̄ by simply taking one of the parameters as a
constant. The following counter-example shows that it is not possible.

Indeed, we now compare the function ψ̄ with the invariant function ψ and prove that both functions
are totally different. To do this, we compute both functions for a same Lie algebra, in the particular case of
being α = 1. Concretely, we use the Lie algebra induced by the Lorentz group SO(3, 1), which we denote
by g6.

Computing ψg6 , for α = 1
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Let us recall that Minkowski defined the spacetime as a four-dimensional manifold with the metric
ds2 = −c2dt2 + dx2 + dy2 + dz2. We introduce the metric tensor

η =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

If we rename (ct, x, y, z)→ (x0, x1, x2, x3), then the expression ds2 can be written as ds2 = ηµγdxµdxγ

(summed over µ and γ). Recall that this distance is invariant under the following type of transformations
xµ → λ

µ
γxγ such that the coefficients λ

µ
γ are the elements of a matrix Λ (which is called Lorentz

transformations) that satisfies ΛtηΛ = η. Since the metric in the three-dimensional Euclidean space
corresponds to the identity matrix, if R is the matrix of a rotation, then Rt1R = 1 and comparing this
expression with ΛtηΛ = η it is possible to say that the Lorentz transformations are rotations in the
Minkowski space. These transformations form a group called the Lorentz group SO(3, 1).

Now, we focus our study on the infinitesimal Lorentz transformations. A Lorentz transformation
matrix can be written as Λµ

γ = δ
µ
γ +λ

µ
γ, where the parameters λ

µ
γ are infinitesimal and verify that λ

µ
γ = −λ

γ
µ

so that the Lorentz transformation is valid. The action of this transformation on the coordinates xµ in the
Minkowski space can be written as δxµ = Λµ

γxγ.

If we define Aρσ such that Λµ
γ =

1
2

λρσ(Aρσ)
µ
γ, we can write the above action as δxµ =

1
2

λρσ(Aρσ)
µ
γxγ.

Then, it is easily proved that (Aρσ)
µ
γ = δ

µ
ρ ησγ − δ

µ
σ ηργ.

Explicitly,

A10 =


0 −1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

 A20 =


0 0 −1 0
0 0 0 0
−1 0 0 0
0 0 0 0

 A30 =


0 0 0 −1
0 0 0 0
0 0 0 0
−1 0 0 0



A12 =


0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

 A23 =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0

 A31 =


0 0 0 0
0 0 0 −1
0 0 0 0
0 1 0 0


Now, by defining the Lie product as the usual commutator [Aij, Ahk] = Aij · Ahk − Ahk · Aij,

A10, A20, A30, A12, A23 and A31 generate a Lie algebra, which we denote by g6.
Let us consider d ∈ Der(1,1,1,1)g6 and let A = (aij), 1 ≤ i, j ≤ 6 be the 6× 6 square matrix associated

with the endomorphism d.
To obtain the elements of this matrix, for the pair of generators (ei, ej), with i < j, the derivation d

satisfies d
(
[ei, ej]

)
= [d(ei), ej] + [ei, d(ej)] and d(ei) = ∑6

h=1 aih eh. In this way, the following conditions are
obtained. This can be seen in the following Table 1.
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Table 1. Condition obtained.

From Pair (ei, ej) Conditions

(e1, e2)
a41 = a14, a42 = a24, a43 = −a15 − a26,
a44 = a11 + a22, a45 = −a13, a46 = −a23.

(e1, e3)
a61 = a16, a62 = −a15 − a34, a63 = a36,
a64 = −a32, a65 = −a12, a66 = a33 + a11.

(e1, e4)
a21 = −a12, a22 = a11 + a44, a23 = −a46,
a24 = a42, a25 = −a16, a26 = a15 − a43.

(e1, e5)
a13 = 0, a54 = 0, a12 − a56 = 0,
a16 + a52 = 0, a14 + a53 = 0.

(e1, e6)
a31 = −a13, a32 = −a64, a33 = a11 + a66,
a34 = a15 − a62, a35 = −a14, a36 = a63.

(e2, e3)
a51 = −a26 − a34, a52 = a25, a53 = a35,
a54 = −a31, a55 = a22 + a33, a56 = −a21.

(e2, e4)
a11 = a22 + a44, a12 = −a21, a13 = −a45,
a14 = a41, a15 = a26 − a43, a16 = −a25.

(e2, e5)
a31 = −a54, a32 = −a23, a33 = a22 + a55,
a34 = a26 − a51, a35 = a53, a36 = −a24.

(e2, e6)
a23 − a64 = 0, −a21 + a65 = 0, a25 + a61 = 0,
a24 + a63 = 0.

(e3, e5)
a21 = −a56, a22 = a33 + a55, a23 = −a32,
a24 = −a36, a25 = a52, a26 = a34 − a51.

(e3, e6)
a11 = a33 + a66, a12 = −a65, a13 = −a31,
a14 = −a35 + a34, a15 = −a62, a16 = a61.

(e4, e5)
a61 = −a52, a62 = a43 + a51, a63 = −a42,
a64 = −a46, a65 = −a56, a66 = a44 + a55.

(e4, e6)
a51 = a43 + a62, a52 = −a61, a53 = −a41,
a54 = −a45, a55 = a44 + a66, a56 = −a65.

(e5, e6)
a41 = −a53, a42 = −a63, a43 = a51 + a62,
a44 = a55 + a66, a45 = −a54, a46 = −a64.

(e3, e4)
−a32 + a46 = 0, a31 − a45 = 0, a36 + a42 = 0,
a35 + a41 = 0.

From these conditions on aij and ∀ a41, a42, a44, a46, a55, a61, a65, a66 ∈ C, we have the following
conditions shown in Table 2.

Table 2. Conditions obtained.

a11 = a55, a12 = −a65, a13 = 0, a14 = a41, a15 = 0, a16 = a61.
a21 = a65, a22 = a66, a23 = −a46, a24 = a42, a25 = −a61, a26 = 0.
a31 = 0, a32 = a46, a33 = a44, a34 = 0, a35 = −a41, a36 = −a42,

a43 = 0, a45 = 0.
a51 = 0, a52 = −a61, a53 = −a41, a54 = 0, a56 = −a65.

a62 = 0, a63 = −a42, a64 = −a46.

This implies that ψg6(1) = dim
(

Der(1,1,1,1)g6
)
= 8.

Computing ψ̄g6 , for α = 1

Let us consider d ∈ Der(1,1,1,1)g6. Then, [d[u, v], [u, w]] + [[u, v], d[u, w]] = d[[[u, w], v], u] +
d[[[w, u], u], v], ∀u, v, w ∈ g6.
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To obtain the elements aij of the corresponding 6× 6 square matrix associated with d, we see that for
each triplets of generators (ei, ej, ek) of the algebra, the previous expression is written as

[d[ei, ej], [ei, ek]] + [[ei, ej], d[ei, ek]] = d[[[ei, ek], ej], ei] + d[[[ek, ei], ei], ej].

Starting from it, we obtain the following conditions shown in Table 3.

Table 3. Conditions obtained.

From Triplet (ei, ej, ek) Conditions

(e1, e2, e3)
a51 = a43 + a62, a52 = −a61, a53 = −a41,
a54 = −a45, a55 = a66 + a44, a56 = −a65.

(e1, e2, e4)
a11 = a22 + a44, a12 = −a21, a13 = −a45,
a14 = −a41, a15 = a26 − a43, a16 = −a25.

(e1, e2, e5) 0 = 0

(e1, e2, e6)
a32 + a46 = 0, e31 + a45 = 0, a36 + a42 = 0,
a35 + a41 = 0.

(e1, e3, e4)
−a23 + a64 = 0, a21 − a65 = 0, a25 + a61 = 0
a24 + a63 = 0.

(e1, e3, e5) 0 = 0

(e1, e3, e6)
a33 + a66 = a11, a65 = −a12, a31 = −a13,
a35 = −a14, a34 − a62 = a15, a61 = a16.

(e1, e4, e5) 0 = 0

(e1, e4, e6)
a51 = −a26 − a34, a52 = a25, a53 = a35,
a54 = −a31, a55 = a22 + a33, a56 = −a21.

(e1, e5, e6) 0 = 0

(e2, e3, e4)
−a13 + a54 = 0, a12 − a56 = 0, a16 + a52 = 0,
a14 + a53 = 0.

(e2, e3, e5)
a21 = −a56, a22 = a33 + a55, a23 = −a32,
a24 = −a36, a25 = a52, a26 = a34 − a51.

(e2, e3, e6) 0 = 0

(e2, e4, e5)
a61 = −a16, a62 = a15 + a34, a63 = −a36,
a64 = a32, a65 = a12, a66 = −a11 − a33.

(e2, e4, e6) 0 = 0

(e2, e5, e6) 0 = 0

(e3, e4, e5) 0 = 0

(e3, e4, e6) 0 = 0

(e4, e5, e6)
a41 = −a53, a42 = −a63, a43 = a51 + a62,
a44 = a55 + a66, a45 = −a54, a46 = −a64.

(e3, e5, e6)
a41 = a14, a42 = a24, a43 = −a15 − a26,
a44 = a11 + a22, a45 = −a13, a46 = −a23.

It follows from these conditions for aij that aij = 0, ∀ i, j ∈ {1 , 2 , 3 , 4 , 5 , 6 }. This implies that
ψ̄g6(1, 1) = dim

(
Der(1,1,1,1)g6

)
= 0, which proves that ψ 6= ψ̄ in general.
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3.2. The Quantum-Mechanical Model Based on a 5th Heisenberg Algebra

In this section, and by using the invariant function previously introduced ψ̄, we prove the
following result.

Theorem 3. Main Theorem
The five-dimensional classical-mechanical model built upon certain types of five-dimensional Lie algebras cannot

be obtained as a limit process of a quantum-mechanical model based on a fifth Heisenberg algebra.

Proof. Let H5 be the fifth Heisenberg algebra generated by {e1, . . . , e5} and defined by the brackets
[e1, e3] = e5 and [e2, e4] = e5.

Let us consider d ∈ Der(1,1,1,1)H5. Then, [d[u, v], [u, w]] + [[u, v], d[u, w]] = d[[[u, w], v], u] +
d[[[w, u], u], v], ∀u, v, w ∈ H5.

To obtain the elements aij of the corresponding 5× 5 square matrix associated with d, we see that for
each triplet of generators (ei, ej, ek) of the algebra, the previous expression is written as

[d[ei, ej], [ei, ek]] + [[ei, ej], d[ei, ek]] = d[[[ei, ek], ej], ei] + d[[[ek, ei], ei], ej].

Note that, in this case, there is no restriction on the elements of the matrix associated with d and, thus,
ψ̄H5(1, 1) = dim

(
Der(1,1,1,1)H5

)
= 25.

For another part, let f5 be the five-dimensional filiform Lie algebra, defined by [e1, e3] = e2, [e1, e4] = e3

and [e1, e5] = e4.
Let us consider d ∈ Der(1,1,1,1)f5. Then, it is verified that [d[u, v], [u, w]] + [[u, v], d[u, w]] =

d[[[u, w], v], u] + d[[[w, u], u], v], ∀u, v, w ∈ f5.
Similar to the previous case, to obtain the elements aij of the corresponding 5× 5 square matrix

associated with d, we see that, for each triplet of generators (ei, ej, ek) of the algebra, the previous expression
is written as

[d[ei, ej], [ei, ek]] + [[ei, ej], d[ei, ek]] = d[[[ei, ek], ej], ei] + d[[[ek, ei], ei], ej].

In this case, the restrictions of the matrix associated with d are a21 = 0, obtained from the bracket
(e1, e3, e5) and a31 = a41 from (e1, e4, e5), therefore ψ̄(1, 1) = 23.

Next, we use the highly non-trivial result, which was originally proved by Borel [17]: If g0 is a proper
contraction of a complex Lie algebra g, then it holds: dim

(
Derg

)
< dim

(
Derg0

)
.

Indeed, according to Proposition 1 we obtain that

ψ̄H5(1, 1) = dim
(

Der(1,1,1,1)H5
)
= dim

(
Der

(
H5
))

= 25

and
ψ̄f5(1, 1) = dim

(
Der(1,1,1,1)f5

)
= dim

(
Der

(
f5
))

= 23.

It implies that no proper contraction transforming the Heisemberg algebra H5 into the filiform Lie
algebra f5 exists. Thus, since both algebras are not isomorphic, the five-dimensional classical-mechanical
model built upon a five-dimensional filiform Lie algebra cannot be obtained as a limit process of a
quantum-mechanical model based on a fifth Heisenberg algebra.

4. Discussion and Conclusions

In this paper, we introduce an invariant two-parameter function of algebras, ψ̄, and we have used it
as a tool to study contractions of certain particular types of algebras.
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Indeed, by means of this function, we have proved that there is no proper contraction between a
fifth Heisenberg algebra and a filiform Lie algebra of dimension 5. It implies, as a main result, that the
five-dimensional classical-mechanical model built upon a five-dimensional filiform Lie algebra cannot be
obtained as a limit process of a quantum-mechanical model based on a fifth Heisenberg algebra.

We have also computed this function in the case of other types of algebras, for instance, Malcev
algebras of the type Lie and the Lie algebra induced by the Lorentz group SO(3, 1).

Apart from continuing this study with with higher-dimensional algebras, we indicate next some open
problems to be dealt with in future work, most of them with the objective of trying to find some possible
interesting physical applications for the filiform Lie algebras. They are the following

1. As mentioned above, in 2007, Hrivnák and Novotný introduced the invariant functions ψ and ϕ as
a tool to study contractions of Lie algebras [7]. Those are one-parameter functions. We have now
defined the two-parameter invariant function ψ̄. It would be good to search new invariant functions
to continue with this research, for instance, some related with twisted cocycles of Lie algebras.

2. It would also be good to find necessary and sufficient conditions which characterize contractions of
Lie algebras.

3. One of the possible physical applications of the present topic is given by the possibility of describing
a many-body system based on interacting spinless boson particles located in a lattice of n sites by
means of a filiform Lie algebra. This system could be a kind of Bose–Hubbard model, which is well
known in the condensed matter community and widely studied. The Hamiltonian corresponding
to that system can be described in terms of semi-simple Lie algebras and is a quadratic model since
it contains up to two-body operators. Therefore, we wonder if we could describe the same system
employing filiform Lie algebras and if we could obtain new information using the tools developed in
this manuscript.

To perform this task, it is necessary to write the boson operators involved in the Hamiltonian in term
of new ones that fulfill the commutation relations for a given filiform Lie algebra. However, at that
point, we find the difficulty that we should employ a tensorial product of two filiform Lie algebras in
order to describe the system properly. That means that an isomorphism between the semi-simple Lie
algebra of the original hamiltonian and the filiform Lie algebra proposed to describe the physical
system should exist. Fortunately, it seems that we have obtained a theorem that can confirm that
kind of isomorphism.

Now, the advantage that we gain employing a filiform Lie algebra instead of a semi-simple Lie
algebra is that we could map a non-linear problem such as the problem described by a system with
up to two-body interactions onto a linear problem with just one-body interactions. On the other
hand, once we have described the system in terms of the filiform Lie algebra, it is necessary to define
the branching rules, that is to find the irreducible representations of an algebra g′ contained in a
given representation of g. Since the representations are interpreted as quantum mechanical states, it
is necessary to provide a complete set of quantum numbers (labels) to characterize uniquely the basis
of the system. This is a non-trivial task that it may even lead to a further research.

4. Another possible physical applications of the present topic is to study phase spaces by using filiform
Lie algebras as a tool.

In this respect, Arzano and Nettel [18] in 2016 introduced a general framework for describing
deformed phase spaces with group valued momenta. Using techniques from the theory of Poisson–Lie
groups and Lie bialgebras, they developed tools for constructing Poisson structures on the deformed
phase space starting from the minimal input of the algebraic structure of the generators of the
momentum Lie group. These tools developed are used to derive Poisson structures on examples of
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group momentum space much studied in the literature such as the n-dimensional generalization of
the κ-deformed momentum space and the SL(2, R) momentum space in three space-time dimensions.
They also discussed classical momentum observables associated to multiparticle systems and argued
that these combined according the usual four-vector addition despite the non-Abelian group structure
of momentum space (see [18] for further information).

In that paper, the authors work with a phase space Γ = T × G, given by the Cartesian product of a
n-dimensional Lie group configuration space T and a n-dimensional Lie group momentum space
G. Since T and G are Lie groups, we can consider their associated Lie algebras t and g so that we
can define a Lie–Poisson algebra, which can endow a mathematical structure to the phase space Γ.
Indeed, Arzano and Nettel considered a phase space Γ in which the component related to momentum
is an n-dimensional Lie sub-group of the (n + 2)-dimensional Lorentz group SO(n + 1, 1), denoted
as AN(n).

Taking into consideration this paper, we have tried to construct a phase space similar to the one by
those authors, although we have taken the (n + 2)-dimensional Lorentz group SO(n + 1, 2) as the
Lie group related to momentum.

We began our research on this subject considering the Lie group SO(2, 2) and using the same
procedure as Arzano and Nettel did. However, we realized that that attempt was going to be very
complicated because of the great dimensions of the matrices involved (in the computations, a 49× 49
r−matrix appeared).

Therefore, the fact of finding a Poisson structure that allows us to endow the phase space
Γ = T × SO(n + 1, 2) with a mathematical structure is another problem, which we consider open.

5. Finally, semi-invariant functions of algebras could also be considered to study contractions of Lie
Algebras (see [19], for instance).

We will dedicate our efforts to these objectives in future work.

5. Materials and Methods

Since this is a work on pure and applied mathematics, no type of materials different from the usual
ones in a theoretical investigation was needed. Indeed, on the one hand, only the existing bibliography
on the subject and, on the other hand, a suitable symbolic computation package were used. In the same
way, with regard to the methodology used for the writing of the manuscript, it was also the usual one in
research work of this nature, namely, based on already established hypotheses and known results.

We used the SAGE symbolic computation package for computations. SageMath, which is a free
open-source mathematics software system licensed under the GPL, builds on top of many existing
open-source packages, such as matplotlib, Sympy, Maxima, GAP, R and many more (see [20], for instance).
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