
Computing the Component-Labeling 
and the Adjacency Tree of a Binary 

Digital Image in Near Logarithmic-Time
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Abstract. Connected component labeling (CCL) of binary images is
one of the fundamental operations in real time applications. The adja-
cency tree (AdjT) of the connected components offers a region-based
representation where each node represents a region which is surrounded
by another region of the opposite color. In this paper, a fully parallel
algorithm for computing the CCL and AdjT of a binary digital image
is described and implemented, without the need of using any geometric
information. The time complexity order for an image of m × n pixels
under the assumption that a processing element exists for each pixel is
near O(log(m+ n)). Results for a multicore processor show a very good
scalability until the so-called memory bandwidth bottleneck is reached.
The inherent parallelism of our approach points to the direction that
even better results will be obtained in other less classical computing
architectures.

Keywords: Component-Labeling · Adjacency tree · Digital image
Parallelism

1 Introduction

Connected component labeling (CCL) of binary images is one of the fundamen-
tal operations in real time applications, like fiducial recognition [6] or classifying 
objects as connected components (CCs). The labeling operation transforms a 
binary image into a symbolic matrix in which every element (pixel) belonging to 
a connected component is assigned to a unique label. Currently, there are mainly 
four classes of CCL algorithms: Multi-scan algorithms, Two-scan algorithms, 
Tracing-type algorithms and Hybrid algorithms mixing the previous ones. 
All of them (including the fastest one) use raster or Tracing-type approaches,
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scanning the whole binary image or its contours in a sequential manner. They
begin labeling the first pixel and so the second one as a function of the first pixel
label. This local processing proceeds progressively until the last pixel is reached.
This fact necessarily implies data dependencies between the labeling of one pixel
and the previous one, which prevents these methods from using a pure paral-
lel approach. In terms of time complexity, this means that linear order O(N)
(being N the number of pixels) cannot decrease independently of the number of
available processing units.

In relation to the representation of digital objects or, alternatively, binary
digital images, various topological models have been exhaustively used. Adja-
cency trees (also called topological, inclusion or homotopy trees [2,16,17], and
here AdjT, for short) offer a classical region-based representation in terms of
rooted tree of certain topological and spatial properties of the connected com-
ponents in a binary image. Within an AdjT, each node represents a distinct
foreground (FG) or background (BG) component, and an edge between two
nodes means that one of them is surrounded by the other. The root in an AdjT
always represents the unique BG component “surrounding” the image (if it does
not exist, it can be artificially created) and two 2D binary digital images are
topologically equivalent if and only if their AdjTs are equivalent. An example of
an AdjT of the binary image in Fig. 2 is shown in Fig. 4 (left). Aside from image
understanding [18] and mathematical morphology applications [7,10,15], AdjTs
have encountered exploitation niches in geoinformatics, dermatoscopics image,
biometrics, etc. (see [3,5,6] for instance). Therefore, finding fast algorithms for
segmenting and computing the AdjT of a 2D digital binary image is crucial for
solving important problems related to topological interrogation in the current
technological context.

It is evident that the compression of those nodes of a CCL tree (CCLT)
satisfying the neighboring condition “having the same color”, directly yields to
the AdjT. In this paper we present a novel method for computing CCL and
AdjT but reducing the number of operations, so that computation time and
memory consumption are sensibly decreased, whereas the degree of parallelism
is extended to every single pixel.

2 Related Works

Parallel implementations for computing topological magnitudes can be achieved
via two approaches. On the one hand, there is some space for parallelism when
codifying scan or tracing-based CCL algorithms. These algorithms contain two
main stages: the scanning phase where provisional labels are assigned to pixels
depending on their neighbors, and some kind of union-find technique to collect
label equivalence information in the previous assignment. For example, divid-
ing the image into strips is a classical data partition technique for obtaining
parallelism. The second stage must then use a more sophisticated union-find
technique for the provisional labels to get to the CCL. There is also some room



for parallelism in this phase, and many works have addressed different varia-
tions (see [8,10,15]) including tuning parallel algorithms for specific computers
(see [1]).

On the other hand, topology is the ideal mathematical scenario for promot-
ing parallelism in a natural way, although it drives to less classical parallelism
approaches. The nature of the topological properties is essentially qualitative and
local-to-global, having the additional advantage that its magnitudes are robust
under deformations, translations and rotations. Nevertheless, the results in the
literature in that sense are rare. Up to now, the only topological invariant that
has been calculated using a fully parallel computation is the Euler number [3].
Other authors have recently proposed other parallel algorithms that compute
some aspects of the homological properties of binary images [13]. In [4], a digi-
tal framework for parallel topological computation of 2D binary digital images
based on a sub-pixel scenario was developed, modeling the image as a special
abstract cell complex [11], in order to facilitate the generalization of this work to
higher dimensional images. In addition, some software libraries of flexible C++
(RedHom [16]) have appeared for the efficient computation of the homology
of sets. These libraries implement algorithms based on geometric and algebraic
reduction methods.

Fig. 1. Holes of 4-adjacent CCs are 8-adjacent CCs and vice versa for 2D binary digital
images based on square pixel.

In relation to previous works, we construct our scaffolding on the basis of
the two following basic topological properties: “being adjacent to” and “being
surrounded by”. Moreover, we take advantage of the powerful duality properties
that the topological invariants of connected components and holes have in the
context of 2D binary digital images based on square pixel. In other words, we
exploit that the holes of 4-adjacent CCs must be 8-adjacent CCs and vice versa
(see Fig. 1). As a result, all the algorithms of this work use simple connectivity
graphs (CGs) as their basis. Our simplification allows us to reduce the number of
operations, the computation time and the memory consumption, and to extend
the degree of parallelism to every single pixel.

3 A Convenient Topological Framework for Computing
CCL and AdjT

In a few words, topological analysis of digital images studies their degree of
connectivity, defining fixed adjacency relations between pixels as “local neigh-
borhood measures”. It is obvious that a unique tree covering all the pixels of



an image can be built (no matter the intensity of the pixels) going through all
the pixels of the image using always, for example, the North direction, until the
upper border is found and then change to East direction until the most north-
eastern pixel is reached. Pixels that connect different colors should be marked
as candidates of frontiers between CCs (region frontiers). Any tree covering the
image plus the region frontier candidates is then an instance of a connectivity
tree that holds the complete information of the binary image. Note that for 2D
binary digital images, there are two types of connectivity we must deal with,
which are: CCs and holes. However, these two concepts can be reduced to one
for a binary image since a hole can be seen as a CC that is surrounded by
another CC of different color. Concerning topological analysis, all local neigh-
boring conditions used here are derived from 4-adjacency relations. Concerning
the output of this processing, the white nodes of the AdjT are 4-CCs and the
black ones are 8-CCs. Let us limit ourselves to say that a hole of a 4-connected
FG object can be interpreted as an 8-connected component of the BG. For this
reason the algorithm presented here considers the FG with 4-adjacency and the
pixels of the BG with 8-adjacency. Then, a minimal tree can be computed having
always the correct number of FG 4-connected components and BG 8-connected
components.

Using a combinatorial optimization process, it is possible to find a connectiv-
ity tree in which every CC has only one region frontier pixel. Each one of these
special pixels marks a bond between two neighboring CCs of different color. For
example, in Fig. 3 these pixels are marked with a number, which is the repre-
sentative label of each CC. In the figure, black regions can be compressed to the
pixels labeled with the numbers 92, 165, 194, 200, 226, 258, whereas white areas
are represented by the pixels 49, 77, 179. We can say that these region frontier
pixels are the “attractors” of each one of the trees that contain a CC. In this
paper, a connectivity tree that holds this property is called a connected compo-
nent labeling tree (CCLT). Following the path given by this compression (that
is going along the connectivity tree) the different frontier pixels can be found.
In the light of the above, in this paper a fully parallel algorithm for computing
the CCL (and the AdjT) of a binary digital image based on square pixels is
implemented through the building of one CCLT. This is achieved without the
need of using any geometric information. Once the combinatorial optimization
process has been carried out, the whole image (and, thus, every CC) can be
compressed to just one pixel. Hence, the compression of those nodes of a CCLT
whose neighboring condition is “having the same color” directly yields to the
AdjT. To carry out this process, the local neighboring connectivity information
(that is, those of the adjacent pixels) is first transformed into a global connec-
tivity graph (CG) tracking a unique direction in a number of iterations equal
to log(m+ n) (being m the image width, and n the image height). Finally, CCs
are extracted by fusing the regions of the previous global graph in a parallel
way using a reduced number of iterations (see Sect. 4). A more detailed example
is shown in Fig. 2. On the left a face-like binary image is depicted, whereas on
the right, its corresponding black (FG) 4-connected components are identified.



Note that 4-adjacency prevents the nose from being connected with the glasses.
Each FG CC has been assigned a black representative pixel (marked with little
triangles in Fig. 2 right), which can be called “attractor” as every link of the
simplified CCLT collapses in them. Conversely, FG holes can be represented by
attractors of the BG CCs. These are marked with little downwards arrows, and
can be called BG attractors, for analogous reasons (that is, all the BG CC col-
lapses in it). An additional BG attractor in the most left-bottom corner has been
added to represent a virtual attractor for the whole image. Whereas the meaning
of an attractor is intuitive and sufficient for understanding these concepts, an
exact definition of the attractors is given in Sect. 4.

Fig. 2. Left: original face-like image. Right: FG attractors (little triangles) and BG
attractors (downwards arrows).

The results for Fig. 3 (left) returned by our algorithm that generates the CCL
and the AdjT (see next section) are summarized in the table in Fig. 3 (right)
and Table 1. These tables contain the FG and BG ordered pairs. The silhouette
contained in Fig. 2 has a total of 6 FG attractors and 4 BG attractors. For
each FG attractor, FG attractor pair table (Fig. 3) gives the BG attractor that
goes to (that is, the hole that surrounds this component) and some additional
information (area and perimeter of each region). Numbers for attractors are pixel
labels, that is, linear indexes over the image (following a column convention, that
is, the linear indexes for a matrix when all its elements are numbered following
its columns). The perimeter is computed by counting the 8-adjacent pixels that
enclose a CC (which means that a CC composed of a single pixel has a perimeter
of 8 pixels).

Likewise, BG attractor pair table (Table 1, left) gives the FG attractor where
each BG attractor points to (that is, the black component that surrounds a hole).
Note that AdjT can be automatically extracted from these tables. The matrix of
Table 1 (right) is a possible compact representation of the AdjT and it gives the
crossed including relations of FG and BG attractors using this notation: rows
are FG attractor indexes (labels); columns are BG attractor labels; 1 means
that a BG attractor is included on an FG attractor, −1 means that an FG
attractor is included on a BG attractor. Finally Fig. 4 (left) comprises a graphical



FG BG Attr. FG CC FG CC

Attr. Index where area perimeter

index it points to (in pixels) (in pixels)

92 77 2 10
165 49 4 14
194 179 2 10
200 49 9 24
226 49 37 48
258 17 54 62

Fig. 3. Left: final CCLT having the minimal number of FG 4-connected components
and BG 8-connected components. Indexes of BG/FG attractors are on the right of
each attractor. Right: FTABLE : the corresponding FG attractor table. Numbers are
the linear indexes for a matrix numbered following its columns.

Table 1. Left: AdjT of Fig. 3. Rows are FG attractor labels; columns are BG attractor
labels; values are: 1 = BG attractor included on the FG attractor, −1 = FG attractor
included on the BG attractor. Right: BTABLE : BG attractor table of Fig. 3. Numbers
are the linear indexes for a matrix numbered following its columns

BG FG Atractor BG CC BG CC
Attractor index where area perimeter
index it points to (in pixels) (in pixels)
49 258 82 54
77 226 10 18
179 226 10 18

49 77 179
92 0 -1 0
165 -1 0 0
194 0 0 -1
200 -1 0 0
226 -1 1 1
258 1 0 0

representation of a weighted AdjT of Fig. 3. Filled (empty, resp.) circles are
FG (BG, resp.) CC. The notation for the numbers i : {a, p} represents: i =
index(label), a = area of the CC, p = perimeter of the CC.

4 A Parallel Algorithm for Building the CCLT

As previously explained, CG should pair any FG pixel with another FG pixel,
except those that are the possible attractors of a CC. The key point is that
each pairing must be done in a convenient direction so that only one unpaired
pixel (the attractor) exists for each CC. In this case, if we followed the links
from any pixel, this stream of links would fall on this attractor. In Fig. 5 (left) a
simple shape is depicted where every FG pixel has been linked following a simple
criterion: if its North neighbor were an FG pixel, it would be linked to it; if it were
not, it would be linked with its East adjacent pixel if it had the FG color; if East
adjacent pixel had not FG color either, it is marked as a possible attractor and
connected to the north BG pixel. This pairing is called here “North-then-East
criterion” or simply NE criterion. For the 8-adjacent BG pixels it is convenient



that the criterion uses the opposite direction: SswW (South-then-Southwest-
then-West), thus obtaining a set of possible BG attractors. This would complete
a possible CG. Hence, a false FG attractor can be defined as a pixel whose north
and east adjacent BG pixels points to two different BG attractors (little triangles
in Fig. 7, left). Likewise, a false BG attractor is a pixel whose south, southwest
and west adjacent FG pixels points to two different FG attractors (downward
arrows in Fig. 7, left).

Fig. 4. Left: a graphical representation of the AdjT of Fig. 3. Filled (empty, resp.)
circles are FG (BG, resp.) CCs. Notation i : {a, p} represents: i = index (label), a = area
of the CC, p = perimeter of the CC. Right: The 2× 2 patterns that represent attractors
in F*. B* matrices are resp. (pixel of reference in bold).

However, things are not so simple in the general case, because many pixels
can have both: a North and an East neighbor, and only one must be selected for
the pairing. For instance, the right picture of Fig. 5 shows a spiral shape where
the direction of the every pairing was done in an ad-hoc form, so that only one
unpaired pixel remains (the most northeast FG pixel). Note that the NE criterion
is not preserved for many FG pixels (correspondingly with respect to the SswW
criterion for BG pixels). The same for the BG: its only unpaired pixel is the
dummy attractor on the most southwest corner. The key is how these directions
are selected in parallel to produce the desired pairing. Global information about
the shape of every CC is needed to choose this correctly, that is, it is impossible
a priori to discover which pairing must select every pixel to get to the correct
CCLT. Nevertheless, there exists a high amount of parallelism in this process.
In order to get to the CCLT, we propose two main steps: Generating a CG as
parallel as possible; and secondly, transforming this CG into a correct CCLT
through the cancellation of pairs of a false FG attractor with a BG one. This
process must be iterated until no false attractor remains.

As stated before, an algorithm that tries to extract global information of an
image must include some pieces to search the relation between remote parts of
the image. Using the properties of the tree-like structures, those sequential pieces
can be reduced significantly. Figure 6 draws a sketch of the process to obtain the
minimal tree structures needed to extract the CCLT and AdjT of an image,
preserving its combinatorial nature. From the image I, a local CG based on the
local information of each pixel can be first computed. Here “local” means that



Fig. 5. Two figures with one CC. Left: a simple shape where the pixel pairing is accurate
by NE criterion. Right: a spiral, where this simple criterion is not valid.

the computation of every link is based only on the values of its (e.g. 4-) adjacent
pixels. This tree will contain the links from each pixel to its immediate neighbors.
Then, through successive iterations we can get to a different global CG. Here
“global” means that each pixel knows the link to its (possibly far) attractor in
this CG. FG, BG attractors of the initial CG are not yet the true attractors
(see Fig. 7, where the FG CC has resulted in two attractors; one of them must
be false). This tree must be transformed so as to contain only true attractors,
which means that we have reached the correct CCLT. Using the CCLT, every
attractor can be related with another attractor of opposite color that contains
the first. This is a representation of the AdjT.

Fig. 6. Left: steps involved in a sequential CCLT building. Right: a cycle from an FG
attractor AFG to CFG through a BG attractor ABG, where CFG = AFG.

From now on, let us suppose that the border of the whole image is composed
of BG pixels, which belongs to an external dummy BG attractor. The aim is to
build an optimal gradient vector field with only one (FG or BG) attractor for each
(resp. FG or BG) CC. The first step of Fig. 6 computes an initial CG of the image
I. The computation of every link is exclusively based on the values of its adjacent
pixels. The rest of the steps are necessary to transform this CG into a CCLT
detecting the representative FG, BG attractors. The second step determines
which pixels are possible BG/FG attractors, that is, those that have a link that
connects FG and BG pixels. The key point is that the FG graph must be built
on the opposite direction than that of the BG. Next, the third step introduces
global relations between pixels and attractors, so that the attractor for each pixel
is determined when following the vector field of the CG. In sequential form, a
pixel can track its links and then check if its neighbor pixel is an attractor. If
not, this operation would be repeated for the next neighbor and so on, until
an attractor is reached. Each pixel can store a label of the attractor to which



it points. Finally, we have a label matrix representing the CG. The matrix of
Fig. 7 (right) is ann example of this representation for the simple image in Fig. 7
(left). Using a column convention, the dummy BG attractor has the label 7, and
the FG attractor, representative of the FG CC (see Fig. 7, center) is numbered
with label 38. Meanwhile, there is another false BG attractor (label 18) and
another false FG attractor (label 23), which are underlined in Table 4. These
false attractors must be coupled (step 4 of Fig. 6) for the final CCLT, so that the
underlined label 23 would be substituted by 38, and the underlined label 18 for
7. The next step consists of transports, or equivalently the fusion of those parts
of a same CC, performed by a CG combinatorial optimization process in order
to get a tree that has as many nodes as 4-connected components the image has.

7 7 7 7 18 18 7
7 23 23 23 18 18 7
7 23 18 18 18 38 7
7 23 18 18 18 38 7
7 23 38 38 38 38 7
7 7 7 7 7 7 7
7 7 7 7 7 7 7

Fig. 7. A transport that transforms an initial CG into the corresponding simplified
CCLT (Left). Links enclosed by a rectangle are to be transported to the thicker links
in the CCLT (Center). Label representation, containing for each pixel a label to an
FG/BG attractor in the initial CG (Right). (Color figure online)

Graphically, a simple conversion of an initial CG (left) into the CCLT (center)
is shown in Fig. 7. Note that the CG of Fig. 7 (left) has one cycle (see the red and
green edges surrounding the word “cycle”). Only one cancellation of a pair of
false attractors is needed to get the CCLT. CG links that are enclosed by a dotted
rectangle are transported to the thicker links for the CCLT. FG attractors are
depicted with little triangles, whereas the BG attractors with downward arrows.
It can be easily shown that selecting opposite directions for the BG pixel and
for the FG pixels when building the CG implies that every BG attractor breaks
an FG CC, and vice versa. Thus, by canceling FG-BG attractor pairs until only
one attractor would remain for each FG and BG CC, so the transformation from
CG into the CCLT is accomplished. After this process there must be only one
attractor for each FG (resp. BG) CC. It is worth to note that the process of link
transporting is done exclusively handling the CG. The links in the CG enclosed
by a dotted rectangle in Fig. 7 (left) are transported, in such a way that both false
FG and BG attractors disappear. This is depicted with thicker links in the CCLT
(Fig. 7, center). Any transport implies the re-labeling of the label representation
(like the matrix of Fig. 7, right). Note that finally the remaining BG attractor
is located on the SW corner of the image. The couples to be cancelled can be



found by following a path along the CG and by transporting its corresponding
links. Yet more, it can be shown that most of these cancellations can be done in
parallel, as demonstrated below.

Finally these attractors will define the AdjT in a straightforward form with-
out any geometric computation: Simply, each FG attractor is connected through
the CCLT to another BG attractor. And vice versa: each BG attractor is linked
to another FG attractor (Fig. 3). So the question is now: what parts of a CCLT
building can be done in parallel for the huge amount of pixels that a digital image
can have? Whereas first two steps of Fig. 6 are independent for every pixel (thus
trivially parallel), the crucial step Fig. 6 requires in principle a sequential pro-
cessing. Nevertheless, most of the attractors can be coupled in parallel if next
properties are taken into account. Let us consider the FG attractor AFG in Fig. 6
(right). The adjacent East BG pixel of AFG fell (going to South direction along
the BG path defined by the CG) to a BG attractor BFG. Likewise, the adjacent
West FG pixel of BFG arrives (going to North direction along the FG path of
the CG) to an FG attractor CFG. All the pairs of FB and BG attractors that
fulfill AFG = CFG can be cancelled in parallel, because (a) there are BG and
FG paths that connect them, and (b) any tree structure has a unique root. Due
to (a) the link of the false FG attractor can be transported so as to join the
two FG pixels that the BG attractor was separating. Likewise for the link of the
false BG attractor. These are the transports from Fig. 7, left to center. Moreover
because of (b), there cannot exist two false FG attractors that use the same false
BG attractor to be cancelled.

The parallel Algorithm 1 consists of the following steps. From image I, the
possible attractors based on the local information of each pixel can be fully
determined in parallel, and the same for the initial CG, for example using the
North-then-East criterion (steps 1–4 of Algorithm 1). Using this local informa-
tion and through successive iterations, the global CG can be obtained, which
corresponds to the steps 5 to 9 of Algorithm 1). Now the possible FG, BG attrac-
tors can be efficiently coupled in parallel (steps 10–21 of Algorithm1). At the
end of this stage, we obtain the CCLT comprised in the final pointer matrix P
of Algorithm 1, and in the true attractors, one for each FG and BG CC. Note
that BG attractors now are the holes of the FG CCs (and vice versa). Finally,
by means of steps 22–23, inclusion relations between BG and FG CCs can be
extracted from the label pointed by each attractor.

As our aim is to describe the inherent parallelism that can be exploited in
the CCL tree building, the notation followed here describes the algorithm in
an OCTAVE/MATLAB-like form, which indicates in an direct way what are
the data parallelism and the real data dependences. Therefore it is evident how
each sentence could be implemented in a SIMD processor (or in SIMD ker-
nels) or in SIMT oriented GPUs. Also OpenMP codes can be written almost
directly through this notation, just by transforming each matrix operation into
two nested loops, the outer of which can be commanded by a directive #pragma
omp parallel for. An additional advantage is that the memory access patterns can



be clearly observed with this notation. This can give a fast idea of the computing
times because memory access is currently the most important bottleneck in cur-
rent multicore processors [14,21]. For similar reasons, those sentences that can
be executed in parallel (which have no real data dependences) are grouped in the
same step. For example, the range of elements that can be processed in parallel
is shown for each matrix (vector) with the notation A(1 :m, 1 : n). This means
that the operation is extended all over the elements in rows 1, 2, 3, . . . ,m and
in columns 1, 2, 3, . . . , n. Furthermore, we have avoided those matrix operations
that cannot be done in an element-by-element way (like matrix inversions, matrix
multiplication, etc.). Nevertheless, matrix operations that can be executed in a
fully parallel form are introduced with the OCTAVE/MATLAB notation (e.g.
A. ∗ B means an element-by-element multiply). Therefore, only one loop “for”
and another one loop “while” that present dependences among its iterations are
encountered. In addition, the algorithm does not have any conditional sentence.
Some auxiliary matrices and predicative-like code, have transformed conditional
operations into element-by-element logical ANDs or multiply operations for the
possible results. This also promotes efficiency when using SIMD kernel codifica-
tion and prevents the so-called thread divergence for GPUs, promoting a better
performance on these platforms [14]. Supposing an image of m×n pixels and p
processing elements, time complexity order can be trivially obtained according
to the notation of Algorithm1, and because most of the operations are done in
an element-by-element form. Steps 1–4 are of this kind, so their time complexity
is O(m× n/p). Steps 6–8 proceed in the same manner, but they are surrounded
by a “for” loop (steps 5 and 9) with log2(m + n − 1) iterations. Thus, their
complexity is O((m × n/p) × log(m + n)). Next step 10 can be computed fully
in parallel, which supposes a complexity of O(m × n/p). Step 15 is similar to
10, but because many false attractors were previously deleted from matrixes F∗
and B∗ in 10, each “surviving” possible attractor has to be found. This sup-
poses a searching of a variable length s10 that depends on the characteristic of
the image. Steps 17 and 19 have the same complexity of 10 with different lengths
s17 and s19, respectively. Moreover, steps 17 and 19 are enclosed by a while loop
(16 and 21), with a number of iterations q, that is in general very little. These
searching lengths s10, s17 and s19, and the number of iterations q can be related
with image shapes; but for the random images of different densities [22], max-
imum values smax = max{s10,max, s17,max, s19,max, s22,max} were very
low: 72 for 512× 512 pixels, 94 for 1 Mpixels and 176 for 4 Mpixels. Besides, q
reached 3 only for one of the random images, whereas was 1 for all the tested
real ones. In other words, the most time consuming steps are 5 to 9. Summa-
rizing previous steps 1–21, it can be stated that, under the assumption that a
processing element exists for each pixel (p = m × n), time complexity order for
computing the CCL is very near to the logarithm of the width plus the height of
the image. Step 22 involves only the true FG and BG CC (namely v), and can
be done in parallel for any CC because matrix P comprises all the connectiv-
ity information. The only iterative procedure here is again the number of hops



needed to find a true attractor. Thus, the time complexity order for this step is
O(s22×v/p+s22,max), where s22,max is the maximum number of hops along
the pointer matrix P to find an attractor. Step 23 can be done in parallel, being
O(v/p) its time complexity. To sum up, time complexity order for computing
the CCL and the AdjT, under the assumption that a processing element exists
for each pixel, is O(log(m + n)) + O(q × smax).

5 Testing Results and Conclusions

A complete implementation was done in C++/OpenMP through a direct trans-
lation of Algorithm1. The compiler was Microsoft Visual Express. The server
where tests were carried out was an Intel Xeon E5 2650 v2 with: 2.6 GHz, 8
cores, 8 × 32 KB data caches, Level 2 cache size 8 × 256 KB, Level 3 cache size
20 MB, maximum RAM bandwidth: 59.7 GB/s. Experiments were run 25 times
and minimum times were collected, because this server runs concurrently lots
of processes and this increases unfairly timing measurements. However, mean
times differs only by a 10% wrt. to the minimum ones. Figure 8 shows the results
for random images (taken from YACCLLAB [22]) with different sizes and den-
sities (percentage of FG pixels). Although absolute computation times (being
between 0.3 and 0.5 s for 512× 512 images of different densities) are not faster
than that of YACCLAB, this comparison is not fair since our method computes
both black and white CCs, thus having a complete representation in terms of
the AdjT, whereas classical CCL methods return only black CC labels. Never-
theless, speedup (time for various threads divided by time for 1 thread) is near
the number of threads (Fig. 8), which points out that achieved scalability is very
satisfactory for all image sizes and densities.

Fig. 8. Left: speedup for 1 to 8 threads for images of different sizes and: Right: density
of 0.9. Left: density of 0.4.

In future works we will define more formally the notions of our algorithm so
that additional properties will be exhibited. This would also serve to extend our
method to bigger dimensions.



Algorithm 1. Given a binary matrix I, computes P (CCL), BTABLE , FTABLE

(column 1: index of the BG/FG attractor resp.; column 2: index of the FG/BG
attractor, resp.), and AdjT. B means BG and F FG value
1: ICC ← I(2 : m − 1, 2 : n − 1); % Central matrix

INC ← I(1 : m − 2, 2 : n − 1); % North adjacent matrix. Similar for other 4-adjacent
matrices IEC , ISC , IWC (East, South, West) and 8-adjacent matrices ISW , ISE , INW , INE

2: F ∗ ← (INC == BG). ∗ (IEC == BG). ∗ (ICC == FG);
B∗ ← (INC == FG). ∗ (INE == BG). ∗ (ICC == FG). ∗ (IEC == FG);
% See 2x2 patterns in Figure 4 (right)

3: R,C ← ndgrid(1 : m, 1 : n); % auxiliary matrices that contain a grid of row and column
indexes.

4: XNE ← (INC == BG). ∗ (IEC == FG). ∗ (ICC == FG);
YNE ← (INC == FG). ∗ (ICC == FG) % initial X,Y directions
P ← F ∗. ∗ ((C − 1) ∗m+R); % initial local CG as an NE pointer matrix. Only attractors
are set with column indexes.

5: for k = 1 : log2(m+ n − 1) do

6: Rhop,NE ← R − YNE ;
Chop,NEC+XNE ; % row, column indexes are “moved” to the North or East according
to XNE , YNE values.

7: Lhop,NE ← sub2ind(YNE , Rhop,NE , Chop,NE); % R, C matrices are converted into
column indexes.

8: P ← P (Lhop,NE); % pointer matrix is updated.
XNE ← XNE +XNE(Lhop,NE);
YNE ← YNE + YNE(Lhop,NE); % XNE, YNE are updated

9: end for% After this loop, P contains the global CG

10: %First coupling using East BG pixel to each FG attractor.
AFG ← P (F ∗(2 : m − 1, 2 : n − 1)); % Vector of FG attractors
AFG,East ← P (F ∗(2 : m − 1, 3 : n));% East BG pixels to FG attractors

11: ABG ← P (AFG,East); % Vector of BG attractors

12: CFG ← P (ABG +m); %FG attractors from West FG ABG pixels

13: Acancel = (AFG == CFG); % Logical Vector of FG/BG attractors that must be cancelled
in parallel.

14: Ncancel = count(Acancel);% # FG/BG attractors cancelled.
B∗(P (ABG(Acancel))) ← 0; % BG attractors are deleted from logical matrix of BG attrac-
tors and from auxiliary matrices.
F ∗(P (AFG(Acancel))) ← 0; % The same for FG attractors. % Here, labels in matrix P
are also updated according to the link transport of section 4.

15: % Step 10 is repeated for Vectors of North BG pixels to the FG attractors and FG
attractors from the South FG pixels to ABG. Each addressing along P must be iterated
until an FG or BG attractor is found (because, in previous steps, many false attractors
were deleted from F ∗ and B∗).

16: while Ncancel > 0 do
17: % Step 10 is repeated. Each addressing along matrix P must be iterated until an FG

or BG attractor is found.

18: Ncancel = count(Acancel)
19: % Step 15 is repeated. Again addressing along matrix P must be iterated until an FG

or BG attractor is found.

20: Ncancel = count(Acancel)+Ncancel; % total number of FG/BG attractors cancelled in
current “while” iteration.

21: end while
22: % Extract attractor pair tables FTABLE , BTABLE from previous attractors using P.

23: % Compute AdjT using attractor pair tables FTABLE , BTABLE
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