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1 Introduction
In 1922, the Polish mathematician Stefan Banach established a remarkable fixed point theorem known
as the Banach Contraction Principle, which is one of the most important results of analysis, and is
considered as the main source of metric fixed point theory. It is well known that the classical Banach
contraction principle possesses many applications to operational equations, optimization theory and
other topics. In 1964, Perov [12] extended the Banach contraction principle for single–valued contraction
on spaces endowed with vector-valued metrics.

Random fixed point theorems for contraction mappings were proved by Hans̃ [4, 5], S̃pac̃ek [7] and
Mukherjee [9, 10]. Recently, Sinacer et al. [16] proved a new version of Perov’s fixed point theorem
(Perov type random fixed point).

The investigation of qualitative properties such as existence, uniqueness and stability for random
differential equations has received much attention, as can be seen in [11, 17] and the references therein,
but for the study of the existence of fixed points for an operator, it is useful to consider a more general
concept, namely coupled fixed points. The concept of coupled fixed point for an operators was introduced
in 1987 by D. Guo and V. Lakshmikantham (see [3]).

One of the main topics in the theory of functional equations is Hyers-Ulam stability. The starting
point of this topic was the problem of S.M. Ulam [20] and the solution given by Hyers to this problem in
the case of the Cauchy functional equation [6]. Generally, we say that a functional equation is stable in
Hyers-Ulam sense if for every solution of the perturbed equation there exists a solution of the equation
that is close to it. For more details and results on this topic we refer to [2, 6, 15].

For examples and other considerations regarding Hyers-Ulam stability of the coupled system of
differential Equations see [1, 8, 13, 14, 18, 19].
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On the other hand, to the best of our knowledge, there is no paper which investigates the existence
and Hyers-Ulam stability results for the coupled random fixed point of a pair of contractive type random
operators on separable complete metric spaces. To fill this gap, in this paper, we study the existence
and uniqueness and we investigate the Hyers-Ulam stability results for the coupled random fixed point
of a pair of contractive type random operators.

Therefore, in this paper we present some coupled fixed points results for contractive type operators on
spaces endowed with vector-valued metrics and, as an application, we discuss the existence, uniqueness
and Hyers-Ulam stability of the solution of a periodic boundary value problem related to a system of
random differential equations. The approach is based on random Perov-type fixed point theorem for
contractions in metric spaces endowed with vector-valued metrics.

The plan of this paper is as follows. In Section 2 we introduce notations, definitions, and preliminary
facts that are useful throughout the paper. In Section 3 we present some existence, uniqueness and
Hyers-Ulam stability results for the coupled random fixed point of a pair of contractive type operators
on separable complete metric spaces. The approach is based on a random Perov type fixed point theorem
for contractions. Finally, in Section 4 an example is given to show the applicability of our results on
random integral equations and to boundary value problems.

2 Preliminaries
In this section we recall some notations, definitions, and auxiliary results which will be used throughout
this paper. If x, y ∈ Rn with x = (x1, · · · , xn) and y = (y1, · · · , yn), we set |x| = (|x1|, · · · , |xn|),
max(x, y) = (max(x1, y1), · · · ,max(xn, yn)) and Rn+ = {x ∈ Rn : xi > 0}. If c ∈ R, then x ≤ c means
xi ≤ c for each i = 1, · · · , n.

Definition 2.1. Let X be a nonempty set. By a vector-valued metric on X we mean a map d : X×X →
Rn with the following properties:
(i) d(u, v) ≥ 0 for all u, v ∈ X.; if d(u, v) = 0 then u=v;
(ii) d(u, v) = d(v, u) for all u, v ∈ X;
(iii)d(u, v) ≤ d(u,w) + d(w, v) for all u, v, w ∈ X.

Here, if x, y ∈ Rn, x = (x1, x2, · · · , xn), y = (y1, y2, · · · , yn), by x ≤ y we mean xi ≤ yi for i = 1, 2, · · · , n.
We call the pair (X, d) a generalized metric space with

d(x, y) :=

 d1(x, y)
...

dn(x, y)


Notice that d is a generalized metric space on X if and only if di, i = 1, 2, · · · , n are metrics on X.

Similarly, by a vector-valued norm on a linear space X, we mean a mapping ‖.‖ : X → Rn+ with ‖x‖ = 0
only for x = 0; ‖λx‖ = |λ|‖x‖ for x ∈ X, λ ∈R, and ‖x + y‖ ≤ ‖x‖ + ‖y‖ for every x, y ∈ X. To any
vector-valued norm ‖.‖ one can associate the vector valued metric d(x, y) := ‖x− y‖, and one says that
(X, ‖.‖) is a generalized Banach space if X is complete with respect to d.

Definition 2.2. A square matrix of real numbers is said to be convergent to zero if and only if its
spectral radius ρ(M) is strictly less than 1. In other words, this means that all the eigenvalues of M are
in the open unit disc i.e. |λ| < 1, for every λ ∈ C with det(M − λI) = 0, where I denote the unit matrix
of Mn×n(R).

Theorem 2.1. [21] Let M ∈Mn×n(R+) , the following assertions are equivalent:
(a) M is convergent towards zero;
(b) Mk → 0 as k →∞;
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(c) The matrix (I −M) is nonsingular and

(I −M)−1 = I +M +M2 + · · ·+Mk + · · · ,

(d) The matrix (I −M) is nonsingular and (I −M)−1 has nonnegative elements.

Let (Ω,Σ) be a measurable space and X is a metric space, we shall use B(X) to denote the Borel
σ-algebra on Ω × X. Then Σ ⊗ B(X) denotes the smallest σ-algebra on Ω × X which contains all the
sets A× S, where Q ∈ Σ and S ∈ B(X).

Definition 2.3. Recall that a mapping f : Ω × X −→ X is said to be a random operator if, for any
x ∈ X, f(·, x) is measurable.

Definition 2.4. A random fixed point of f is a measurable function y : Ω → X such that y(ω) =
f(ω, y(ω)) for all ω ∈ Ω.

We recall now Perov’s fixed point theorem (see [16]).

Theorem 2.2. Let (Ω,F) be a measurable space, let X be a real separable generalized Banach space and
let F : Ω×X → X be a continuous random operator. Let M(ω) ∈Mn(R+) be a random variable matrix
such that for every ω ∈ Ω the matrix M(ω) converges to 0 and

d(F (ω, x1), F (ω, x2)) ≤M(ω)d(x1, x2) for each x1, x2 ∈ X, ω ∈ Ω.

Then
(i) there exists a random variable x∗ : Ω→ X which is the unique random fixed point of F .
(ii) one has the following estimation

d(xn(ω), x∗(ω)) ≤Mn(ω)(I −M(ω))−1d(x0(ω), x1(ω)); (1)

3 Main results
Let X be a separable generalized metric space. We will focus our attention to the following system of
random equations: {

x(ω) = T1(ω, x, y)
y(ω) = T2(ω, x, y)

(2)

where T1, T2 : Ω×X ×X → X

By definition, a solution (x, y) ∈ X ×X of the above system is called a coupled random fixed point
for the pair (T1, T2).

For the proof of our main theorem we need the following notions and results.

Definition 3.1. Let X be a separable generalized metric space and F : Ω×X → X be a random operator.
Then, the fixed point equation

x(ω) = F (ω, x) (3)

is said to be generalized Hyers-Ulam stable if there exists an increasing function ψ : Ω × Rn+ → Rn+,
continuous in 0 with ψ(ω, 0) = 0, such that, for any ε := ε1, · · · , εn with εi > 0 for i ∈ {1, · · · , n} and
any solution y∗ ∈ X of the inequation

d(y(ω), F (ω, y)) ≤ ε (4)

there exists a solution x∗ of (3) such that

d(x∗(ω), y∗(ω)) ≤ ψ(ε, ω) (5)
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In particular, if ψ(t, ω) = C(ω) · t , t ∈ Rn+ (where C(ω) ∈Mn×n(R+)), then the fixed point equation (3)
is called Hyers-Ulam stable.

We recall now a direct consequence of random versions of the Perov fixed point theorem.

Theorem 3.1. Let (Ω,F) be a measurable space, X be a real separable generalized Banach space and
F : Ω × X → X be a continuous random operator, and let M(ω) ∈ Mn×n(R+) be a random variable
matric such that for every ω ∈ Ω the matrix, M(ω) converge to 0 and

d(F (ω, x), F (ω, y)) ≤M(ω)d(x, y) for each x, y ∈ X, ω ∈ Ω.

then the fixed x(ω) = F (x, ω), x ∈ X is Hyers-Ulam stable.

Proof. From random versions of the Perov’s fixed point theorem we deduce that
Fix(F ) = x∗(ω). Let ε := (ε1, · · · , εn), with εi > 0 for each i ∈ {1, · · · , n} and let y∗(ω) be a solution

of the inequation
d(y(ω), F (y, ω) ≤ ε.

Then, we succesively have that

d(x∗(ω), y∗(ω)) = d(F (x∗, ω), y∗(ω))
≤ d(F (x∗, ω), F (y∗, ω)) + d(F (y∗, ω), y∗(ω))
≤M(ω)d(x∗(ω), y∗(ω)) + ε

Thus, using Theorem 2.2,
d(x∗(ω), y∗(ω)) ≤ (I −M(ω))−1ε

Definition 3.2. Let X be a separable metric space and let T1, T2 : Ω×X ×X −→ X be two operators.
Then the system of random equations {

x(ω) = T1(x, y, ω)
y(ω) = T2(x, y, ω),

(6)

is said to be Hyers-Ulam stable if there exist random variables c1, c2, c3, c4 > 0 such that for each
ε1, ε2 > 0 and each solution-pair (u∗(ω), v∗(ω)) ∈ X ×X of the inequations

d(u∗(ω), T1(u∗, v∗, ω)) ≤ ε1
d(v∗(ω), T2(u∗, v∗, ω)) ≤ ε2

(7)

there exists a solution (x∗, y∗) ∈ X ×X of (6) such that

d(u∗(ω), x∗(ω)) ≤ c1(ω)ε1 + c2(ω)ε2
d(v∗(ω), y∗(ω)) ≤ c3(ω)ε1 + c4(ω)ε2

(8)

Now, we present our main result which is the following existence, uniqueness and Hyers-Ulam stability
theorem for the coupled fixed point of a pair of singlevalued random operators (T1, T2).

Theorem 3.2. Let (Ω,F) be a measurable space, X be a complete separable metric space and T1, T2 :
Ω×X ×X → X be two random operators such that,

d(T1(x, y, ω), T1(u, v, ω)) ≤ k1(ω)d(x, u) + k2(ω)d(y, v)
d(T2(x, y, ω), T2(u, v, ω)) ≤ k3(ω)d(x, u) + k4(ω)d(y, v)

(9)

for all (x, y), (u, v) ∈ X ×X. We suppose that M(ω) :=
(
k1(ω) k2(ω)
k3(ω) k4(ω)

)
converges to zero. Then:
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(i) There exists a random variable (x∗, y∗) : Ω× Ω→ X ×X which is the unique random fixed point of
(T1, T2). such that {

x∗(ω) = T1(x∗, y∗, ω)
y∗(ω) = T2(x∗, y∗, ω),

(10)

(ii) the sequence (Tn1 (x, y, ω), Tn2 (x, y, ω))n∈N converges to (x∗, y∗) as n→∞, where

Tn+1
1 (x, y, ω) = Tn1 (T1(x, y, ω), T2(x, y, ω))
Tn+1

2 (x, y, ω) = Tn2 (T1(x, y, ω), T2(x, y, ω))
(11)

(iii) the random system {
x(ω) = T1(x, y, ω)
y(ω) = T2(x, y, ω),

(12)

is Hyers-Ulam stable.

Proof. (i) Let us define T : Ω×X ×X −→ X ×X by

T (x, y, ω) =
(
T1(x, y, ω)
T2(x, y, ω)

)
= (T1(x, y, ω), T2(x, y, ω)).

Denote Z := X ×X and consider d̃ : Z × Z −→ R2
+,

d̃((x, y), (u, v)) =
(
d(x, u)
d(y, v)

)
. (13)

Then we have

d̃(T (x, y, ω), T (u, v, ω)) = d̃

((
T1(x, y, ω)
T2(x, y, ω)

)(
T1(u, v, ω)
T2(u, v, ω)

))
=
(
d(T1(x, y, ω), T1(u, v, ω))
d(T2(x, y, ω), T2(u, v, ω))

)
≤
(
k1(ω)d(x, u) + k2(ω)d(y, v)
k3(ω)d(x, u) + k4(ω)d(y, v)

)
=
(
k1(ω), k2(ω)
k3(ω), k4(ω)

)(
d(x, u)
d(y, v)

)
= M(w)d̃((x, y), (u, v)).

Applying the random Perov fixed point Theorem 2.2 (i), there exists a unique element (x∗(ω), y∗(ω)) ∈
X ×X such that

(x∗(ω), y∗(ω)) = T (x∗, y∗, ω),

which is equivalent to {
x∗(ω) = T1(x∗, y∗, ω)
y∗(ω) = T2(x∗, y∗, ω),

(14)

(ii) Moreover, for each (x, y) ∈ X ×X , we have that Tn(x, y, ω)→ (x∗(ω), y∗(ω)) as n→∞, where
T 0(x, y, ω) := (x(ω), y(ω)), T 1(x, y, ω) = T (x, y, ω) = (T1(x, y, ω), T2(x, y, ω))
T 2(x, y, ω) = T (T1(x, y, ω), T2(x, y, ω)) = (T1(x, y, ω), T2(x, y, ω))
and, in general,

Tn+1
1 (x, y, ω) = Tn1 (T1(x, y, ω), T2(x, y, ω))
Tn+1

2 (x, y, ω) = Tn2 (T1(x, y, ω), T2(x, y, ω)).

We obtain that Tn(x, y, ω) = (Tn1 (x, y, ω), Tn2 (x, y, ω)) −→ (x∗(ω), y∗(ω)) as n −→∞, for all (x, y) ∈
X ×X.
Thus, for all (x, y) ∈ X ×X, we have that Tn1 (x, y, ω) −→ x∗(ω) as n→∞
Tn2 (x, y, ω) −→ y∗(ω) as n→∞.
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(iii) By (i) and (ii), for each ω there exists a unique element (x∗(ω), y∗(ω)) ∈ X×X such that (x∗, y∗) is
a solution for (14) and the sequence (Tn1 (x, y, ω)Tn2 (x, y, ω)) converges to (x∗(ω), y∗(ω)) as n −→∞.
Let ε1, ε2 > 0 and (u∗(ω), v∗(ω)) ∈ X ×X such that

d(u∗(ω), T1(u∗, v∗, ω)) ≤ ε1
d(v∗(ω), T2(u∗, v∗, ω)) ≤ ε2.

(15)

Then,

d̃((u∗, v∗), (x∗, y∗)) ≤d̃((u∗, v∗), (T1(u∗, v∗, ω), T2(u∗, v∗, ω)))
+ d̃((T1(u∗, v∗, ω), T2(u∗, v∗, ω)), (x∗, y∗))

=d̃((u∗, v∗), (T1(u∗, v∗, ω), T2(u∗, v∗, ω)))
+ d̃((T1(u∗, v∗, ω), T2(u∗, v∗, ω)), (T1(x∗, y∗, ω), T2(x∗, y∗, ω)))

=
(
d(u∗(ω), T1(u∗, v∗, ω))
d(v∗(ω), T2(u∗, v∗, ω))

)
+
(
d(T1(u∗, v∗, ω), T1(x∗, y∗, ω))
d(T2(u∗, v∗, ω), T2(x∗, y∗, ω))

)
≤
(
ε1
ε2

)
+ d̃(T (u∗, v∗, ω), T (x∗, y∗, ω))

≤ε+M(ω)d̃((u∗, v∗), (x∗, y∗)).

Since (I −M(ω)) is invertible and (I −M(ω))−1 has positive elements, we immediately obtain

d̃((u∗, v∗), (x∗, y∗)) =
(
d(x∗, y∗)
d(u∗, v∗)

)
≤ (I −M(ω))−1ε.

If we denote (I −M(ω))−1 =
(
c1(ω) c2(ω)
c3(ω) c4(ω)

)
, we then obtain

d(u∗(ω), x∗(ω)) ≤ c1(ω)ε1 + c2(ω)ε2
d(v∗(ω), y∗(ω)) ≤ c3(ω)ε1 + c4(ω)ε2

(16)

proving that the system (14) is Hyers-Ulam stable.

4 An application to random differential equations with periodic
boundary conditions

In this section we study the existence, uniqueness and Hyers-Ulam stability of a solution to a periodic
boundary value problem as an application of the coupled random fixed point Theorem 3.2 presented in
Section 2.

We consider the periodic boundary value problem
x
′(t, ω) = f(t, x(t, ω), ω) + g(t, y(t, ω), ω)
y
′(t, ω) = f(t, y(t, ω), ω) + g(t, x(t, ω), ω)
x(0, ω) = x(T, ω)
y(0, ω) = y(T, ω)

(17)

where f, g : [0, T ]× Ω× R→ R, (Ω,A) is a measurable space and x0, y0 : Ω→ R are random variables.

Definition 4.1. A function f : [0, T ] × Ω × R → R is called random Carathèodory if the following
conditions are satisfied:
(i) the map (t, ω)→ f(t, x, ω) is jointly measurable for all x ∈ R,
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(ii) the map x→ f(t, x, ω) is continuous for all t ∈ [0, T ] and ω ∈ Ω.

Let f , g be two Carathory functions satisfying the following conditions.
(H1) There exist λ1 > 0, λ2 > 0 and there exist random variables P1, P2 : Ω → R+, such that for all

x(ω), y(ω) ∈ R, x(ω) ≤ y(ω)
0 ≤ f(t, x(t, ω), ω) + λ1x(t, ω)− (f(t, y(t, ω), ω) + λ1y(t, ω) ≤ P1(ω)(x− y) (18)

−P2(ω)(x− y) ≤ g(t, x(t, ω), ω)− λ2x(t, ω)− (f(t, y(t, ω), ω)− λ2y(t, ω) ≤ 0, (19)

where M(ω) =

(
P1(ω)
λ1+λ2

P2(ω)
λ1+λ2

P2(ω)
λ1+λ2

P1(ω)
λ1+λ2

)
is a random variable matrix convergent to zero.

We study the existence of a solution of the following periodic system:

x′(t, ω) + λ1x(t, ω)− λ2y(t, ω) = f(t, x(t, ω), ω) + g(t, y(t, ω), ω) + λ1x(t, ω)− λ2y(t, ω) (20)

y′(t, ω) + λ1y(t, ω)− λ2x(t, ω) = f(t, y(t, ω), ω) + g(t, x(t, ω), ω) + λ1y(t, ω)− λ2x(t, ω) (21)

together with the periodic conditions,

x(0, ω) = x(T, ω) and y(0, ω) = y(T, ω). (22)

This problem is equivalent to the integral equations:

x(t, ω) =
T∫

0

G1(t, s)[f(s, x(s, ω), ω) + g(s, y(s, ω), ω) + λ1x(s, ω)− λ2y(s, ω)]

+G2(t, s)[f(s, y(s, ω), ω) + g(s, x(s, ω), ω) + λ1y(s, ω)− λ2x(s, ω)]ds

y(t, ω) =
T∫

0

G1(t, s)[f(s, y(s, ω), ω) + g(s, x(s, ω), ω) + λ1y(s, ω)− λ2x(s, ω)]

+G2(t, s)[f(s, x(s, ω), ω) + g(s, y(s, ω), ω) + λ1x(s, ω)− λ2y(s, ω)]ds

where

G1(t, s) =


1
2

[
eσ1(t−s)

1−eσ1T + eσ2(t−s)

1−eσ2T

]
0 ≤ s < t ≤ T

1
2

[
eσ1(t+T−s)

1−eσ1T + eσ2(t+T−s)

1−eσ2T

]
0 ≤ t < s ≤ T,

G2(t, s) =


1
2

[
eσ2(t−s)

1−eσ2T −
eσ1(t−s)

1−eσ1T

]
0 ≤ s < t ≤ T

1
2

[
eσ2(t+T−s)

1−eσ2T − eσ1(t+T−s)

1−eσ1T

]
0 ≤ t < s ≤ T,

Here σ1 = −(λ1 + λ2) and σ2 = (λ2 − λ1)
It was shown in [14] (Lemma 3.2) that, if

ln

(
2e− 1
e

)
≤ (λ2 − λ1)T and (λ1 + λ2)T ≤ 1, (23)

then G1(t, s) ≥ 0 and G2(t, s) ≤ 0, 0 ≤ t, s ≤ T .
Consider the operator A : C([0, T ],R)× C([0, T ],R)× Ω→ C([0, T ],R) where

A(t, x(t, ω), y(t, ω), ω) =
T∫

0

G1(t, s)[f(s, x(s, ω), ω) + g(s, y(s, ω), ω) + λ1x(s, ω)− λ2y(s, ω)]

+G2(t, s)[f(s, y(s, ω), ω) + g(s, x(s, ω), ω) + λ1y(s, ω)− λ2x(s, ω)]ds

Thus, (x, y) is a random solution of (20)-(22).
For the proof of our main result we need the following notion.
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Definition 4.2. The system

x(t, ω) =
T∫

0

G1(t, s)[f(s, x(s, ω), ω) + g(s, y(s, ω), ω) + λ1x(s, ω)− λ2y(s, ω)]

+G2(t, s)[f(s, y(s, ω), ω) + g(s, x(s, ω), ω) + λ1y(s, ω)− λ2x(s, ω)]ds

y(t, ω) =
T∫

0

G1(t, s)[f(s, y(s, ω), ω) + g(s, x(s, ω), ω) + λ1y(s, ω)− λ2x(s, ω)]

+G2(t, s)[f(s, x(s, ω), ω) + g(s, y(s, ω), ω) + λ1x(s, ω)− λ2y(s, ω)]ds

(24)

is said to be Hyers-Ulam stable if there exist c1(ω), c2(ω) > 0 such that for each ε1,ε2 > 0 and each
solution (u∗, v∗) of the following inequation system

|u∗(t, ω)−
T∫

0

G1(t, s)[f(s, u∗(s, ω), ω) + g(s, v∗(s, ω), ω) + λ1u
∗(s, ω)− λ2v

∗(s, ω)]

+G2(t, s)[f(s, v∗(s, ω), ω) + g(s, u∗(s, ω), ω) + λ1v
∗(s, ω)− λ2u

∗(s, ω)]ds| ≤ ε1

|v∗(t, ω)−
T∫

0

G1(t, s)[f(s, v∗(s, ω), ω) + g(s, u∗(s, ω), ω) + λ1v
∗(s, ω)− λ2u

∗(s, ω)]

+G2(t, s)[f(s, u∗(s, ω), ω) + g(s, v∗(s, ω), ω) + λ1u
∗(s, ω)− λ2v

∗(s, ω)]ds| ≤ ε2,

(25)

there exists a solution (x∗, y∗) of (24) such that

|x∗(t, ω), u∗(t, ω))| ≤ c1(ω)ε1 + c2(ω)ε2
|y∗(t, ω), v∗(t, ω))| ≤ c3(ω)ε1 + c4(ω)ε2

Our main result is the following existence, uniqueness and Hyers-Ulam stability of a random solution to
a periodic boundary value problem.

Theorem 4.1. Consider the problem (17) with f, g be two Carathory functions and suppose that As-
sumption (H1) is satisfied. If (23) is fulfilled, then:
(i) there exists a unique random solution x∗, y∗ of the periodic boundary value problem (17).
(ii) the system (24) is Hyers-Ulam stable.
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Proof. (i) Observe that

d(A(x, y, ω), A(u, v, ω))
= sup
t∈I
|A(x, y, ω), A(u, v, ω)|

= sup
t∈I

T∫
0

G1(t, s)[f(s, x(s, ω), ω) + g(s, y(s, ω), ω) + λ1x(s, ω)− λ2y(s, ω)]

+G2(t, s)[f(s, y(s, ω), ω) + g(s, x(s, ω), ω) + λ1y(s, ω)− λ2x(s, ω)]ds

−
T∫

0

G1(t, s)[f(s, u(s, ω), ω) + g(s, v(s, ω), ω) + λ1u(s, ω)− λ2v(s, ω)]

+G2(t, s)[f(s, v(s, ω), ω) + g(s, u(s, ω), ω) + λ1v(s, ω)− λ2u(s, ω)]ds

= sup
t∈I

T∫
0

G1(t, s) ([f(s, x(s, ω), ω) + g(s, y(s, ω), ω) + λ1x(s, ω)− λ2y(s, ω)]

− [f(s, u(s, ω), ω) + g(s, v(s, ω), ω) + λ1u(s, ω)− λ2v(s, ω)])
+G2(t, s)([f(s, y(s, ω), ω) + g(s, x(s, ω), ω) + λ1y(s, ω)− λ2x(s, ω)]
− [f(s, v(s, ω), ω) + g(s, u(s, ω), ω) + λ1v(s, ω)− λ2u(s, ω)])ds

= sup
t∈I

T∫
0

G1(t, s) ([f(s, x(s, ω), ω) + g(s, y(s, ω), ω) + λ1x(s, ω)− λ2y(s, ω)]

− [f(s, u(s, ω), ω) + g(s, v(s, ω), ω) + λ1u(s, ω)− λ2v(s, ω)])
−G2(t, s)([f(s, v(s, ω), ω) + g(s, u(s, ω), ω) + λ1v(s, ω)− λ2u(s, ω)]
− [f(s, y(s, ω), ω) + g(s, x(s, ω), ω) + λ1y(s, ω)− λ2x(s, ω)])ds

≤ sup
t∈I

T∫
0

G1(t, s)[P1(ω)(x− u) + P2(ω)(v − y)]

−G2(t, s)[P1(ω)(v − y) + P2(ω)(x− u)]ds

=[P1(ω)d(x, u) + P2(ω)d(y, v)] sup
t∈I

∣∣∣∣∣∣
T∫

0

[G1(t− s)−G2(t, s)]ds

∣∣∣∣∣∣
=[P1(ω)d(x, u) + P2(ω)d(y, v)] · sup

t∈I

∣∣∣∣∣∣
t∫

0

eσ1(t−s)

1− eσ1T
ds

T∫
t

eσ1(t+T−s)

1− eσ1T
ds

∣∣∣∣∣∣
= P1(ω)
λ1 + λ2

d(x, u) + P2(ω)
λ1 + λ2

d(y, v).

In a similar way we deduce that

d(A(y, x, ω), A(v, u, ω)) ≤ P1(ω)
λ1 + λ2

d(y, v) + P2(ω)
λ1 + λ2

d(x, u).

If we denote k1(ω) := P1(ω)
λ1+λ2

and k2(ω) := P2(ω)
λ1+λ2

, then

d(A(x, y, ω), A(u, v, ω)) ≤ k1(ω)d(x, u) + k2(ω)d(y, v)

and
d(A(y, x, ω), A(v, u, ω)) ≤ k2(ω)d(x, u) + k1(ω)d(y, v).
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Thus, (
d(A(x, y, ω), A(u, v, ω))
d(A(y, x, ω), A(v, u, ω))

)
≤
(
k1(ω)d(x, u) + k2(ω)d(y, v)
k2(ω)d(y, v) + k1(ω)d(x, u)

)
=
(
k1(ω), k2(ω)
k2(ω), k1(ω)

)(
d(x, u)
d(y, v).

)
= M(w)d̃((x, y), (u, v))

where M(ω) is a matrix convergent to zero.
From Theorem 2.2 there exists a unique random solution of problem (20-22).

(ii) By the first part of our proof and by Theorem 3.2 (iii) we deduce that there exists a unique element
(x∗(ω), y∗(ω)) ∈ C([0, T ],R)× C([0, T ],R) such that (x∗, y∗) is a solution for (14).
Let ε1, ε2 > 0 and (u∗(ω), v∗(ω)) ∈ C([0, T ],R)× C([0, T ],R) such that

d(u∗(ω), A(u∗, v∗, ω)) ≤ ε1
d(v∗(ω), A(v∗, u∗, ω)) ≤ ε2.

(26)

Then (
d(x∗, y∗)
d(u∗, v∗)

)
≤ (I −M(ω))−1ε

and the system (24) is Hyers-Ulam stable.
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