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Hand Drawing in the Definition of the First Digital Curves 

 

1 Introduction 

The first application of digital methods to the definition of graphic curves was carried out in the 

military aircraft industry during World War II. Working for the North American Aviation (NAA), 

Roy Liming in his book of 1944, Practical analytical geometry with applications to aircraft, 

proposed the computational definition of the conic curves used in the fuselages of airplanes (Farin 

2002: 2). There was interest in this digital conversion for two reasons: on the one hand, greater 

accuracy was achieved in the mass production of airplanes; on the other, it made it possible to store 

the curves in numerical tables, enabling their encrypted transmission and facilitating their 

protection (Alastair Townsend 2014: 54). The shapes were a direct consequence of the technical 

needs of and the strict compliance with the conditions set in the programs elaborated by the teams 

of engineers, very far from design processes focused on obtaining a suggestive perceptive 

experience. Once the geometry was defined, the function of the digital system was simply 

translating the curves to the production process. 

In the late 1950s the automotive companies incorporated the new computers into their assembly 

lines, “facilitating the calculation of the own geometric transformations of the materials; behavior 

under stress, thermodynamics, aerodynamics of parts ...” (Bézier 1971: 207). However, the fairings 

were still designed by the traditional method, with paper drawings and models1 because the 

traditional systems of the aeronautical industry did not prove effective for the translation of these 

curves and surfaces to digital entities easily mechanized. The problem was of great importance for 

the research and development teams, since its resolution meant being at the leading edge of the 

automation and control of tasks frontier within the industry. The technicians of Renault and Citroën, 

Pierre Étienne Bézier and Paul de Casteljau, sought the answer in the process of ideation of the 

shapes and not in their subsequent translation and integration, focusing on the development of 

algorithms capable of defining the geometric elements in a similar way to what the creative teams2 

of their companies had being doing. 

The failure to implement the use of computer systems in the manufacture of aircrafts should not be 

attributed exclusively to the complexity of the curves and surfaces used in the exteriors of airplanes 

since the aeronautical industry was working with free-form curves of similar complexity since the 

mid-1950s. Their development in General Motors led to the definition of the B-splines in the late 

1960s (Farin 2002: 7). The difficulty was the need to define geometric elements whose shapes were 

the result of the creative intentions of designers and not of mathematical calculations (Rogers 2001: 

17), with a requirement for precision and development of the layout that, at that time, was not easy 

                                                 
1 The design teams adapted their working methods to the complexity of the curves and surfaces demanded by the new 

industrial image, extending the method developed by the General Motors engineer Harley J. Earl, based, in addition to 

the traditional preliminary sketches, on the use of clay models as a suitable means to facilitate the development of the 

continuous surfaces characteristic of the new image, far from the mechanistic sincerity. 

2 The success of the proposal was based on the novelty of the approach and not on its technical complexity. Proof of 

this is that the management teams of the two companies questioned its feasibility because of the simplicity of the 

arguments on which it rested. In the case of Renault, given the simplicity of the method, the management team 

considered that, if valid, it would have already been developed by other teams. Rogers David quotes the famous phrase 

they used to address Bézier when dealing with the issue “if your system were that good, the Americans would have 

invented it first!” (Rogers 2001: 36). In Citroen, as reflected in his autobiography, at the time when de Casteljau 

presents the first results in parallel to those being developed in Renault, the criticisms from superiors and supervisors 

focus, among other issues, on considering his approach too simple to be a line of work worthy to follow (de Casteljau 

1999). 
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to translate to the digital space in an automated way. 

The mathematician Paul de Casteljau, hired by Citroën in 1959, developed a type of digital curve 

that could be controlled from external points, allowing its smooth deformation. As a result, he 

obtained curves similar to those defined by flexible templates, in an attempt to replace a physical 

tool with its digital equivalent.3 

In parallel to and independently, the Renault engineer Bézier also proposed to introduce the digital 

definition in the design process of the curves that defined the shapes of fairings. Possibly as a result 

of the special sensitivity that his position as head of the company’s design team brought to him, his 

proposal is closer to the working methods of the designers, assuming the analysis of the manual 

layout as the basic tool in the creative processes beyond the templates used for the geometric 

adjustment of the curves. 

We have numerous studies on the operational capacity and the mathematical properties of the curves 

proposed by Bézier and their subsequent evolution. In 1970 the French engineer published an initial 

approximation to his work on the application of numerical analysis in the definition of curves and 

surfaces (Bézier 1970). But it was in 1971 when the principles governing the UNISURF system, 

developed by Renault under its direction, were published (Bézier 1971). From this publication, Bézier 

curves are present in many of the investigations on digital geometry. In addition to the articles by 

Bézier himself (Bézier 1972; 1974), noteworthy of mention are the works published A. Robin Forrest 

on the definition of curved surfaces (Forrest 1972a; 1972b) and the article published by William J. 

Gordon specifically dedicated to Bézier curves applied to free-form curves and surfaces (Gordon and 

Riesenfeld 1974). The evolution of the digital systems of mathematical determination of the curves 

moved Bézier's proposals to a marginal situation, but discussion of them remained present during the 

1980s and 1990s in numerous studies4 and even in subsequent investigations5, although in this latter 

case from a historical point of view as a result of its pioneering character. 

Therefore, from the point of view of analytical geometry, there is little to add to the study of 

Bezier’s curves as regards either their definition or their historical evolution. However, there is no 

research on the implications of the drawing in their mathematical definition. The contribution of 

this article is to provide a new analysis of the origin of the mathematical structure of the first digital 

curves, focusing attention on the inspiration of their creators, and not so much on the application 

of certain well-known mathematical algorithms. 

 

2 Bézier´s innovative approach 

Thanks to the article on the UNISURF system (Bézier 1971), in which Bézier defines the general 

approach of his proposal for drawing digital curves, it is possible to investigate the situation that 

surrounded his work during the 1960s and the intentions underlying his strategy. 

At first, the efforts focused on the attempt to translate the forms contained in full-scale clay models, 

developed following traditional methods, into digital geometrical entities. It was necessary to acquire 

the geometric data about these models using different types of peripherals and integrate it into the 

computers in order to use it in production processes.  

                                                 
3As Alastair Townsend (2014: 52) states, there seems to be a relationship with the drawing templates, although we do not 

have direct information about the author´s intentions.  

4 The compilation work carried out in (Bézier 1986) stands out among the published studies. 

5 (Forrest 1991) (Rogers 2001) (Biswas and Lovell 2008) (Farin 2002) and (Townsend 2014) are examples of the 

numerous publications that incorporate the analysis of Bézier curves and surfaces. 
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The shape of a car body is first of all defined by means of a full-scale clay-model, very 

carefully hand-built. Drawings, master model and stamping tools must be in perfect 

accordance with the model; the process is costly and time-consuming. Accuracy and lag-time 

have been improved with help of numerical control which plays an important part in recording 

coordinates on models or drawings, marking off points on drawings, lofting, fairing curves 

and also defining and milling surfaces. … There are some well-known devices to perform 

these operations: measuring machines … curve followers, photogrammetric scanners, or 

mathematical methods to fair curves and surfaces (Bézier 1971: 207-209). 

Nevertheless, this method was not providing the expected results. The model was a communicative 

artifact that had proved very effective. It was the expression of the designers’ thoughts and contained 

a discourse full of intentions. However, the digital geometry extracted from the model was an 

automated interpretation of the physical object, therefore partial and limited. The digitally deduced 

geometric entities did not serve as transmission mechanics for the intentions embodied in the model, 

which were diluted in the distance that separated the tangible object from its supposedly objective 

digital expression. The result was a poor translation of the design team projects. 

In general, companies focused their research on improving interpolation systems and extracting 

geometric information from the models, without understanding that the intentions and desires of the 

designers were hidden in a real object, camouflaged under its complexity, and that for its translation 

was necessary to be aware of their existence within that reality difficult to embrace. Bézier raised the 

issue from a more open approach, from a broader framework. He came to the conclusion that the 

problem of translating the ideas from the physical model to the digital geometry was unsolvable. It 

was not possible, at least at that time, to extract the intentions of the designers implicit in the sketches 

and clay models produced in the design departments. 

Most numerical methods tend to use n.c. [numerical control] to translate into figures the shape 

of a previously hand-made model, or its graphic definition by means of curves lofted with 

templates or splines. … This translation work always raises heavy difficulties because no 

infallible algorithm exists that will choose automatically the conditions that must be complied 

with by the solution looked for.  

An algorithmic method should also be able to account for the smallest detail that expresses an 

intention or a want, sometimes implicit, yet eliminate the details caused by fate or fault. Such a 

method would be very expensive and perhaps impossible to create (Bézier 1971: 209; my 

emphasis).  

 

It was necessary for designers to express their ideas directly in the digital environment, just as they 

did with their sketches and models. If the whole process was gestated in this way, it would be 

guaranteed the presence of all the intentions of the design team in the digital expression, which 

would act directly as a mediating expression. 

On the top of this, Renault now uses it [numerical analysis] to help stylists define, through 

figures, any shapes they have devised. So, numerical control is used in their conception process 

instead of taking part into their translation only. …Renault have wanted to do without any 

translation work and have created a numerical definition method for the use of draughtsmen as 

well as designers (Bézier 1971: 207-209; my emphasis). 

 

This was a simple approach, but it meant a completely new way of addressing the issue. The focus 

shifted from the final moment of the process, from the finished design, to the ideation process itself. 
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It was not the translation of a shape already designed; it was about moving the ideation process to 

the digital world.  

Bézier used the action carried out by the designers during the ideation, which was none other than 

the act of drawing, as reference process. He knew that it had to be analyzed and simulated, just as 

other behaviors were simulated digitally. Behind the analytical expressions that describe the 

development of these digital curves, the concept of ‘path’ remains present as an intentional 

movement, an action that leaves the mark of the subject on the support, a link between thought and 

its expression through the hand. 

The developed method was not completely applied from the time of its formulation due to the lack 

of adequate peripherals and, possibly, to the slow response of the computers at that time. For this 

reason, the team of engineers from Renault went on using the models to obtain the connecting 

points between the different sections of the compound curves. 

At the moment, coordinates are supplied to the computer through decade switches, a typewriter 

keyboard, and a tape reader. We will add the possibility of supplying the computer with the 

coordinates read on the encoders related with the motion of the pencil and optical viewer carrier  

(Bézier 1971: 211).  

On these points, already in the digital field, the designers developed the curves that defined each 

section. 

Once the coordinates of a few points are picked up on each feature line, the designer transfers 

them on his drawing machine and chooses the vectors defining each curve segment that will 

help to calculate the path of the tracer (Bézier 1971: 211).  

These shortcomings made it impossible to correctly carry out the first part of the method, but the 

validity of its approach was such that the type of curves developed by Bézier was used, from then 

on, as a procedure for drawing digital curves by hand in much of the vector design software. It was 

included in the PostScript code for the printing of curves, and in programs such as Adobe Illustrator, 

Corel Draw, Adobe Flash, Photoshop, etc. Even today, similar algorithms can be found in Corel 

Draw itself, or in recent software such as Rhinoceros, coexisting with the modern NURBS curves 

(Townsend 2014: 53).  

An example of the validity of this type of curves in contemporary graphic design is the publication 

of the well-known manual dedicated to possible applications of Bezier´s curves, written by one of 

the most prestigious graphic designers, Von Glitschka, with the title Vector Basic Training, a 

systematic creative process for building precision vector artwork (Glitschka 2011). Among the 

numerous illustrations, I reproduce here the curious and paradoxical portrait of Bézier, made with 

his own curves (Fig. 1). 

Fig. 1 Portrait of Pierre Bézier. Image: (Glitschka 2011: 5) 

As an example of the application of the Bezier´s curves in architecture, Fig. 2, 3 and 4 reproduces 

the design of the deck of a footbridge in Seville elaborated in 2016 by the architecture laboratory 

included in my professional studio. Once located, the flat curves, drawn one by one using Bezier´s 

curves, define the evolution of the surface  

Fig. 2 Deck of a footbridge in Seville, elaborated in 2016 by the architecture laboratory. 

Definition of Bezier´s curves  
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Fig. 3 Deck of a footbridge in Seville, elaborated in 2016 by the architecture laboratory. Bezier´s 

curves located in position along the footbridge  

Fig. 4 Deck of a footbridge in Seville, elaborated in 2016 by the architecture laboratory. Resulting 

surface using Bezier´s curves as supports  

3 Mathematical Formulation of the Movement of the Hand: Path and Time in 

Bézier’s curves 

Bézier himself published the basic mathematical formulation of his curves, first of a summary form 

(Bézier 1974) and later in a complete way (Bézier 1986). We know the simple mathematical 

development behind these curves,6 and can look for the elements that confirm the exposed 

relationship between stroke and curve digital through movement. 

As head of the design team, the engineer was familiar with the work of Renault designers, and it is 

even possible that he maintained a personal relationship with them during the development of the 

graphic method. This relationship justifies the knowledge about the curve tracing that emerges from 

the analysis of his proposal. Bézier understood that the drawing of a curve is an open action, in 

which, although maybe unconsciously, there are strategies focused on its control and adjustment 

that facilitate an execution close to the thought that gave rise to the gesture.  

We know the author’s interest in the aspects that control the plotting because it appears in the 

original text in which he analytically describes the curves. There are clear references to the 

importance of continuity between the different sections that make up the entire curve, to the 

tangency that determines the curve development, and to the possible adjustment of the curvature 

thanks to its relationship with the graphic method (Bézier 1974). Although in the development of 

the procedure the engineer reaches out to the definition of warped surfaces, the general approach is 

developed on flat curves composed of cubic curves, such as those included in his first article (Bézier 

1971: 210). 

The strategies studied are simple and we can summarize them in the following sequence shown in 

Fig. 5. The planned plotting is organized by defining the singular points, including the beginning 

and the end (p). We decide the limits that tangentially approach us to the definition of the line 

between points (t), as well as the greater or lesser tension in the curve when approaching those 

limits, defined geometrically through its curvature (c). The stroke is the manual action that runs 

through this territory of conditions; a dynamic action, open and without imposed geometries, 

translated into variable speeds of the gesture, executed paying attention to the singular areas, and 

adjusting to a greater or lesser extent to the suggested limits. The proposed digital trace (Fig. 6) 

assumes its open character in its formulation, tries to minimize the presence of previous geometries, 

and works with the topography of conditions described by this territory. The open character is 

translated into its construction by sections, the geometric freedom in the flexible mathematical 

equation of each section and the dynamics of the gesture in the definition of the interpolation 

support. The singular zones are defined by the successive marked of points that make up the 

interpolation (p1, p2, p3), while the tangential approach (t) and its influence (c) are adjusted fixing 

the direction of the tangents and their module, through the definition of the non-interpolated points 

(1, 2, 2′, 3). 

                                                 
6 The mathematical development is trivial, not only from the current perspective but also for any mathematician of that 

time. Keep in mind that the basis used by Bézier and de Casteljau was enunciated by Bernstein in 1912, and that the 

mathematical definition of spline curves was developed by Isaac Jakob Schoenberg in 1946. Therefore, the mathematical 

concepts used were chosen from an existing material. 
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Fig.  5 Characteristics of the manual stroke  

Fig.  6 Characteristics of the digital trace 

3.1 Composition by Sections and Flexible Mathematical Equations: Open Action and 

Geometric Freedom 

To simulate the process without determining a closed result, the algorithm should allow the 

dynamic definition of the curve and in this way it should be generated by space-time sections, 

without the need for an accurate knowledge of the whole curve. Composite Bézier curves are 

constructed from sections defined by simple Bézier curves, allowing the modification of the 

trajectory during their plotting just as it occurs in manual plotting. The definition of the limit points 

of a certain section and of the tangents in those points determines the section and, only partially, 

the contiguous sections. The influence of some sections on others is due exclusively to the 

continuity conditions imposed on the connection between them (G1). 

Bézier defines the curves using Bernstein’s functions: 

𝑃1(𝑢) = ∑ 𝑆𝑖𝐵𝑖(𝑢)

𝑚

𝑖=0

             

Bi´s being Bernstein’s function 

𝐵𝑖 = 𝐶𝑖 𝑢
𝑖(1 − 𝑢)𝑚−𝑖  (Bézier 1974: 139). 

 

He also defines the G1 link conditions: 

…the only requirement consists in having the first leg of a polygon collinear with the first 

leg of the other. Supposing the two first vectors are respectively a1, a2, a´1 and a´2, the 

conditions to fulfil to ensure osculation are: 

𝑎´
1 = 𝑔 × 𝑎1          𝑓𝑜𝑟 𝑔 < 0 

𝑎2
´ = ℎ𝑎1 + 𝑘𝑎2    𝑓𝑜𝑟 𝑘 > 0 

𝑘 =
𝑛´

𝑛
×

𝑛−1

𝑛´−1
× 𝑔2    (*) 

(*) n and n´ being the number of the polygon legs (Bézier 1974: 143). 

 

The geometric condition applied to the connection between the curves partially conditions the 

second curve with respect to the first. Beyond the coplanar character of the vectors that define the 

polygon, it is verified that the tangent is common and therefore that the points of the polygon are 

aligned on both sides of the contact point.  

As I mentioned earlier, Bézier designed this procedure to be carried out graphically, using the light 

pen on the screen. In this way, the flexibility of the method makes sense, since the designer could 

choose the elements that define each section and build the curve dynamically.  

The curves designed and drawn by the designers were not directed by previous mathematical 

relationships. They were not drawn by means of drawing instruments prepared to force geometric 

conditions, whether they were rulers or compasses; they were plotted with the movement of the 
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hand, with greater freedom and less accuracy.7 The traditional curves, mainly the conics, did not 

adapt well to these new entities whose origin was not a specific geometric place. Hence the need to 

choose flexible functions, even though they were not very precise: 

 

To be acceptable, this method must comply with several requirements: … It must allow the 

use of a large variety of curves. Straight lines, circles, conics or cubics are not enough to solve 

easily all problems met in our industry (Bézier 1971: 209). 

 

3.2 Dynamic Interpolation and Interpolation Support: Approximation to the Imagined Curve 

and Variations in the Speed of Hand Movement 

 

Since the objective was the translation of data into the digital domain, efforts were focused on 

finding the best curve to interpolate a series of chosen points on the clay models. It was a classic 

problem of analytic geometry: an approximation of an existing complex curve through an 

interpolation process by the use of a simple and manageable function. To apply the conventional 

systems, the curve had to exist as one of the initial data, in a static and finalist view of the problem, 

which was well suited to the forms resulting from mathematical calculations (Rogers 2001: 17). 

The simulation proposed by the Renault team should also address the problem of obtaining an 

interpolated curve, but the difference was that, for Bézier, it was about approaching a curve that 

only existed in the thought of the artist. Interpolation was part of an expressive process rather than 

a simple translation. The draftsman projected his thought through the movement of the hand onto 

the digital support, thanks to the light pen. However, instead of leaving a continuous trace as the 

line of graphite left by a pencil, the action left marked milestones, singular places of transit, which 

composed the imagined curve step by step. 

The interpolation, understood from a dynamic interpretation, required to make a series of decisions 

in the mathematical development of the interpolation system that distanced it from the usual 

methods. Conventional interpolation systems choose the position of the fixed points of the 

interpolated curve over the curve to be simulated. It starts from a set of abscissa s+1 called 

interpolation support, corresponding to s+1 ordinates. Together they define the endpoints of the 

segments to be interpolated (nodes). We define a vector space and on it a basis of n+1=s+1 functions 

in order to have the required number of equations to solve the problem: 

𝐵 = {𝐵0(𝑥), 𝐵1(𝑥), … , 𝐵𝑛(𝑥)}. 

 

The sought-after curve will be: 

 

𝐶(𝑥) = 𝑎0𝐵𝑜(𝑥) + 𝑎1𝐵1(𝑥) + 𝑎2𝐵2(𝑥) + ⋯ + 𝑎𝑛𝐵𝑛(𝑥). 

 

Applying the conditions of interpolation, we have a system of n+1 equations and n+1 unknowns, 

in matrix form B x a = y. 

 

For node interpolation support Ni(xi,yi), i=0,1,…,s 

                                                 
7 Tools such as flexible material strips were used for the forced plotting of curves not analytically defined. Their use 

allowed a clean stroke on curves already defined by the freehand stroke. They were instruments designed to force previous 

geometric relationships, implicit in the previous manual stroke, although they were not analytical relationships 
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𝑎0𝐵𝑜(𝑥0) + 𝑎1𝐵1(𝑥0) + 𝑎2𝐵2(𝑥0) + ⋯ + 𝑎𝑛𝐵𝑛(𝑥0) = 𝑦0. 

……. 

𝑎0𝐵𝑜(𝑥𝑠) + 𝑎1𝐵1(𝑥𝑠) + 𝑎2𝐵2(𝑥𝑠) + ⋯ + 𝑎𝑛𝐵𝑛(𝑥𝑠) = 𝑦𝑠. 

 

[
𝐵0(𝑥0) … 𝐵𝑛(𝑥0)

… … …
𝐵0(𝑥𝑠) … 𝐵𝑛(𝑥𝑠)

] [

𝑎0

…
𝑎𝑛

] = [

𝑦0

…
𝑦𝑛

]. 

 

The selection of the interpolation support is free and prior to the solution of the problem and it 

influences the interpolation error. Depending on the values of the support, the solution of the system 

of equations changes, resulting in different sets of coefficients and consequently, different curves 

of interpolation C(x), among which the optimal is selected.  

In Fig. 7 we have chosen, on the curve that we want to simulate, an interpolation support formed 

by three nodes [N0 (0,0), N1 (1,1) and N2 (1.5,0.5)], and a base of polynomials on which we define 

the interpolation curve 𝐶(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2, with a number of coefficients that matches the 

number of nodes and allows solving the system of equations, whose result is the curve 𝐶(𝑥) =
1

0.75
(1.75𝑥 − 𝑥2). 

Fig 7 Curve drawing by conventional interpolation  

This method allows us to compute an optimized polynomial interpolation curve, but it continues 

responding to a global view of the problem. I start from a curve to simulate and then define the 

optimal support to solve the system and calculate the polynomial curve that fits best.  

In the case of the composite Bézier curves, the parameter evolves taking concrete values for the 

points of connection between the different segments, points already fixed when drawing. The 

function that defines this support determines the value of the parameter at the points, not the points, 

and with it the relation between the times of plotting the curve for each segment. It is interesting to 

note that this is a process that occurs as the drawing advances. The first segment defines the 

reference value from which the rest of values are calculated. Each segment to be interpolated is a 

different curve, connected at the fixed points under restrictive conditions that define the continuity 

of the complete plotting 

We start with the parametric formulation of the curve:8 

For a segment 𝐶(𝑡) = ∑ 𝑃𝑘𝐵𝑘(𝑡)𝑛
𝑘=0            𝑡 ∈ [0,1]      𝑤ℎ𝑒𝑟𝑒  𝑃𝑘  𝑖𝑠 𝑎 𝑝𝑜𝑖𝑛𝑡 (𝑈𝑘, 𝑉𝑘) 

For several segments the formulation is the same, but it must be defined for an interval t⋲ [u0, us], 

each segment being (u0, u1), (u1, u2), ..., (us-1, us): 

 𝐶1(𝑡) = ∑ 𝑃1𝑘𝐵𝑘 (
𝑢−𝑢0

𝑢1−𝑢0
)𝑛

𝑘=0            𝑡 ∈ [𝑢0, 𝑢1]. 

 𝐶2(𝑡) = ∑ 𝑃2𝑘𝐵𝑘 (
𝑢−𝑢1

𝑢2−𝑢1
)𝑛

𝑘=0            𝑡 ∈ [𝑢1, 𝑢2].   

 ….. 

 𝐶𝑠(𝑡) = ∑ 𝑃𝑠𝑘𝐵𝑘 (
𝑢−𝑢𝑠−1

𝑢𝑠−𝑢𝑠−1
)𝑛

𝑘=0          𝑡 ∈ [𝑢𝑠−1, 𝑢𝑠]. 

                                                 
8 Bézier curves can be developed in any of the usual systems of equations, in their implicit, explicit or parametric form, 

but they are designed to work in the latter. Bézier makes direct reference to this formulation in his texts as a feature that 

makes the curve independent of spatial coordinates, facilitating its reading as a geometric object (Bézier 1971:211; Bézier 

1974: 130). 
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Generally: 

𝐶𝑖(𝑡) = ∑ 𝑃𝑖𝑘𝐵𝑘 (
𝑢−𝑢𝑖−1

𝑢𝑖−𝑢𝑖−1
)𝑛

𝑘=0      𝑡 ∈ [𝑢𝑖−1, 𝑢𝑖]      where i is the segment and Pk is a point (Uk,Vk). 

Deriving: 

𝐶´𝑖(𝑡) =
1

𝑢−𝑢𝑖−1
∑ 𝑃𝑖𝑘𝐵´𝑘 (

𝑢−𝑢𝑖−1

𝑢𝑖−𝑢𝑖−1
)𝑛

𝑘=0  𝑡 ∈ [𝑢𝑖−1, 𝑢𝑖]. 

We deduce the conditions of continuity C1 by matching the derivatives corresponding to the end of 

one of the segments and at the beginning of the following: 

𝐶´𝑖(𝑢𝑖) =
1

𝑢−𝑢𝑖−1
∑ 𝑃𝑖𝑘𝐵´𝑘(𝑢𝑖) =𝑛

𝑘=0
1

𝑢𝑖−𝑢𝑖−1
𝑛(𝑃𝑖𝑛 − 𝑃𝑖(𝑛−1))     𝑡 ∈ [𝑢𝑖−1, 𝑢𝑖].  

𝐶´𝑖+1(𝑢𝑖) =
1

𝑢−𝑢𝑖
∑ 𝑃𝑖𝑘𝐵´𝑘(𝑢𝑖) =𝑛

𝑘=0
1

𝑢𝑖+1−𝑢𝑖
𝑛(𝑃(𝑖+1)1 − 𝑃(𝑖+1)0)     𝑡 ∈ [𝑢𝑖 , 𝑢𝑖+1]. 

Matching: 

1

𝑢𝑖−𝑢𝑖−1
𝑛(𝑃𝑖𝑛 − 𝑃𝑖(𝑛−1)) =

1

𝑢𝑖+1−𝑢𝑖
𝑛(𝑃(𝑖+1)1 − 𝑃(𝑖+1)0)       𝑡 ∈ [𝑢𝑖−1, 𝑢𝑖]. 

The continuity conditions at the joints between segments are: 

(𝑃𝑖𝑛 − 𝑃𝑖(𝑛−1))𝜇 = (𝑃(𝑖+1)1 − 𝑃(𝑖+1)0), which is the common tangent at the link point. 

 
𝑢𝑖+1−𝑢𝑖

𝑢𝑖−𝑢𝑖−1
=

‖𝑃(𝑖+1)1−𝑃(𝑖+1)0‖

‖𝑃𝑖𝑛−𝑃𝑖(𝑛−1)‖
= 𝑈𝑖,     ratio between values or t in adjacent segments. 

 

As in the previous case, the choice of the support is free, but we choose s+1 nodes in the variable 

t, defined by the ratio Ui. We may choose different ratios of t without affecting the points that define 

the segments, so that the choice of the support does not change their positions. It only changes the 

transit speed of the parameter by those points and with it the curvature in the joining zones.  

The choice of the support is based on the geometric relationship between the positions of the points. 

A uniform support can be used, so that the change in the parameter is the same for each section of 

the support. However, this election assumes that for sections with close extreme points, the curve 

must be opened a lot to compensate the space traveled with the elapsed time. To correct these 

problems and simulate better the manual stroke, either we work with step values for the parameter 

proportional to the distances between the positions of the points (Chord length), or we make the 

distances proportional to the square of the step value (centripetal support).9 Its use is due to the fact 

                                                 
9 Functions of parameter t: 

1. Uniform support: equal time periods between segments: 

Ui=1. 

2. Chord length support: different times in the plotting of each segment of the curve depending on the position of 

the end points, achieving a movement adapted to the dimensions of each segment, approximating spaces and 

times: 

𝑈𝑖 =
‖𝑃(𝑖+1)𝑛−𝑃(𝑖+1)0‖

‖𝑃𝑖𝑛−𝑃𝑖0‖
. 

3. Centripetal support: it captures the “centripetal” force exerted by the artist to compensate for the centrifugal 

force caused by the drawings of the curve in the short segments, so that the trajectory opens somewhat less than 

in the case of a continuous movement based on a uniform support, but something more than the rigorous and 

excessively homogeneous trajectory generated by the chord length support. Although seldom used due to its 

high computational cost, this support function goes a step further in the interpretation of the digital curve as 

a drawing, simulating the control that the draftsman exerts on his hand through the rectification of the speed 

applied to the stroke and with it on its curvature: 
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that, at present, the curves are plotted exclusively from the points that define the interpolation 

segments, leaving the rest of the curve in the hands of the equation of the support. However, in the 

case of Bézier, the behavior of the curve between the connecting points was controlled through the 

points of the polygon outside the curve. Therefore, the support was not relevant, and the choice was 

the simple uniform support of low computational cost, as implied by author’s texts (Bézier 1974: 

143). 

In Fig. 8, (Phase 1), I have drawn a first segment between the first two points of the previous 

interpolation support (N0≡P10 and N1≡P12) by adding a control point to shape the curve (P11).  

The formulation corresponds to a Bézier curve of grade 2 with control points P10(0,0), P11(0.5,1), 

P12(1,1):  

In Fig. 9, (Phase 2), I have drawn the second segment directly, marking the end, point P22, since 

the interpolation is directed by the variation of the support, in this case uniform. 

To maintain C1 continuity between the two segments, the tangent must be the same in P12≡P20 and 

the following relationship must be fulfilled: 

𝑈1 =
𝑢2−𝑢1

𝑢1−𝑢0
=  

‖𝑃21−𝑃20‖

‖𝑃12−𝑃11‖
=  

‖𝑃21−𝑃20‖

0.5
    where ui are step values of the parameter t. 

 

For uniform support,  𝑈1 = 1 = (𝑢2 − 𝑢1) (𝑢1 − 𝑢0)⁄ , therefore ‖𝑃21 − 𝑃20‖ = 0,5. The choice of 

the control point P21 is implicit in the choice of the uniform support. The points P11, P12≡P20 and 

P21 must be aligned and the distance between P20 and P21 must be 0.5, which defines the point 

P21(1.5,1). 

It is only necessary to define the curve of the second segment, according to the control points 

P20(1,1), P21(1.5,1), P22(1.5,0.5). 

In Fig. 10, (Phase 3), the second segment is drawn again, but for different support functions: 

In the case of support based on the chord length, the same reasoning would apply, but with another 

support relationship between segments. The distance between points P10 and P12, would be 

‖𝑃12 − 𝑃10‖ = √12 + 12 = √2. When marking the end point of the second section P22, we know 

the distance between points P20 and P22,  ‖𝑃22 − P20‖ = √0.52 + 0.52 = √0.5.  

If we take support values proportional to the chords: 

𝑢2−𝑢1

𝑢1−𝑢0
= √

0.5

2
= √0.25 = 0.5,    ‖𝑃21 − 𝑃20‖ = 0.25, 𝑎𝑛𝑑  𝑃21

𝐵 (1.25,1). 

In the case of centripetal support, the squared supports are proportional to the length of the chords: 

(𝑢2−𝑢1)2

(𝑢1−𝑢0)2 = 0.5,       
𝑢2−𝑢1

𝑢1−𝑢0
= √0.5 = 0.707    ‖𝑃21 − 𝑃20‖ = 0.3535 ,   𝑃21

𝐶 (1.3535,1). 

 

Fig. 8 Curve drawing by interpolation proposed by Bezier. Phase 1. First segment 

Fig. 9 Curve drawing by interpolation proposed by Bezier. Phase 2. Second segment with uniform 

support  

                                                 

𝑈𝑖 =
√‖𝑃(𝑖+1)𝑛−𝑃(𝑖+1)0‖

√‖𝑃𝑖𝑛−𝑃𝑖0‖
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Fig. 10 Curve drawing by interpolation proposed by Bezier. Phase 3. Second segment with others 

supports  

3.3 Tangent Direction: Control of the Feasible Range of Hand Movements 

While conventional interpolation closed the question, although obviously wrongly, the dynamic 

interpolation raised by Bézier made it possible to intentionally define the imaginary join points and 

the speeds of the gesture reproduced in the support function, but left open the stroke adjustment at 

the beginning, the end and the passing through singular points. 

As in the case of drawing the curve on a conventional physical support, the control of the drawing 

of the digital curve in the critical points was carried out thanks to the plotting – at least imagined – 

of the tangents in those points. As is well known, the control of the curved paths by using polygons 

tangent to them is a common operation in drawing, especially if you look for a certain precision in 

the freehand paths. Bézier directly simulates this form of control and incorporates it into the logic 

of its digital curves as one of its basic elements, using the endpoints of the tangents to the curve at 

their ends (P1 y Pn-1), as multiplying coefficients of the Bernstein functions (Bk). 

The coefficients of the linear combination that define simple Bezier curves form a polygon that 

marks the tangents at their extreme points (Bézier 1971: 210). When combining these simple curves 

into composite Bézier curves, the last and first segments of the different polygons should belong to 

the same line, so that the direction of the tangent at the point of passage is equal in the two adjacent 

sections (Bézier 1986: 41). This provides smoothness and geometric continuity (G1) to the 

composite curve (see the mathematical formulation described in Section 2). “There is no difficulty 

in blending two curves because the only requirement consists in having the first leg of a polygon 

collinear with the first leg of the other” (Bézier 1974: 143). In this way the curve is traced following 

the imaginary join points, at the speed defined by the support and adjusting to those tangents that 

control the delicate areas of the gesture: at the beginning, the transit and the end. 

 

 

3.4 Module of the tangent - control of the softness in the movement of the hand 

When we perform the adjustment in the tracings on conventional supports through tangents, we 

follow our mental image of the curve to decide the level of influence that the tangent exerts on it. 

We choose the distance to the control point; we begin to adjust the curve to, giving it greater 

smoothness or tension, all in an approximate way and without any calculation. In the case of Bézier 

curves, the influence of the tangent is reflected in the value of its module in the proximities of the 

control point, acting as a controller of the change of curvature at that point. The relationship 

between the influence of the tangent and the curvature is simple. The greater the influence, the 

closer to the tangent the curve is so that its curvature reduces, approaching the zero-limit value 

corresponding to the curvature of the tangent line. 

The choice of the direction and module of the tangent is made during the drawing of the curve, with 

the draughtsman defining the position of the two external control points of the cubic curve. Given 

the continuity properties of composite Bézier curves, the positions of these points contiguous to the 

connecting point between segments directly determine the direction of the tangent and its module: 

“Functions fi,m  are such that, on the initial point (u=0), the curve is tangent to a1, and its curvature 

is only related with a1 and a2” (ai are points of the non-interpolated polygon) (Bézier 1974: 132).10 

                                                 
10 There is a different treatment of this issue in the 1974 and 1986 documents. In (Bézier 1974) he proposed the control 

of the curvature through the non-interpolated points, while in (Bézier 1986: 41) he seems to assume the modifications 
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The curvature at any point can be expressed as: 

𝐶𝑟 =
‖𝐶´(𝑥) 𝑋 𝐶´´ (𝑥) ‖

‖𝐶´(𝑥)‖3
=  

1

‖𝐶´(𝑥)‖2
 ‖𝐶´´ (𝑥)‖ sin 𝑤. 

As we saw in section 3.2, starting from the formulation of the Bézier curve and taking into account 

the change of variable adapting it to the composite curve, we can compute the derivatives at the 

connecting point u=u1. 

The first derivative at the extreme point: 

𝐶´𝑖(𝑢𝑖) =
1

𝑢−𝑢𝑖−1
∑ 𝑃𝑖𝑘𝐵´𝑘(𝑢𝑖) =𝑛

𝑘=0
1

𝑢𝑖−𝑢𝑖−1
𝑛(𝑃𝑖𝑛 − 𝑃𝑖(𝑛−1))     𝑡 ∈ [𝑢𝑖−1, 𝑢𝑖]. 

For the concrete curve C1: 

𝐶´1(𝑢1) =
n

𝑢1−𝑢0
(𝑃n − 𝑃n−1) =

n

𝑢1−𝑢0
𝐵. 

The second derivative, deriving the first C´1: 

𝐶´´1 (𝑢1) =
𝑛(𝑛−1)

(𝑢1−𝑢0)2  (𝑃𝑛 − 2𝑃𝑛−1 + 𝑃𝑛−2) =  
𝑛(𝑛−1)

(𝑢1−𝑢0)2  [(𝑃𝑛 − 𝑃𝑛−1) + (𝑃𝑛−2 − 𝑃𝑛−1)] =
𝑛(𝑛−1)

(𝑢1−𝑢0)2  A. 

Substituting: 

𝐶𝑟 =
1

𝑛2‖𝐵‖2

(𝑢1−𝑢0)2⁄
 

𝑛(𝑛−1)

(𝑢1−𝑢0)2
‖𝐴‖ sin 𝑤 =

(𝑢1−𝑢0)2

𝑛2‖𝐵‖2  
𝑛(𝑛−1)

(𝑢1−𝑢0)2
‖𝐴‖ sin 𝑤 =

(𝑛−1)

𝑛
 

1

‖𝐵‖2
‖𝐴‖ sin 𝑤 =

(𝒏−𝟏)

𝒏
 

𝟏

‖𝑩‖𝟐 𝑨𝒑  . 

Where: 

𝐴 = (𝑃𝑛 − 𝑃𝑛−1) + (𝑃𝑛−2 − 𝑃𝑛−1),        𝐵 = (𝑃𝑛 − 𝑃𝑛−1),           𝐴𝑝 = ‖𝐴‖ sin 𝑤. 

In Fig. 11, we show vectors A and B. The distance from point Pn-1 to the position P′n-1, decreases 

the curvature at point Pn since it increases the module of the vector B (Pn-Pn-1), ‖𝐵‖, and, although 

vector A is transformed into A`, its projection over the normal line, represented by 𝐴𝑝 = ‖𝐴‖ sin 𝑤, 

does not change. Therefore, when moving the non-interpolated control point (Pn-1), the second 

curve, C2, presents less curvature at Pn than the first, C1, increasing the influence of the tangent on 

the path. 

Fig. 11 Relationship between the curvature and the position of the control points  

4 The Commitment to Flexibility: Splines Curves 

Bézier curves were surpassed by the spline curves, and with that development, the relationship with 

manual plotting vanished. The structure of the curve in segments, the common tangents and the 

value of its module, which had been basic elements in the simulation, lose their meaning in the new 

curves, so that the control points are freed from the points that define the different segments  (their 

alignment is not necessary), and they compose a polygon attached to the curve that allows its local 

modification by simply moving its vertices. There are no segments connected by continuity 

conditions but intervals of influence of the transformative actions of the draughtsman. The 

geometry of the curve is governed as if an existing flexible element were deformed. Tangents are 

only present at the ends of the curves, not inside them, and as long as they are open curves.  

                                                 
proposed by the new conditions of the spline curves, considering the equality of the curvatures in the links between 

curves. 
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The moment of the layout is of no interest in spline curves. What is interesting is the suitability of 

the geometric entity to later transformation. The breakpoints, which substitute the connecting points 

of the sections, only define intervals of influence of the control points, delimit ing the extension of 

the curve deformation caused by the action of the draftsman. The geometry of each section is 

conditioned by the number of B-spline basis functions active in the interval, and, therefore, by the 

coefficients of the linear combination that multiply these functions, or what is the same, by the 

corresponding control points (Townsend 2014: 54). 

However, we continue to count on Bézier curves in cases where we need to manually draw digital 

curves. This is why we still find them in current design programs. We may find them under the 

name of curve handles, Bézier tools or directly as Bézier curves, but in any case we face a 

mathematical formulation with almost forty years of history. This impressive record is a 

consequence of the success in emulating the ancient and imperishable act of drawing. 
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