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Abstract

In this paper we compare the approach of Briançonand Maisonobe for computing Bernstein–Sato 
ideals—based on computations in a Poincaŕe–Birkhoff–Witt algebra—with the readily available 
method of Oaku and Takayama. We show that it can deal with interesting examples that have proved 
intractable so far.
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1. Introduction

Let X = Cn be the complex affine space of dimensionn, An be the complex Weyl
algebra of ordern and( f1, . . . , f p) be polynomial functions onX , that is fi ∈ C[x] =
C[x1, . . . , xn]. Let usconsider the algebraAn[s1, . . . , sp] = An ⊗C C[s1, . . . , sp] with
the trivial action of the elements ofC[s1, . . . , sp]. We will write b(s), P(s) for elements
b(s1, . . . , sp), P(s1, . . . , sp) in C[s] = C[s1, . . . , sp] and An[s] = An[s1, . . . , sp]
respectively.

Let B be theBernstein–Sato ideal of ( f1, . . . , f p) consisting of polynomialsb(s) ∈
C[s] such that there exists a differential operatorP(s) ∈ An[s] satisfying

b(s) f s1
1 · · · f

sp
p = P(s) f s1+1

1 · · · f
sp+1
p .

In a similar way, other Bernstein–Satoideals can be defined, namely
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• B j = {b(s) ∈ C[s] | b(s)Fs ∈ An[s] f j Fs} for j ∈ {1, . . . , p}
• BΣ = {b(s) ∈ C[s] | b(s)Fs ∈ ∑p

j=1 An[s] f j Fs}

where Fs denotesf s1
1 · · · f

sp
p . If p = 1 thenB = B1 = BΣ and the monic generator

of the principal idealB is called the Bernstein–Sato polynomial, or simply theb-function,
associated withf1; seeBernstein(1972). Sabbah proved (seeSabbah, 1987) in the analytic
setting thatB is not zero, generalizing previous works ofBernstein(1972) andBjörk
(1979), both in the algebraic case and forp = 1.

The explicit calculation of these ideals is of major interest: many conjectures about how
the important properties of the casep = 1 appear in the general case remain open. For
example: when are the Bernstein–Sato ideals principal? Also, what can be said about their
primary decomposition? (In the casep = 1 the roots of the Bernstein–Sato polynomial are
rational numbers (Kashiwara, 1976).) SeeMaynadier(1997) for moredetails.

As far as weknow there are three ways of computing Bernstein–Sato ideals in the
algebraic case:

• The method due to Oaku and Takayama for calculatingB is described in Procedure
2.2. of Oaku and Takayama(1999). It needs the calculation of Gr¨obner bases in a
polynomial algebra over a Weyl algebra.

• The method proposed by Bahloul inBahloul (2001). It provides algorithms
for computingBΣ and B j for j ∈ {1, . . . , p} by adapting a previous work
of Oaku (seeOaku, 1997). As it uses Gr¨obner bases with respect to non-
well-ordered cases, the calculations are made in thehomogenized Weyl algebra
(Castro-Jiménez and Narv´aez-Macarro, 1997).

• The method recently proposed by Brianc¸on and Maisonobe inBriançon and
Maisonobe(2002) that computes the three types of Bernstein–Sato ideal. Their
approach is used to show the constructability of the Bernstein–Sato ideals with
respect to the space of parameters. The calculations are made in an intermediate
algebra that appears as a natural generalization of the one used by Malgrange and
Kashiwara in early works for the casep = 1 (see forexampleKashiwara, 1976).

We will refer to the first method as the OT method and the third one as the BM method.
The aim of this paper is to compare the BM method as a computational (not just

theoretical) alternative to the Oaku–Takayama algorithm, checking for a selected family
of difficult examples in concrete implementations. As we will detail, both methods start
with the calculation of the annihilator ideal AnnAn [s](Fs). We will provide experimental
evidence for the former approach being a better alternative.

In many examples the bottleneck of the calculation is not the above-mentioned
annihilator but an elimination problem which occurs in a second step in both methods.
Anyway, a shortcut to the annihilator leads in practice to the possibility of finding some
of the Bernstein–Sato ideals (see the example in3.4). Moreover, we think that there are
interesting advantages of the BM method from the complexity point of view that are not
simply related to the number of variables. They need to be brought to light in future works
(see the example in 3.3).



2. Preliminaries

In this section we will recall the general setting of the PBW algebras and explain how
the computation of the Bernstein–Sato ideals can be performed in this context.

2.1. Rn,p as a PBW algebra

As in Briançon and Maisonobe(2002), we will work in the non-commutative algebra

Rn,p = An[s1, . . . , sp, t1, . . . , tp] = An[s, t],
an extension of the Weyl algebraAn where thenew variabless, t satisfy the relations
[si , t j ] = δi j ti . As we have mentioned it is, in fact, a ring analogous to the one introduced
by Malgrange and Kashiwara forp = 1.

The elements ofRn,p can be represented as polynomials in a finite number of variables
due tothe following lemma:

Lemma 2.1. In the algebra Rn,p the following formulas hold:

1. For the set of variables x1, . . . , xn and ∂1, . . . , ∂n we have

∂
β
i xα

i =
β∑

k=0

(
β

k

)
∂k

i (xα
i )∂

β−k
i ,

for i ∈ {1, . . . , n}, where ∂i (a) stands for the partial derivative of a with
respect to xi .

2. For the set of variables s1, . . . , sp and t1, . . . , tp we have

sλ
i tµi =

λ∑
j=0

(
λ

j

)
µ j tµi sλ− j

i ,

for i ∈ {1, . . . , p}.
Proof. The property (1) is very well known as a special case of theLeibnitz formula. The
proof of (2) is very easy—by induction taking into account the easier formula

si t
β
i = tβi si + βtβi . �

Roughly speaking, you can choose a normal form for the elements ofRn,p using
monomials with thex, t variables to the left and∂, s to the right, so the set

M = {xα1
1 · · · xαn

n ∂
β1
1 · · · ∂βn

n tλ1
1 · · · t

λp
p sµ1

1 · · · s
µp
p = xα∂β tλsµ

| with (α, β, λ,µ) ∈ N2n+2p}
forms a basis ofRn,p as a vector space overC.

On the otherhand, you can consider the total degree< (the sum of all of the exponents
for every variable) in the exponents of the monomials ofM to ensure that

xα∂β tλsµ · xα′
∂β ′

tλ
′
sµ′ = xα+α′

∂β+β ′
tλ+λ′

sµ+µ′ + M,



where M ∈ Rn,p is a sum of monomials with exponents less than(α + α′, β + β ′,
λ + λ′, µ + µ′) with respect to<.

The last two properties—the existence of aC-basis and the good behaviour of the
product of monomials—are the conditions needed to define aPoincaré–Birkhoff–Witt
algebra. The work (Kandri-Rody and Weispfenning, 1990) (see alsoBueso et al., 1998)
is a good introduction to the subject of effective calculus in this very general family of
rings which contains, for example, theiterated Ore extensions. In particular it is proved
there that basic topics of computational commutative algebra such as Gr¨obner bases, the
Buchberger algorithm and elimination orderscan be developed in these PBW algebras.

2.2. AnnAn [s](Fs) and the Bernstein–Sato ideals from Rn,p

Let us consider the leftAn-module M = C[x][s, 1
F ]Fs where F is the product of

the fi . M has a natural structure of a leftRn,p-module wheresi acts by multiplication and
the action ofti is defined by

ti a(x, s)Fs = −a(x, s − εi )si
1

Fεi
Fs ,

wherea(x, s) is an element ofC[x][s, 1
F ] andεi is thei th element of the canonical basis

in Np.
Following Briançon and Maisonobe (2002), and like in Malgrange (1975), considering

the annihilating ideal ofFs in the ringRn,p is the main point. It is generated by the family{
s j + f j t j , ∂i +

∑
l

∂ fl
∂xi

tl

∣∣∣∣∣ i = 1, . . . , n; j = 1, . . . , p

}
.

So the annihilator ofFs in An[s] is AnnRn,p (Fs) ∩ An[s]. Once you have the annihilator,
the Bernstein–Sato idealB can be calculated by eliminating the variablesxi , ∂i , t j ,
i.e. computing

B = ((AnnRn,p (Fs) ∩ An[s]) + An[s]〈F〉) ∩ C[s]. (1)

Of course the formulas are analogous forBΣ andB j , j = 1, . . . , p:

BΣ = ((AnnRn,p (Fs) ∩ An[s]) + An[s]〈 f1, . . . , f p〉) ∩ C[s], (2)

B j = ((AnnRn,p (Fs) ∩ An[s]) + An[s]〈 f j 〉) ∩ C[s]. (3)

2.3. The algorithm in Rn,p

We have in fact presented the following algorithm in the preceding section. The order-
ings<t (respectively<s) denote any elimination orderings that consider the variablest
(respectivelys) greater than the others.

INPUT: f1, . . . , f p ∈ C[x].
OUTPUT: The idealsB,B� andB j for j = 1, . . . , p.

(Step 1)I := AnnRn,p (Fs) = 〈s j + f j t j , ∂i + ∑
l

∂ fl
∂xi

tl , 1 ≤ i ≤ n, 1 ≤ j ≤ p〉.
Compute a Gr¨obner basisG of I with respect to<t .
J := I ∩ An[s] = 〈G ∩ An[s]〉.



(Step 2)K := J + 〈 f1 · · · f p〉,
K� := J + 〈 f1, . . . , f p〉,
K j := J + 〈 f j 〉 for j = 1, . . . , p.
Compute Gröbner basesGK ,G�,G1, . . . ,Gp of K , K�, K1, . . . , K p

with respect to<s .

(Step 3)B = K ∩ C[s] = 〈GK ∩ C[s]〉,
B� = K� ∩ C[s] = 〈G� ∩ C[s]〉,
B j = K j ∩ C[s] = 〈G j ∩ C[s]〉 for j = 1, . . . , p.

SeeBriançon and Maisonobe(2002) to check the correctness of the algorithm. To
finish this section, we recall how the computation of step 1 of the algorithm presented
above is carried out in the Oaku–Takayama method. It needs the Weyl algebraA p+n =
C[t1, . . . , tp, ∂t1, . . . , ∂t p , x1, . . . , xn, ∂1, . . . , ∂n]:

1. Compute〈
t j − f j ,

∂ f j

∂xi
∂t j + ∂i , i = 1, . . . , n, j = 1, . . . , p

〉 ⋂
C[t1∂t1, . . . , tp∂t p ]

× 〈x, ∂x〉,
as explained in Procedure 4.1. ofOaku and Takayama(1999). This elimination uses
2n + 4p variables because it is made inA p+n[u1, . . . , u p, v1, . . . , vp]. The ideal
considered is the one generated by

t j − u j f j ,

∂i +
p∑

l=1

∂ fl
∂xi

ul∂tl , i = 1, . . . , n,

1 − u jv j , j = 1, . . . , p.

To obtain the required intersection, eliminate the variables of typeu, v.
2. Replace eacht j ∂t j by −s j − 1, for j = 1, . . . , p, in thegenerators obtained.

3. Examples and comparisons

We present in this section examples of annihilators off s and b-functions that have
proved intractable so far (herep = 1). We also include a comparison of running times
between OT and BM methods computing Bernstein–Sato ideals for two functions.

We have used three different implementations to check how good the computations are
in Rn,p compared to the alternative homogenized Weyl algebra:

• The softwarekan/sm1. It is taken into account that the ringC〈s, t〉 is isomorphic to
the ring of difference operators

C〈n, E−1
n 〉, E−1

n n = (n − 1)E−1
n

by the correspondencet = E−1
n , s = n. E−1

n acts on a space of functions ofn via
E−1

n • f (n) = f (n−1). The systemkan/sm1 (Takayama, 1991) provides some tools
for this family of rings.



• The packagePlural (Levandovskyy, 2002), designed by Levandovskyy as a part of
the celebratedSingular (Greuel et al., 2001). It provides an excellent setting for
non-commutative calculation of Gr¨obner bases.

• A tailored implementation in CLISP designed by the authors to compare CPU times
of many examples in a not very ambitious environment. The first evidence that we
found of the BM method being better was thepossibility forour humble system to
compute examples intractable to the more powerful programs using the algorithms
of Oaku and Takayama.

3.1. Some selected annihilators of f s

All the examples in this section have been treated using our CLISP prototype. It is not
optimized, so the timing data must be taken into account only in order to compare the
different methods.

The following table contains five interesting examples with some details of the
computation of AnnAn [s]( f s), for a polynomial f —namely: CPUtime, number of
elements (N.E.) in the reduced Gr¨obner basis (before the truncation of the elimination, of
course), maximum number of monomials (N.M.)in the elements of the basis and maximum
total degree (T.D.) of the elements of the basis.

Remark. In all these examples, the ordering used is the following one: to compare two
exponents first look at the exponent of the variablet (in order to do the elimination).
Second, look at the exponent of the variables. To break ties, finally use a reverse graded
lexicographical ordering withx > ∂x > t > s.

f CPU time N.E. N.M. T.D.
OT (s) BM (s) OT BM OT BM OT BM

x6 + y4 + z3 1.21 0.17 15 6 5 4 6 7

(x3 + y2)(x2 + y3) 101.66 9.56 26 15 48 39 13 7

xyz(x + y)(x + z) 13 248.8 7565.22 76 26 118 150 12 10

x7 + y7 + x4y4 131.22 19.1 27 15 63 43 16 10

x7 + y7 + z7 + x2y2z2 5514.5 2995.75 46 63 165 139 14 13

The computations of the Bernstein–Sato polynomial for the last two examples have
been treated inBriançon et al.(1989) by a different method. Here we give generators
of AnnAn [s]( f s) for two examples from the table. Thecalculations are rather far from
being trivial: the powerful systemkan/sm1 cannot manage their calculation using the OT
method. The annihilators, however, look harmless:

• The non-generic arrangementof hyperplanes (taken fromWalther, 2002) ( f =
xyz(x + y)(x + z) = 0) ⊂ C3:

AnnA3[s]( f s) = 〈−5s + x∂x + y∂y + z∂z, x2∂x + 2xz∂x + xy∂y + 2yz∂y

− 4xz∂z − 3z2∂z,−2xy∂x + 2xz∂x + 5xy∂y + 3y2∂y

+ 2yz∂y − 5xz∂z − 2yz∂z − 3z2∂z,−4y2z∂x∂y

− 2xz2∂x∂y − 3xy2∂2
y − 3y3∂2

y − 5xyz∂2
y − y2z∂2

y



− 2yz2∂2
y + 2xz2∂x∂z + 4yz2∂x∂z + 5xyz∂y∂z + 8y2z∂y∂z

+ 5xz2∂y∂z − yz2∂y∂z3z3∂y∂z − 2xz2∂2
z − 4yz2∂2

z + 4xz∂x

− 2xy∂y − 5y2∂y − 5xz∂y − 6yz∂y − 2z2∂y − 3xz∂z

+ z2∂z,−x2y∂y − xy2∂y − 2xyz∂y − 2y2z∂y + x2z∂z

+ 2xyz∂z + xz2∂z + 2yz2∂z〉.
• The semi-quasi-homogeneous curve( f = x7 + y7 + x4y4 = 0) ⊂ C2:

AnnA2[s]( f s) = 〈12xy3s − 147
4 y2s − 9

7x2y3∂x − 12
7 xy4∂y − 3

4x4∂y

+ 21
4 xy2∂x + 21

4 y3∂y, 12y4s + 21x3s − 9
7xy4∂x − 12

7 y5∂y

− 3x4∂x − 3x3y∂y − 28
3 x4s − 49

3 y3s + 4
3x5∂x + x4y∂y

+ 7
3xy3∂x + 7

3 y4∂y − 28
3 x3ys + 343

12 x2s + 4
3x4y∂x

+ x3y2∂y + 7
12y4∂x − 49

12x3∂x − 49
12x2y∂y,

768
49 xys2 − 48s2

− 192
49 x2y∂xs − 192

49 xy2∂ys + 96
7 x∂xs + 96

7 y∂ys − 48
7 s

+ 576
2401x3y∂2

x + 1200
2401x2y2∂x∂y + 576

2401xy3∂2
y + 576

2401x2y∂x

− 48
49x2∂2

x + 576
2401xy2∂y − 96

49xy∂x∂y − 48
49y2∂2

y , 4x4y3∂x

− 4x3y4∂y + 7y6∂x − 7x6∂y〉.
3.2. Their b-functions

The timing information in this section is taken from a Pentium III, 1 GHz.
As far as we know, none of the available implementations of Oaku’s algorithm can

manage the following two examples.However, theirb-functions can be obtained in
kan/sm1 using the PBW algebraRn,p and the BM algorithm.

Equation b-function Running time (s)

xyz(x + y)(x + z) (5s + 4)(5s + 3)(3s + 4)(5s + 7)(5s + 6)(3s + 2)(s + 1)3 13
x7 + y7 + x4y4 (7s + 10)(7s + 9)(7s + 8)(7s + 4)(7s + 6)(7s + 2)(7s + 5) 504

(7s + 3)(s + 1)2

3.3. Towards a mathematical explanation: a paradigmatic example

There is a whole family of examples that does not appear in the table of the last section:
the curves1 xa + yb + xyb−1, with b ≥ a + 1 ≥ 5: theReiffen family (Reiffen, 1972).
These examples defeated our prototype with the Oaku–Takayama method but were easily
managed by the Brianc¸on–Maisonobe method. In the casea = 4, b = 5, for example,
the system took 139.51 s of CPU time for a basis with ten elements; maximum number of
monomials= 107.

1 And surfaces obtained from constructions over the curves.



The annihilators corresponding to these curves have been widely studied with the use
of Plural. The results are summarized in the next table for the caseb = 5, a = 4:

f CPU time N.E. N.M. T.D.
OT BM OT BM OT BM OT BM

x4 + y5 + xy4 94 min <1 s 33 9 1240 71 15 10

The calculations in the first case have been done with respect to a typical elimination
ordering: first give weight 1 to the variablesu, v and to break ties use degree reverse
lexicographical ordering. In the second case the ordering for BM was simply a
lexicographical ordering withs, t greater than the others.

The explanation of the enormous difference between the two methods in this example
is not as easy as considering the number of variables, 8 and 6 respectively. More precisely:

• The bounds of Grigoriev (seeGrigoriev, 1991) for thecalculations in the Weyl
algebra are applicable toRn,p but neither of the two calculations is a worst case
(double exponential) in the sense of total degree, the usual measurement of the
complexity for Gröbner bases. Of course for the general case (more than one
function) the difference between 2n + 2p and 2n + 4p becomes significant.

• Nevertheless, thenumber of variables is important from the point of view of
the number of monomials. In this non-commutative setting the ingredients of
the Buchberger algorithm—S-polynomials and reductions—produce many more
monomials than in the commutative case. As the number of possible monomials
of total degree≤ d in n variables is(

n + d
d

)

the comparison of the two methods relies on the ratio(
2n + 2p + d

d

)/(
2n + 4p + d

d

)
.

If you reach, say, total degree 15, you could have elements of about(
15+ 7

7

)

monomials in the algebra of Oaku and Takayama, but(
15+ 5

5

)

in R2,1. And you have to consider the total degrees not only in the final result but
also in the intermediate calculations! This consideration influences the duration of
thecalculation as well as the total amount of memory used.

• Another important factor is the growth of the coefficients of the monomials. This is
a very well known problem in the commutative setting but is a more difficult matter
in the Weyl algebra or inRn,p , because of the binomial coefficients appearing in



the Leibnitz rule that is repeatedly applied. Coefficients of more than 30 digits are
obtained in the example that we are studying in the case of the Oaku–Takayama
method. A lot of computation becomes much slower due to these coefficients.

Remark. The ordering selected seems to be the best option for each case. It is a little
surprising that the fastest option in the commutative case, elimination orderings like those
used in the OT method, defeated the calculations for the BM method.

Remark. The annihilator of(xa + yb + xyb−1)s defeatskan/sm1 andPlural for b ≥
a + 1 > 12. It seems that this is a really hard example!

3.4. Bernstein–Sato ideals

In this section we compare the OT method tothe BM method for the computation of
Bernstein–Sato ideals forp = 2. We present two examples inkan/sm1.

• Take{ f1 = x3 + y2, f2 = y3 + x2}, two transverse cuspids. The table of running
times in the computation ofBΣ is

Method Time for the step 1 (s) Time for the step 2 (s) Total (s)

OT 2.4 0.02 2.42
BM 0.03 0.07 0.1

Steps 1 and 2 are the successive eliminations in each method as explained in2.3.
The Bernstein–Sato idealBΣ is as follows:

BΣ = 〈s2 + 1, s1 + 1〉 ∩ 〈g〉,
where

g = (4s1 + 6s2 + 5)(6s1 + 4s2 + 5)(6s1 + 4s2 + 7)(4s1 + 6s2 + 7).

The calculation of the idealB in this case is rather hard. At the moment it seems to
be intractable with any method. It was first proposed inBahloul (2001).

• Take{ f1, f2} = {x2 + y2(1 + y), y3 + x2}.

Method Time for the step 1 (s) Time for the step 2 (s) Total (s)

OT 16.4 0.02 16.42
BM 1.78 0.06 1.84

In this case we have

BΣ = 〈s2 + 1, s1 + 1〉 ∩ 〈g〉,
where

g = (s1 + s2 + 1)(2s1 + 2s2 + 3)(4s1 + 6s2 + 5)(4s1 + 6s2 + 7).



4. Conclusions and challenges

We have tried to explain how the different number of variables required by the
Oaku–Takayama and Brianc¸on–Maisonobe methods, respectively 2n + 4p and 2n + 2p,
produce very different effects in the calculations of annihilators and, hence, of the
Bernstein–Sato ideals. As we have mentioned, in the non-commutative setting the role
of the number of variables has a more intense influence in the Buchberger algorithm.
A more complete explanation of the apparently much lower complexity of the BM method
is beyond the scope of this work.

From the point of view of the limits of the available methods and systems, the
calculation ofB for two cuspids remains open. We hope that an optimized implementation
of the BM method will solve this problem. Then, perhaps, the next step would be the
calculation of the Bernstein–Sato ideals fortwo transverse Reiffen curves and other
families of non-quasi-homogeneous plane curves.

A rich source of hard examples is the hyperplane arrangements. The calculation of
the corresponding annihilators is beyond the current limits of computation, already in
dimension four with, say, a dozen hyperplanes.
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Sabbah, C., 1987. Proximit´e évanescente II. Equations fonctionelles pour plusieurs fonctions

analytiques. Compositio Math.64, 213–241.
Takayama, N., 1991. Kan: a system for computation in algebraic analysis. Source code available for

Unix computers fromftp://ftp.math.kobe-u.ac.jp.
Walther, U., 2002. Bernstein–Sato polynomial versus cohomology of the Milnor fiber for generic

arrangements. Available fromarXiv:math.AG/0204080.

ftp://ftp.math.kobe-u.ac.jp
http://www.arxiv.org/archive/math.AG/0204080

	On the computation of Bernstein--Sato ideals
	Introduction
	Preliminaries
	Rn,p as a PBW algebra
	 AnnAn[s](Fs) and the Bernstein--Sato ideals from Rn,p
	The algorithm in Rn,p

	Examples and comparisons
	Some selected annihilators of fs
	Their b-functions
	Towards a mathematical explanation: a paradigmatic example
	Bernstein--Sato ideals

	Conclusions and challenges
	Acknowledgements
	References


