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Complete minimal surfaces in R?

with a prescribed coordinate function

Antonio AlarcénH and Isabel Fernéndeﬂﬂ

Abstract

In this paper we construct complete simply connected minimal surfaces with a
prescribed coordinate function. Moreover, we prove that these surfaces are dense
in the space of all minimal surfaces with this coordinate function (with the topol-
ogy of the smooth convergence on compact sets).
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1 Introduction

An isometric immersion X : M — R? of a Riemann surface into space is said to
be minimal if its coordinate functions are harmonic on M. In 1980, Jorge and Xavier
[7X] constructed a complete minimal surface contained in a slab of R?, disproving a
conjecture by Calabi [C]. They looked for a minimal immersion of the disk with third
coordinate x3(z) = Re(z) and complete metric.

In light of the above, it appears as a natural question whether any harmonic function
can be realized as a coordinate of a complete minimal surface. The present paper is
devoted to answer this question in the simply connected case. More specifically, we
extend Jorge-Xavier’s result to prove that any harmonic function defined on a simply
connected domain is a coordinate function of a conformal complete minimal immersion
(see Theorem [2). Moreover, we show that complete surfaces are dense in the space of
(simply connected) minimal surfaces with a prescribed coordinate (Corollary [I). These
results come as a consequence of the following one.
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Theorem 1 Let X = (X1, X5, X3) : ¥ — R? be a conformal minimal immersion on
¥ =C,D, with X3 being non-constant. Consider K C ¥ a compact set and € > 0.

Then, there exists a complete conformal minimal immersion Y = (Y1,Ys,Y3) : ¥ —
R? such that

(a) [ X =Y <ein K.
(b) X5 =1Ys;.

We also derive from Theorem [l some results concerning existence of complete null
curves in C? and complete maximal surfaces in L* with a prescribed coordinate (Section

).

The construction of the Jorge-Xavier’s surface relies on a clever use of the Runge’s
classical theorem with a suitable labyrinth close to the boundary of the disk. A refine-
ment of Jorge and Xavier’s ideas led to Nadirashvili [N1] to construct conformal complete
bounded minimal disks. Nadirashvili’s arguments have given rise to the construction of
complete bounded minimal surfaces with other additional properties (see for instance
[ILMM], MNL [AFM, [A]). However, all the coordinate functions of these examples are
implicit.

Despite we use some ideas related to Nadirashvili’s technique in the proof of the
above theorem, it is not possible in general to construct complete bounded minimal
surfaces with a prescribed (bounded) coordinate function. We show a requirement for
a harmonic function on the disk to be the coordinate function of a complete bounded
minimal surface in Proposition [ (see also [N2, [AN]).

Finally, we would like to point out that the only complete simply connected embed-
ded minimal surfaces are the plane and the helicoid [MR) [CM]|. Therefore, our surfaces
are not embedded, except for the aforementioned cases.

2 Preliminaries

This section is devoted to briefly summarize the notation and results that we use in
the paper.

From now on, we denote by 3 an open simply-connected Riemann surface. By the
Uniformization Theorem we can assume that X is eihter the complex plane C or the
open unit disk D. Furthermore, for any r > 0, we denote by D, = {z € C | |2| < r} and
St={z€C||z| =7}

Consider a Riemannian metric d7? in . Given a curve a in X, by length, »(a) we
mean the length of a with respect to the metric dr2. Moreover, we define:

e distyg2(p,q) = inf{length,2(a) | @ : [0,1] — X, a(0) = p,a(l) = ¢}, for any
P,q € 2.

o disty2(11,Ts) = inf{disty2(p,q) | p € T1, q € Ty}, for any T}, T C X.
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Throughout the paper, we work with metrics induced by conformal minimal immersions
X : ¥ — R3. Then, by \%|dz|? we mean the Riemannian metric induced by X in 3. We
also write distx (77, T3) instead of distyz 4.2(T1, T3), for any sets 71 and T3 in X

2.1 Minimal surfaces background

The theory of complete minimal surfaces is closely related to the theory of Riemann
surfaces. This is due to the fact that any such surface is given by a triple ® = (®1, Oy, O3)
of holomorphic 1-forms defined on some Riemann surface M such that

T 4 O3 + ¢35 =0, (1)

124]* + (|21 + (| ®5]|* # 0, (2)

and all periods of the ®; are purely imaginary. Then the minimal immersion X : M —
R3 can be parameterized by z — Re [ ®. The above triple is called the Weierstrass

representation of the immersion X. Usually, the first requirement (Il) (which ensures
the conformality of X) is guaranteed by introducing the formulas

1/1 1 /1
Oy =—-|=-—g| P35, Po=-|-+g] D3,
2 \yg 2 \yg

with a meromorphic function g (the stereographic projection of the Gauss map) and a
holomorphic 1-form ®3. The pair (g, ®3) is called the Weierstrass data of the minimal
immersion X. In this article all the minimal immersions are defined on the simply
connected Riemann surface ¥. Then, the Weierstrass data have no periods and so the
only requirements are ([Il) and (2)). The metric of X can be expressed as

R F. 1/1 2
Ax|dz| =§H<I>H =13 @Hgl D3] ) - (3)

2.1.1 The Lépez-Ros transformation

The proof of Lemma [ exploits what has come to be called the Lépez-Ros transfor-
mation. If M is a Riemann surface and (g, ®3) are the Weierstrass data of a minimal
immersion X : M — R3, we define on M the data

g= %7 3 = O3,
where h : M — C is a holomorphic function without zeros. If the periods of this new
Weierstrass representation are purely imaginary, then it defines a minimal immersion
X : M — R3. This method provides us with a powerful and natural tool for deforming
minimal surfaces. From our point of view, the most important property of the resulting

surface is that the third coordinate function is preserved. Note that the intrinsic metric

is given by (3]) as
2
las = (5 (Fr+ o) el
2 \lg]  [n|

This means that we can increase the intrinsic distance in a prescribed compact of M,
by using suitable functions h.



3 Proof of Theorem [

In order to prove the main theorem we need the following technical lemma. It will
be proved later in subsection B.11

Lemma 1 Let X = (X1, X5, X3) : ¥ — R? be a conformal minimal immersion being
X3 non-constant. Consider two positive constants 0 < r < R (with R <1 if X =D).

Then, for anye, s > 0 there ezists a conformal minimal immersion X = (X, Xo, X3) :
Y — R? such that

(L1) dist(0,SE) > s.
(L2) | X — X|| <& inD,.
(L3) X3 = Xs.

Assuming the above lemma, the proof of Theorem [Il goes as follows. First of all,
consider g > 0 (0 < rg < 1 in case X = D) such that K C D,, C X. Let {r, },en be an
increasing sequence of positives, with 71 = r¢, and such that {r,} " +o0 in case ¥ = C,
and {r,} /1 in case ¥ = . Finally, take any sequence {c, },eny with 0 < o, < 1 and
so that [[,2, o = 1/2.

We will obtain the immersion Y as a limit of a sequence of immersions {X,, },.en.
For any n € N, we will construct a family y,, = {X,,&,} where X,, : ¥ — R3 is a
conformal minimal immersion and &, < 6¢/(n*r?) is a positive number. Furthermore,
the sequence {x,},>2 will satisfy the following properties.

1 X, — Xl <&, in D, _,.

The sequence is constructed in a recursive way. The first element of the sequence is
the immersion X; = X and any positive &; < 6¢/7%. Assume we have defined x4, . . ., Xn.
Let us show how to construct the family x,,1. Consider a sequence {&,}men decreasing
to zero and such that

6¢e

§m<min{€n,m}, VYm € N.

Let F,, : ¥ — R3 be the immersion obtained from Lemma [ for the data

X=X, r=r,, R=r,,, =&, s=n+1.



The sequence {F,,} ey converges to X, uniformly on D, . Therefore, there exists
mo € N large enough so that

)\Fmo Z Un-i—l : )\Xn ln E7"77,71' (4)

Recall that 0 < 0,41 < 1. Label X,y := I, and €41 := &,,. Properties (L2), (L1)
and (L3) imply (A,+1), (Bpy1) and (Dy,41), respectively. Finally, inequality () gives
(Cpy1). This concludes the construction of the sequence {x, }nen-

Since ¥ = U,enD,.,, we infer from properties (A,), n € N, that {X,,},en converges
to a smooth map Y : ¥ — R3 uniformly on compact sets of ¥. Let us check that ¥
satisfies the conclusion of the theorem.

e Y is an immersion. Indeed, consider p € Y. Fix ng € N so that p € ﬁrno. From
properties (C,,), n > ng, we obtain that

where we have used that [[,—, o) = 1/2. If we take limits in the above inequality as
n — oo we infer that Ay (p) > $Ax, (p) > 0, and therefore, ¥ is an immersion.

e Since Y is harmonic (Harnack’s Theorem), it is minimal and conformal.

e YV is complete. In order to check it, let o be a divergent curve in ¥ starting at 0.
Then, for any k£ € N, we have

Y

|

lengthy (o) > lengthy (a N Dy, ) > = lengthy, (N D,,) >

N | —

where we have used properties (B,) and (C,), n > k. Hence, lengthy
proves the completeness of Y.
e Statement (a) follows from properties (A,), n € N, and the facts that > . e, < ¢
and K ¢ D, , Vn € N.
e Statement (b) is a trivial consequence of properties (D,,), n € N.

The proof is done.

—~

a) = 00, which

3.1 Proof of Lemma [

Let (g, ®3) be the Weierstrass data of the immersion X. Since X3 is non-constant and
¥ is simply connected we can write ®3 = ¢3(2)dz with ¢3 non identically zero. Therefore,
there exist a constant 6 > 0 and two real numbers " and R’ with r < < R’ < R,
satisfying

|ps| >0 in Dg \ Dy (5)

Fix a natural N (which will be specified later) such that 2/N < R’ — /. The
immersion X will be obtained from X by using Lopez-Ros transformation. The effect
of this deformation will be concentrated on a labyrinth of compact sets contained in

Dy \ D,. On the other hand, the deformation hardly acts on D,. The shape of the
labyrinth is inspired in those used by Jorge and Xavier [JX]. Let us describe it.
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For any n € N, n = 1,...,2N?, define s, = R — n/N® and label s = R'. Now,
consider the set (see Figure [])

1 1 X 1
Ky = {ZGC sn+m < 7| Ssn—l_m’ e < arg((—1)"2) ggﬂ_m}‘
Sh
-— e — ~ 1
. = _ "__\\\ N SR/
/ // g = L Y
1 / Sl NN\
Ko | l |
< | WA \ Kon2'S3, /]I ;
1 \ \% \ N\ N 700 ]
. 2
IN3 \ \ N N —— = /7 // /
= NS \\___/ ..... . /

Figure 1: The labyrinth of compact sets.

Then, consider
2N?

K=]JK.
n=1

From the definition of the compact set K follows that any curve joining S!, and S},
without going through X must have large Euclidean length. This fact is stated in the
following claim.

Claim 1 Let \*|dz|? be a conformal metric on 3 satisfying
\ > C m ]DR/ \ﬁw
“ leN* in K,

for some ¢ > 0.
Then, there exists a positive constant p not depending on ¢ nor N and such that

lengthya j,2(a) > p-c- N

holds, for any o curve in X joining S}, and Sk,.
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Now, we define the function we use as parameter of the Lopez-Ros transformation.
In order to do it, for any 8 > 0 we consider a holomorphic function hg : ¥ — C* with
the following two properties:

e |hs—1| <1/ inD,.
o |hg— ] <1/Bin K.

The set K UD, is a compact set and ¥\ (KX UD,) is connected. Hence, the existence of
the above functions is guaranteed by Runge’s Theorem.
Define the Weierstrass data on ¥

g
¢’ =L q)g = P3.

These Weierstrass data give rise to a minimal immersion X F .3 — R3. Notice that hg
converges to 1 (resp. oo) uniformly on D, (resp. K). Hence, there exists a large enough
Bp such that

(i) || X% — X| < ¢ in D,.

(i) Axs > 0-N*in K, where § was defined in equation (&), and A3, is the conformal
factor of the metric induced by X% (see ().

Label X := X5, Let us check that X has the desired properties, provided that N was
chosen to be large enough. From the very definition of X, statements (L2) and (L3)
trivially hold. In order to check (L1) notice first that

Az > g3l >6 inDg \ Dy, (6)

where we have taken into account (). Then, properties (ii), (@) and Claim [I] guarantee
that
lengthg(a) >0 -p- N,

for any curve o in X joining 0 with Sk. Assume that we chose N large enough so that
d-p- N > s (recall that neither p nor 0 depend on N). This finishes the proof.

4 Some consequences of Theorem [1]

It may be followed from our main theorem some interesting results concerning not
only minimal surfaces.

As we deal with simply connected surfaces, it is not hard to realize any harmonic
function as a coordinate function of a minimal immersion. Hence, Theorem [I] implies
that any harmonic function on a simply connected domain is a coordinate function of a
complete minimal immersion, as stated in the next theorem.



Theorem 2 Let X =C, D and u : ¥ — R be a harmonic function. Assume u is non
constant in case X = D.

Then, there exists a complete conformal minimal immersion Y = (Y1,Ys,Y3) : ¥ —
R? such that Ys = .

Proof. Fist of all notice that in case ¥ = C and u is constant, the plane x3 = u satisfies
the conclusion of the theorem.
Thus, let us assume that v is non constant, and define the holomorphic 1-form

O3 = du + i(xdu),

where x denotes de Hodge operator. Since Y is simply connected we can write 3 =
¢3(2)dz on ¥. Then the pair (¢3, P3) are Weierstrass data on ¥ and so they define a
conformal minimal immersion X = (X1, X5, X3) : ¥ — R3. Moreover, it is straight-
forward to check that X3 = u. Now, applying Theorem [ to the immersion X, any
compact set K C X and any positive €, we obtain an immersion fulfilling the statement
of the theorem. O

Other interesting (and immediate) consequence of Theorem[Ilis a density type result.
Let u : ¥ — R be a non constant harmonic function, and label 4, = {X = (X3, X5, X3) :
¥ — R3 conformal minimal immersion | X3 = u}. With this notation the following
holds.

Corollary 1 Let u: ¥ — R be a non constant harmonic function on ¥ = C,D.
Then, complete immersions in A, are dense in A,, endowed with the topology of the
uniform convergence on compact sets.

Theorem [l can be applied to other geometric theories. Maximal surfaces in the
3-dimensional Lorentz-Minkowski space L? = (R?, d2? 4 dx? — da2) are spacelike sur-
faces with vanishing mean curvature. There is a close connection between minimal and
maximal surfaces. Indeed, if X = Re [(®y, P2, P3) : ¥ — R? is a conformal minimal
immersion defined on a simply connected surface ¥, then

X = Re/(1q>1,i<1>2, ®3): 0 — 1P

is a conformal maximal immersion (possibly with lightlike singularities), with the same
third coordinate function. See [K| [FLS| for more details on maximal surfaces. Using
this connection we can translate Theorem 2] to the Lorentzian setting.

Corollary 2 Let ¥ =C, D and u : ¥ — R be a harmonic function. Assume u is non
constant in case X = D.

Then, there exists a conformal mazximal immersion (possibly with lightlike singulari-
ties), Y = (Y1,Ya,Ys) : & — L%, such that Y5 = u and Y is weakly complete in the sense
of Umehara and Yamada [UY].



Other geometrical objects related with minimal surfaces are null curves (see for
instance [MUY]). By definition, a complex curve F = (F}, Fy, F3) : ¥ — C? is said to
be a holomorphic null curve if its coordinate functions are holomorphic and they satisfy

(F)?* + (F3)* + (F5)* =0,

where ' denotes the complex derivative. Using Weierstrass representation, simply con-
nected minimal surfaces in R can be seen as the real part of holomorphic null curves
in C?, and conversely. Moreover, the minimal surface and the associated holomorphic
null curve have the same metric. This allows us to prove the next result.

Corollary 3 Let f: X — C be a holomorphic function on ¥ = C,D. Assume f is non
constant if X =D.
Then, there exists a complete holomorphic null curve F = (Fy, Fy, F3) : ¥ — C® with

F3:f.

Finally, we would like to remark that our results are sharp in the following sense.
Recall that Nadirashvili’s techniques give complete conformal bounded minimal disks.
Since our arguments are inspired in his techniques, it could be expected that, starting
from a bounded harmonic function on the disk, one could obtain a complete bounded
minimal immersion having this function as a coordinate function. However, the following
proposition shows that this is not possible in general.

Proposition 1 Let X = (X1, X, X3) : D — R3 be a complete conformal minimal
immersion. Assume that X3 can be extended smoothly to the closed disk .
Then, X1 and X5 are unbounded on ID.

Proof. Let ® = (&, ®y, P3) be the Weierstrass data of X and write ®; = ¢;(2)dz,
j=1,2,3.

Reasoning by contradiction, let us assume that X, is bounded. Then, Bourgain’s
Theorem [B] gives the existence of a real number 0 < < 27 such that

1
/ |¢2(T’6i9)|d7’ < 00.
0

On the other hand, the assumption on X3 guarantees that

1
/ (s (re®)|dr < oo.
0

Since X is a conformal map, it follows that |¢;|* < |¢a|* + |¢3]? and so, from the above
inequalities we get

1
/0 (s d2 b3) (r®) | dr < oo,

which contradicts the completeness of X. O
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