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Abstract: Quality inspection is a preliminary step for different further analyses 
(process monitoring, control and optimisation) and requires one to select a 
measuring strategy, i.e., number and location of measurement points. This 
phase of data gathering usually impacts on inspection times and costs (via 
sample size) but it also affects the performance of the following tasks (process 
monitoring, control and optimisation). While most of the approaches  
for sampling design are specifically presented with reference to a target 
application (namely, monitoring, control or optimisation), this paper presents a 
general-purpose procedure, where the number and location of measurement 
points are selected in order to retain most of the information related to the 
feature under study. The procedure is based on principal component analysis 
and its application is shown with reference to a real case study concerning the 
left front window of a car. A different approach based on multidimensional 
scaling is further applied as validation tool, in order to show the effectiveness 
of the PCA solution. 

Keywords: quality inspection; data reduction; multidimensional scaling; MDS; 
principal component analysis; PCA; cluster analysis. 
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1 Introduction 

A general purpose in quality inspection is to identify a subset of variables which conveys 
the main features of the whole sample. The reduction of the dimensionality of a data set 
has attracted a great deal of interest in many industrial applications. For example, profiles 
and surfaces of mechanical products require a set of points to be measured. Since 
measurements require time (and cost), the possibility of reducing sample size of 
inspected points can be very attractive for practitioners. 

An updated state-of-the-art of approaches for designing sampling strategy when 
geometric form tolerances are of interest is reported in Colosimo et al. (2010b). However, 
these approaches are specifically aimed at form error estimation without any reference to 
other tasks such as control chart design (for process monitoring) or design of experiment 
(for process optimisation). 
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Geometric shapes can be further useful for monitoring (Colosimo and Pacella, 2007, 
2010; Colosimo et al. 2008b, 2010a) or optimising (del Castillo and Colosimo, 2010) the 
manufacturing process that is producing them. As a matter of fact, each of these specific 
tasks (tolerance computation, quality monitoring or process optimisation) has its own 
performance indicator for selecting the sampling strategy. Usually, the quickness in 
detecting out-of-control conditions is considered for quality monitoring purposes while 
the ability in detecting the effect of process parameters on the feature shape is assumed 
when process optimisation is of interest. 

Given that the same data are usually considered for all the aforementioned tasks, this 
paper aims at defining a sampling procedure that is general purpose. In particular, the 
criterion considered for designing the sampling strategy is taken from multivariate 
statistical analysis, where the aim is to properly summarise the information contained in a 
set of data points. The most established technique for multivariate data reduction is 
principal component analysis (PCA), an approach in which a number of variables are 
transformed into a smaller set of uncorrelated ones while maintaining most of the 
information contained in the original data set (Jolliffe, 2002; Jackson, 2003). Starting 
from PCA, different variable selection approaches have been proposed (McCabe, 1984; 
Al-Kandari and Jolliffe, 2001; Colosimo et al., 2008a). In the following, we will use one 
of the most common criterions for PCA-based variate selection (i.e., the generalised 
coefficient of determination (GCD) criterion) in order to select the proper subset of 
sampling points. Two further multivariate approaches based on multidimensional scaling 
(MDS) and cluster analysis will be used as validating tools in order to evaluate the 
effectiveness of the proposed procedure. Throughout the paper, a real case study 
concerning inspection of the left-front window of a car will be used as test bed. 

The layout of this paper is as follows. Section 2 briefly introduces the methods used 
in this paper. Section 3 illustrates the use of these techniques by applying them to an 
industrial case. Concluding remarks are found in Section 4. 

2 Methodology 

Three quantitative methods are employed in this paper, namely PCA for variable 
screening, MDS and cluster analysis as validation tools. The first is used as  
general-purpose tool for selecting the sampling inspection strategy (number and location 
of measurement points) while the second and third ones are used to show the 
effectiveness of the previous approach. These methods are briefly presented in the 
following. 

2.1 PCA-based variable selection 

The dimensionality of a data set can often be easily reduced while keeping the main 
features of the whole data set using multivariate techniques. To this aim, the most  
well-known technique is PCA, where the aim is to summarise the variability of a starting 
set of variables using a smaller set of uncorrelated variables, which are computed as 
linear combination of the original ones. 

PCA linearly transforms the original variables x1, x2, …, xp to new uncorrelated 
variables known as principal components (PCs), y1, y2, …, yp such that 
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 Ty x= Γ  (1) 

where x and y are p-dimensional random vectors and Γ is the pxp orthogonal matrix 
whose jth column is the jth eigenvector corresponding to the jth largest eigenvalue of the 
covariance matrix, Σ, of x. The transformation defined in (1) has the property that  
y1, y2, …, yp are all uncorrelated variables and the variance of the jth PC is equal to the jth 
largest eigenvalue λj of the covariance matrix Σ, i.e., Var(yj) = λj. Because of this 
important property, it follows that the first k PCs summarise a great proportion of the 
total variability characterising the original data sets. This proportion can be computed as: 
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A common criterion to select the number of PCs that have to be retained is to choose k in 
equation (2) so to have 2

kρ  at least equal to a given value, say 90%, i.e., retain a number 
of PCs in order to let these few PCs represent the 90% of the whole variability shown in 
the original variables (Jackson, 2003, Jolliffe, 2002). 

Given that each PC is a linear combination of the original variables, standard PCA is 
not the proper tool when one wants to reduce the number of variables while keeping most 
of the information they bring. The technique originated from PCA with the aim of 
selecting a few set of variables is referred to as ‘principal variable selection’ (PCV) or 
‘principal variables’ (Beale et al., 1967; Jolliffe, 1972, 2002; McCabe, 1984; 
Krzanowski, 1987; Al-Kandari and Jolliffe, 2001). 

Among all the possible criteria aimed at selecting the principal variables, in the 
following we will use the solution proposed by Cadima and Jolliffe (2001). They argued 
that the selection of a variable subset should not be based only on the PC loadings (as 
most of the previous approaches suggested) and discussed different performance 
indicators to be used to this aim. Among these indicators, the GCD resulted to have good 
performance. GCD indicator is given by: 

( )2

GCD
m i

i

r

qk
=
∑

 (3) 

where (rm)i stands for the multiple correlation between the ith PC and the k-variable 
subset, and the sum is carried out over the s retained PCs (i = 1, ..., s). 

One main advantage of the PCV-GCD approach is to look to a whole set of retained 
PCs instead of looking to each PC, separately. In fact, if s (s < p) PCs are retained, it is 
interesting to interpret the space spanned by those PCs rather than being wedded to each 
individual PC. 

Unfortunately, PCV-GCD brings (as most of the approach for principal variate 
selection) some computational difficulties. In fact, the complete enumeration of all the 
possible subsets of variables in order to find the best one, is practically unfeasible for 
most of the applications. Several methods have been proposed to overcome this limitation 
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(Cadima et al., 2004). In the following we will use the implementation of a local search 
method combined with a simulated annealing algorithm (Cerdeira et al., 2009). The 
package is available on the CRAN website (URL:http://www.R-project.org), and the 
functions can be downloaded from the R library Subselect Package. 0.9-9993. 

2.2 Multidimensional scaling and cluster analysis 

MDS is a data reduction technique that begins with an item-item proximity matrix of 
dissimilarities and tries to find a set of lower-dimension construct based upon 
dissimilarities among all the objects under study. The points are arranged in a space so 
that the distances between pairs of points are related to the similarities among the pairs of 
objects. That is, two similar objects are represented by two points that are close together 
in this new representation space. The space is usually a two- or three-dimensional 
Euclidean space, but non-Euclidean or high-dimension spaces can be used as well. 

MDS provides an indicator to test the reliability and validity of the provided results. 
The indicator is usually the Kruskal’s stress, also called ‘stress-1’, (Kruskal, 1964) and 
measures how well the derived configuration matches the input data. Small values of the 
Kruskal’s stress , approaching 0.0, indicate an acceptable goodness of fit. 

Besides Kruskal’s stress, other indicators have been proposed as well. In particular, if 
the original variables have different range of variation, it is often a good practice to use a 
normalised version of the Krukal’s stress, called normalised raw stress. The advantage of 
this other index is that its value is independent of the scale and number of variables. 

In order to minimise stress, we use an MDS solving strategy known as scaling by 
majorising a complicated function (SMACOF) (Borg and Groenen, 1997). The SMACOF 
algorithm is implemented in the SPSS procedure proximity scaling (PROXSCAL). All 
the calculations in this paper are performed with the SPSS software, version 15. 

Consistently with the methodology adopted for this study, a multivariate approach for 
classification purposes will also be used as further check of the obtained solution. We 
will use a cluster analysis approach for grouping variables into clusters so that variables 
in the same cluster are more similar than variables in different ones (for further details 
see Romesburg, 2004). 

3 Experimental work 

In this section, a real case study is used to show the feasibility and effectiveness of the 
proposed method. This case study involves inspecting the left-front window of a car 
(Pellizaro and Semeraro, 1997). It includes the data of 690 windows that are measured at 
29 locations each. Figure 1 shows the location of this original set of 29 measurement 
points. 
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Figure 1 The left-front car window: location of the original set of 29 points (see online version 
for colours) 

 

With reference to Figure 2, we can illustrate the basic principle used to see if each 
window meets the required tolerance. At each of the 29 locations the height of the 
window is measured and compared with a target. If the difference between the real value 
and the target lies in the specification range the window is said to be conforming to 
requirements. Figure 2 shows only five of the 29 points around the edge of the window. 

Figure 2 Edge of the car window 
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Figure 3 displays the correlation matrix of the 29 points. There is a high degree of 
correlation between most of the points, which suggests that data provided actually lie in 
far fewer than 29 dimensions. The range of significant Pearson’s correlation coefficient 
varies from –0.01 to 0.99. It is remarkable that most of the correlation is between points 
in the subsets P4–P11 and points in the subset P14–P19, while these two subsets seem 
almost independent. 
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Figure 3 Correlation plot 
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PCA has been applied to the full 29-dimensional data set. Table 1 summarises the PCA 
results. It is shown that seven PCs allow one to explain the 98.6% of the whole variability 
contained in the original data set. In particular, the first two PCs account for 83% of the 
original variance while moving from two to three PCs, the explained variance becomes 
92.6%. Thus, the data set of 29 points has three main directions where most of the data 
variability concentrates. 

Table 1 Summary of PCA using 29 × 29 correlation matrix 

Principal 
component #1 #2 #3 #4 #5 #6 #7 

Eigenvalues 15.838 8.435 2.578 0.673 0.568 0.363 0.135 
Proportion 
variability 54.615 29.085 8.890 2.321 1.959 1.252 0.464 

Cumulative 
variability 54.615 83.700 92.590 94.910 96.869 98.122 98.586 

Loadings 

Principal component 

Original point #1 #2 #3 #4 #5 #6 #7 

P1 0.972 0.000 –0.058 –0.099 –0.029 –0.156 –0.066 
P2 0.976 0.009 –0.060 –0.072 –0.032 –0.170 –0.042 
P3 0.981 –0.025 –0.043 –0.046 –0.039 –0.166 –0.022 
P4 0.978 –0.134 –0.002 –0.018 –0.060 –0.141 –0.002 
P5 0.974 –0.166 0.032 0.009 –0.058 –0.123 –0.002 
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Table 1 Summary of PCA using 29 × 29 correlation matrix (continued) 

Loadings 

Principal component 

Original point #1 #2 #3 #4 #5 #6 #7 

P6 0.976 –0.154 0.046 0.039 –0.047 –0.112 –0.002 
P7 0.973 –0.169 0.061 0.080 –0.043 –0.085 0.000 
P8 0.956 –0.220 0.086 0.149 –0.032 –0.025 0.006 
P9 0.963 –0.151 0.062 0.195 0.000 –0.001 0.020 
P10 0.962 –0.118 0.030 0.194 0.026 –0.003 0.111 
P11 0.923 –0.246 0.116 0.210 0.060 0.064 0.128 
P12 0.829 –0.394 0.259 0.211 0.107 0.169 0.029 
P13 0.734 –0.380 0.380 0.208 0.186 0.231 –0.150 
P14 0.101 0.877 0.081 –0.079 0.362 –0.112 0.154 
P15 0.168 0.870 0.281 0.056 0.295 –0.004 –0.161 
P16 0.103 0.912 0.313 –0.039 0.185 –0.047 0.029 
P17 0.113 0.895 0.389 –0.053 0.055 –0.055 0.026 
P18 0.132 0.856 0.468 –0.023 –0.085 –0.010 –0.005 
P19 0.152 0.816 0.503 –0.017 –0.217 0.037 0.003 
P20 0.167 0.656 0.563 0.004 –.0421 0.128 0.035 
P21 0.319 0.843 –0.371 0.087 –0.069 0.005 –0.082 
P22 0.390 0.774 –0.479 0.092 –0.043 0.023 –0.011 
P23 0.437 0.738 –0.485 0.087 –0.050 0.066 –0.006 
P24 0.424 0.719 –0.521 0.094 –0.037 0.111 –0.010 
P25 0.345 0.705 –0.564 0.094 –0.013 0.115 0.052 
P26 0.874 –0.159 –0.030 –0.376 0.057 0.206 0.094 
P27 0.937 –0.081 –0.052 –0.303 0.028 0.132 –0.010 
P28 0.946 –0.072 –0.048 –0.279 0.020 0.108 –0.030 
P29 0.959 –0.011 –0.059 –0.226 0.015 0.058 –0.059 

Table 2 shows the results of the PCV-GCD approach. In particular, the second column in 
the table corresponds to the percentage of data variance explained by the first k PCs (as 
shown in Table 1) while the last two columns show the optimal set and the value of the 
GCD. Note that as the number of retained PCs k increases, both the percentage of 
variance explained and the GCD corresponding to the optimal subset increase as well. 

Considering the percentage of variance explained as a function of the number k of 
retained PCs, it is clear that there is redundancy in the original data set since most of the 
information and data structure can be summarised by selecting just few points. We 
decided to choose a value of k so that the first k PCs explain about 95% of the variance. 
Using this criterion, the subset corresponding to the fifth row (k = 5), given that when 
five PCs are retained the percentage of total variance accounted for is 96.87%. The GCD 
between the subspaces spanned by the first five PCs and the selected data points (shown 
in the fifth column of Table 2) is 0.963, i.e., a significant simplification is possible 
according to the GCD criterion. According to this criterion, the relevant points are 4, 11, 
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17, 22 and 28. It should be pointed out that similar results are obtained using different 
heuristic procedures, as genetic algorithms, as optimisation technique. 
Table 2 Points selected according to GCD criterion 

k %Variance 
k PC Variable selected GCD 

2 83.70% 7, 21 0.964 

3 92.59% 1, 12, 16 0.889 

4 94.91% 2, 9, 17, 22 0.960 

5 96.87% 4, 11, 17, 22, 28 0.963 

6 98.12% 1, 8, 12, 18, 22, 28 0.942 
7 98.58% 2, 8, 10, 13, 18, 24, 28 0.959 

8 99.01% 2, 7, 11, 13, 15, 20, 22, 28 0.956 

9 99.27% 1, 6, 9, 11, 13, 15, 19, 24, 28 0.958 

10 99.47% 1, 6, 9, 11, 13, 16, 20, 21, 24, 29 0.942 

Figure 4 depicts the selected points on the car left-window. It is clear that points tends to 
be equidistant from one another and placed over each different window side. 

Figure 4 Points selected with the PCV-GCD approach (k = 5) (see online version for colours) 

 

Next, MSD was used to validate the PCV results. PROXSCAL was used to produce the 
perceptual map and the measure of difference/similarity between the original data points. 
The optimal fit for the multi-dimensional model is indicated by the normalised raw stress. 
In the sample under study, stress-1 amounted, for two-dimensional representation, to 
0.022, which represents a good fit (optimal scaling factor = 1.001, normalised raw  
stress = 0.00049). Generally, two-dimensional solutions are accepted because the  
three-dimensional solutions tend to produce only a marginal improvement in model 
fitting. As a matter of fact, increasing the number of dimensions from 2 to 3 translates in 
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an improvement of 0.00001 of the normalised raw stress, whereas further increase did not 
produce significant improvement. Balancing this fit improvement with the increasing 
difficulty of interpretation, we chose to retain the two-dimensional solution. 

Figure 5 shows the two-dimensional solution (obtained via PROXSCAL) together 
with the data points selected using the PCV-GCD approach. Unfortunately, MDS has no 
built-in procedure for labelling the two outlined dimensions (shown as the abscissa and 
the ordinate of Figure 5). Furthermore, interpreting the identified dimensions is often a 
subjective task, that can be carried out by visually inspecting the two dimensional MDS 
map (Figure 5) in order to detect the meaning of the resulting dimensions. Figure 5 
clearly outlines that dimension 1 (on the abscissa) is used to divide the original data set in 
two groups (characterised by a negative and positive abscissa, respectively). The first 
group collects points P1–P13 and P26–P29 while the second one is formed by points 
P14–P25. Figure 6 shows a line that separates these two point clusters defined by the first 
dimension of the MDS map. The line is the diagonal of the car window and hence the 
first dimension has a clear geometrical meaning. The interpretation of the second 
dimension (on the ordinate of Figure 5) is less clear. However, it should be pointed out 
that the MDS map clearly shows three main clusters of data points and each of these 
clusters is represented if the PCV-GCD sampling strategy is assumed (points selected by 
this procedure are represented by arrows on the map in Figure 5). 

Figure 5 MDS mapping (PROXSCAL) of 29 points (see online version for colours) 
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Figure 6 Distinction defined by dimension 1 (abscissa) of the MDS map in Figure 5 (see online 
version for colours) 

 

The dendrogram is a graphical tool for hierarchical classification that can aid in the 
interpretation of cluster of variables. In Figure 7, the dendrogram computed using Ward’s 
method (Romesburg 2004) is represented and scored on a 0–9.80 scale. Also, the points 
outlined by the PCV-GCV criterion are outlined on the same figure. It is clear that also 
the cluster analysis confirms the validity of the proposed solution. In fact, points selected 
by the PCV-GCD procedure tend to belong to different clusters, i.e., each of the selected 
points can be viewed as representative of a class of similar measurement points. 

Figure 7 Dendrogram for hierarchical cluster analysis using Ward’s method (see online version 
for colours) 
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4 Conclusions 

Quality inspection of industrial products is usually a costly and time-consuming activity. 
We showed how techniques coming from multivariate data analysis can be effectively 
used to redesign the sampling strategy when geometric shapes have to be inspected. In 
fact, the main idea of the paper is to test whether standard approaches of multivariate 
statistical analysis can be useful as general-purpose techniques to design sampling 
strategies. Generality is considered as a requirement considering that very often the same 
data points collected on the geometric feature have to be used for many different 
purposes (e.g., detecting non-conforming items, designing SPC approaches, detecting the 
effect of controllable factors in DoE studies). 

The proposed procedure is able to select a subset of points that have to be measured 
in order to reduce inspection costs. The procedure is based on a well-known approach in 
statistical analysis (namely PCA) and is proven to provide reliable results when other 
approaches (MDS and cluster analysis) are use to test the final solution. 

This study can serve as starting step to further investigate the use of multivariate 
techniques as general-purpose approaches for design sampling strategies when the shape 
of geometric features is of interest. 
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