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On thecomputationof Bernstein—Sato ideals

J.M. Uchd, F.J. Castraliménez
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Abstract

In this papemwe comparetheapproachof Briangcon andMaisonobdor computingBernstein—Sato
ideals—basedn computationsin a Pancare—Birkhoff-Witt algebra—uwiththe readily available
methodof OakuandTakayamaWe showthatit candealwith interestingexampleghathaveproved
intractable sdar.
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1. Introduction

Let X = C" be the complex affine space of dimensionA, be the complex Weyl
algebra of orden and(fy, ..., fy) be polynomial functions oiX, that is fi € C[x] =
C[Xy, ..., Xn]. Let usconsider the algebrén[s;, ..., Sp] = An ®c C[st, ..., Sp] with
the trivial action of the elements @[s,, ..., sp]. We will write b(s), P(s) for elements
b(si,...,sp), P(st,...,Sp) in C[s] = C[sy,...,8p] and Ap[s] = An[si,...,Spl
respectively.

Let B be theBernstein-Sato ideal of (fy,..., fp) consisting of polynomial®(s) e
C[s] such that there exists a differential operat®rs) € An[s] satisfying

bs) f3 - f5? = P(s) £+ fPHt,

In a simlar way, other Bernstein—Satdeals can be defined, namely
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e Bj ={b(s) € C[s] | b(s)F® € An[s]fjFS}for j € {1,..., p}
o By ={b(s) € C[s] | b(s)F® € 3F_; Anls] f; FS)

where F$ denotesflsl fsp. If p = 1thenB = B1 = By and the monic generator
of the prindpal ideal B is called the Bernstein—Sato polynomial, or simply thfunction,
associated witlf1; seeBernstein(1972). Sabbah proved (s8ebbah 1987) in the aalytic
setting thatB is not zero, generalizing previous works Bernstein(1972) andBjork
(1979), both in the algebraic case and fo£ 1.

The explicit calculation of these ideals is of major interest: many conjectures about how
the importat properties of the casp = 1 appear in the general case remain open. For
example: when are the Bernstein—Sato ideals principal? Also, what can be said about their
primary decomposition? (In the cape= 1 the roots of the Bernstein—Sato polynomial are
rational numbers (Kashiwara976).) Sedvlaynadier(1997) for moredetals.

As far as weknow there are three ways of computing Bernstein—Sato ideals in the
algebraic case:

e The method due to Oaku and Takayama for calculafirig described in Procedure
2.2. of Oaku and Takayam@l 999). It needs the calculation of @mier bases in a
polynomial algebra over a Weyl algebra.

e The method proposed by Bahloul iBahloul (2001). It provides algorithms
for computing By, and Bj for j e {1,..., p} by adapting a previous work
of Oaku (seeOaku 1997). As it uses Gbner bases with respect to non-
well-ordered cases, the calculations are made inhttreogenized Weyl algebra
(CastreJiménez and Naméz-Macarrp1997).

e The method recently proposed by Brijancand Maisonobe inBrianpon and
Maisonobe(2002) that omputes the three types of Bernstein—Sato ideal. Their
approach is used to show the constructability of the Bernstein—Sato ideals with
respect to the space of parameters. Theuwtations are made in an intermediate
algebra that appears as a natural generalization of the one used by Malgrange and
Kashiwara in early works for the cage= 1 (see forexampleKashiwara 1976).

We will refer to the first method as the OT method and the third one as the BM method.

The aim of this paper is to compare the BM method as a computational (not just
theoretical) alternative tche Oaku—Takayama algorithm, checking for a selected family
of difficult examples in concrete implementations. As we will detail, both methods start
with the calculation of the annihilator ideal Agps;(F*3). We will provide experimental
eviderce for the former approach being a better alternative.

In many examples the bottleneck of the calculation is not the above-mentioned
annihilator but an elimination problem which occurs in a second step in both methods.
Anyway, a shortcut to the annihilator leads in practice to the possibility of finding some
of the Bernstein—Sato ideals (see the examplg.#. Moreover, we think that there are
interesting advantages of the BM methodnfrthe complgity point of view that are not
simply related to the number of variables. They need to be brought to light in future works
(see the gamgde in 3.3).



2. Preliminaries

In this section we will recall the general setting of the PBW algebras and explain how
the computation of the Bernstein—Sato ideals can be performed in this context.

2.1. R, pasaPBWalgebra
As in Briangon and Maisonobg2002), we will work in the non-commutative algebra

Rn,p = An[sls ceey Sp, tls ceey tp] = An[ss t]v

an extension of the Weyl algebris, where thenew variabless, t satisfy the relations
[S,tj1 = gijti. As we have mentioned it is, in fact, a ring analogous to the one introduced
by Malgrange and Kashiwara fgr= 1.

The elements oR,  can be represented as polynomials in a finite number of variables
due tothe following lemma:

Lemma2.1. Inthealgebra Ry, p the following formulas hold:

1. For the set of variables x1, ..., Xp and a4, . . ., 9 we have
B B .
Biﬁxia = Z ( k) aik(xia)f)iﬁi ;
k=0
for i € {1,...,n}, where 9j(a) stands for the partial derivative of a with
respect to x;.
2. For theset of variabless,, ..., spandty, ..., tp we have

AN .
q\tiM:Z(J)MJtiMSXJa

j=0
fori e{1,...,p}.

Proof. The property (1) is very well known as a special case ol thibnitz formula. The
proof of (2) is very easy—by induction taking into account the easier formula

st =t’s +ptP. O
Roughly speaking, you can choose a normal form for the elemen®,gf using
monomials with the, t variables tolie left and, s to the right, so the set
M =[xt ...Xgnafl ...3rf]3nti\1 ...tgpsll‘l ...s”;p = x*9Ptrat
| with (o, B, A, ) € N2"+2P)

forms a basis oR, p as a vector space over.
On the othehand, you can consider the total degreé&he sum of all of the exponents
for every variable) in the exponents of the monomialdétto ensure that

x¥aPtrat . x¥ gb M gt = ot gBHB AN gt Ly



whereM € R, p is a sum of monomials with exponents less than+ o', 8 + B/,
A+ A, u+ 1) with respect to<.

The last two properties—the existence ofCabasis and the good behaviour of the
product of monomials—are the conditions needed to defiriacaré-Birkhoff-Wtt
algebra. The work Kandri-Rody and Weispfennind.990) (see als@ueso et al.1998)
is agood introduction to the subject of effective calculus in this very general family of
rings which contains, for example, tliterated Ore extensions. In paticular it is proved
there that basicopics of computational commutative algebra such asb@et bases, the
Buchberger algorithm and elimination ordeem be developed in these PBW algebras.

2.2. Anna,(s(F®) and the Bernstein-Sato ideals from Ry,

Let us consider the lefA,-moduleM = C[Xx][s, %]FS where F is the product of
the fi. M has a natural structure of a lé®, ,-module wheres acts by multiplication and
the action oft;j is defired by

1
tia(x,s)FS = —a(x,s— €)s e FS,

wherea(x, s) is an element o€[x][s, %] ande; is theith element of the canonical basis
in NP,

Following Briangon and Maisonobe (2002), and like in Malgrange (1975), considering
the annihilating ideal of* in the ring R, is the main point. It is generated by the family

sj + fitj 8~+Za—f't i=1 nj=1
] IR RN | 8XI| — ey e e ey 7J_ 7"'7p .

So the annihilator of S in An[S] is Ananvp(Fs) N An[s]. Once you have the annihilator,
the Bernstein—Sato ided? can be calculated by eliminating the variabbgs d;, tj,
i.e. computing

B = ((Anng, ,(F®) N An[s]) + An[s](F)) N C[s]. (1)
Of course the formulas are analogousff andBj, j = 1,..., p:

By = ((Anng, ,(F®%) N Aq[s]) + An[sl(f1. ..., fp)) N Csl, (2)

Bj = ((Anng, ,(F®) N An[s]) + An[sl({ fj)) N C[s]. 3)

2.3. Thealgorithmin Ry p

We have in fact presented the following algbm in the preceding section. The order-
ings <t (respectively<g) denote any elinmation orderings that consider the variabtes
(respectivelys) greater than the others.

INPUT: fy,..., fp € C[x].

OUTPUT: The idealsB, By andBj for j =1,..., p.

(Step 1)l := Anng, ,(F®) = (sj + fjtj, 3 + > %tl, l<i<nl<j<np.
Conpute a Gobner basig; of | with respect to<;.
J:=1nNAss] = (G N Anls]).



(Step 2)K :=J 4 (fy--- fp),
Kyg:=J+(f1,..., fp),
Ki=J+(fj)forj=1,...,p.
Compute Gobner base§k , Gs, G1, ..., Gp of K, Kg, Ky, ..., Kp
with respect to<s.

(Step 3)B = K N C[s] = (Gk N C[s]),
By = Ky NC[s] = (gz NC[s]),
Bj =KjNnC[s]=(GjNnCIsl)forj=1,...,p.
SeeBrianmn and Maisonobg2002) to ckeck the correctness of the algorithm. To
finish this section, we recall how the comatibn of step 1 of the algorithm presented

above is carried out in the Oaku-Takayama method. It needs the Weyl al§gbra=
Clty, ..., tp, dtys - -+ Otps X2y -+ o5 Xn, 1, ..., Onl:

1. Compute

of; ) .
<tj - fj,a—xji&tj +0,i=1,...,n,] =1,...,p> ﬂ Cltady, ..., tpor,]
X<XsaX>s

as explained in Procedure 4.1.@&ku and Takayam@999). This émination uses
2n + 4p variables because it is made My n[uy, ..., Up, v1,...,vpl. Theideal
considered is the one generated by

tj —uj fj,
P af|

o + — U 3y, i=1...,n,
=1 0%

1—ujvj, j=1...,p.

To obtain the required intersection, eliminate the variables of type
2. Replace eact)o; by —sj —1,forj =1,..., p, in thegenerators obtained.

3. Examples and comparisons

We pregnt in this section examples of annihilators ©f and b-functions that have
proved intractable so far (heqe = 1). We also include a comparison of running times
between OT and BM methods computing Bernstein—Sato ideals for two functions.

We have used three different implementations to check how good the computations are
in Rn,p compared to the alternative homogenized Wey! algebra:

e The softwarekan/sml. It is taken into account that the rir@s, t) is isomophic to
the ring of difference operators

C(n, Exh), E;ln=mn-1E;*?
by the correspondende= E; 1, s = n. E; ! acts on a space of functions nfvia

E e f(n) = f(n—1). The sstemkan/sm1 (Takayama 1991) proviles some tools
for this family of rings.



e The packag®lural (Levandovskyy2002), designed by Levandovskyy as a part of
the celebratedsingular (Greuel et al. 2001). It provides an excellent setting for
non-commutative calculation of Gbher bases.

e Atailored implementation in CLISP desigdéy the autors to compare CPU times
of many examples in a not very ambitious environment. The first evidence that we
found of the BM method being better was thessibility forour humble system to
compute examples intractable to the more powerful programs using the algorithms
of Oaku and Takayama.

3.1. Some selected annihilators of fS

All the examples in this section have been treated using our CLISP prototype. It is not
optimized, so the timing data must be taken into account only in order to compare the
different methods.

The following table contains five interesting examples with some details of the
computation of Anp,(fS), for a polynomial f—namely: CPUtime, nunber of
elements (N.E.) in the reduced @ier basis (before the truncation of the elimination, of
course), maximum number of monomials (N.Nh}he dements of the basis and maximum
total degree (T.D.) of the elements of the basis.

Remark. In all these examples, the ordering used is the following one: to compare two
exponents first look at the exponent of the variablén order to do tle dimination).
Second, look at the exponent of the variabldo break ties, finally use a reverse graded
lexicographical ordering witlx > 9y >t > s.

f CPU time N.E N.M. T.D.

Q) BV () OT BM OT  BM™ OT BM
x84yt 423 1.21 0.17 15 6 5 4 6 7
B+ yH(x2 +y3) 101.66 9.56 26 15 48 39 13 7
Xyz(x + y)(X + 2) 13248.8  7565.22 76 26 118 150 12 10
X' +y7 +x4y* 131.22 19.1 27 15 63 43 16 10
X7 +y7 + 27 + x2y272 55145  2995.75 46 63 165 139 14 13

The computations of the Bernstein—Sato polynomial for the last two examples have
been treated iBrianpn et al.(1989) ly a different method. Here we give generators
of Anna, (%) for two examples from the table. Trelculations are rather far from
being trivial: the powerful systerkan/sm1 cannot manage their calculation using the OT
method. The annihilators, however, look harmless:

e The non-generic arrangemeot hyperplanes (taken froralther, 2002) (f =
Xyz(X 4+ y)(x +2z) = 0) c C3:

Annag(s)(F5) = (=58 + Xy + Ydy + 287, X%dx + 2XZdx + Xydy + 2yzdy
— 4X20; — 3228, —2Xydx + 2X20x + Bxydy + 3y>dy
+ 2yzdy — 5xzd; — 2yzd; — 32%0;, —Ay>zdydy
— 2xZ%0xdy — 3xy?97 — 3y30] — Bxyzd] — y°zd]



— 2y7°07 + 2x2%0x 0, + 4yZ*0xd; + 5Xyzdyd; + 8y*zdyd;
+ 5xZ%0yd; — yZ20y0,32°0y 0, — 2xZ%02 — AyZ%02 + Axzdx
— 2xydy — By2dy — 5xzdy — Byzdy — 2729y — 3xzd;
+ 2%, —x2y8y - xy28y — 2Xyzdy — 2y223y + x%zd,
+ 2XyZ0; + X720, + 2y7%0,).
e The semi-quasi-homogeneous cutfe= x’ + y’ + x*y* = 0) c C%

Anna, s (%) = (12xy3s — 17y25 — Ix2y3y, — Lxy4y, — 3x%,
+ Zlxy?ox + Zy3ay, 12y%s + 21x3s — Ixy*ax — L2yPay
— 3%y — 3x%ydy — Bx*s — Dy3s+ 3x°0, + x%ydy
+gxy3ox + 4y — PxCys + TPx%s + §xtyix
+X3y20y + Hy*ox — 29x30x — $9x%ydy, To8xys? — 488
— D2x2ydys — L2xy2dys + Pxaxs + Lyays — Bs
+ Y07 + F200XPY20xdy + 2eXy30] + 22 xPYox

48,292 | 576

— 29X20% + 2RXY?0y — Fexydxdy — F9yd5, 4x*y>ox
— ax3y*y 4 7yPax — 7x%).
3.2. Their b-functions

The timing information in this section is taken from a Pentium Ill, 1 GHz.

As far as we know, none of the available implementations of Oaku’s algorithm can
manage the following two xamples.However, theirb-functions can be obtained in
kan/sm1 using the PBW algebrR, , and the BM algorithm.

Equation b-function Running time (s)
Xyz(x + y)(X + 2) (55 + 4)(5s + 3)(3s + 4) (55 + 7) (55 + 6)(3s + 2)(s + 1)3 13
X7+ y7 4+ x4y? (7s + 10)(75+ 9)(7s + 8)(Ts + 4 (7s + 6)(7s + 2)(7s + 5) 504

(7s+ 3)(s + 1)2

3.3. Towards a mathematical explanation: a paradigmatic example

There is a whole family of examples that does not appear in the table of the last section:
the curve$ x2 + yP + xy?~1 with b > a + 1 > 5: theReiffen family (Reiffen 1972).
These examples defeated our prototype with the Oaku—Takayama method but were easily
managed by the Brigmo—Maisonobe method. In the case= 4,b = 5, for example,
the g/stem took 139.51 s of CPU time for a basis with ten elements; maximum number of
monomials= 107.

1 And surfaces obtained from constructions over the curves.



The annihilators corresponding to these curves have been widely studied with the use
of Plural. The resits are summarized in the next table for the chse 5, a = 4:

f CPU time N.E N.M. TD.
oT BM OT _ BM oT BM OT  BM
x*+yS4+xy*  94min  <ls 33 9 1240 71 15 10

The calculations in the first case have been done with respect to a typical elimination
ordering: first give weight 1 to the variables v and to break ties use degree reverse
lexicographical ordering. In the second case the ordering for BM was simply a
lexicographical ordering witls, t greater than the others.

The explanation of the enormous difference between the two methods in this example
is not as easy as considteg the number of variables, 8 and 6 respectively. More precisely:

e The bounds of Grigoriev (se€rigoriev, 1991) for thecalculations in the Weyl
algebra are applicable tB, p but nether of the two calculations is a worst case
(double exponential) in the sense of total degree, the usual measurement of the
complexity for Gobner bases. Of course for the general case (more than one
function) the difference betweem2- 2p and 21 + 4p becomes significant.

e Nevertheless, theumber of variables is important from the point of view of
the number of monomials. In this non-commutative setting the ingredients of
the Budberger algorithm-S-polynomials and reductions—produce many more
monomials than in the commutative case. As the number of possible monomials
of total degree< d in n variables is

(")

the comparison of the two methods relies on the ratio

2n+2p+d 2n+4p+d
d d '

If you reach, say, total degree 15, you could have elements of about

(%)

monomials in the algebra of Oaku and Takayama, but

(")

in R2.1. And you have to consider the total degrees not only in the final result but
also in the intermediate calculations! This consideration influences the duration of
thecalculation as well as the total amount of memory used.

e Another important factor is the growth of the coefficients of the monomials. This is
a very well known problem in the commutative setting but is a more difficult matter
in the Weyl algebra or irR, p, because of the binomial coefficients appearing in



the Leibnitz rule that is repeatedly applied. Coefficients of more than 30 digits are
obtained in the example that we are studying in the case of the Oaku—Takayama
method. A lot of computation becomes much slower due to these coefficients.

Remark. The ordering selected seems to be the best option for each case. It is a little
surprising that the fastest option in the commutative case, elimination orderings like those
used in the OT method, defeated the calculations for the BM method.

Remark. The annihilator of(x2 + yP + xy?~1)S defeatskan/sm1 andPlural for b >
a+ 1> 12. It seems that this is a really hard example!

3.4. Bernstein—Sato ideals

In this section we compare the OT methodtih@ BM mehod for the computation of
Bernstein—Sa ideals forp = 2. We present two examplesk@an/sm1.

e Take{f; = x3 + y2, f, = y3 + x?}, two transverse cuspids. The table of running
times in the computation df 5; is

Method Time for the step 1 (s) Time for the step 2 (s) Total (s)
oT 24 0.2 242
BM 0.03 0.07 0.1

Steps 1 and 2 are the successive elations in each method as explaine@i.
The Bernstein—Sato ideBly; is as follows:

By =(s+1s+1)N{g),
where
g = (45, + 65 + 5)(6s1 + 45 + 5) (651 + 45 + 7)(4s1 + 652 + 7).

The calculation of the ided in this case is rather hard. At the moment it seems to
be intractable with any method. It was first propose8ahnioul (2001).

o Take{f1, f2} = (X2 + y2(1+y). y3 + x?}.

Method Time for the step 1 (s) Time for the step 2 (s) Total (s)
oT 16.4 0.02 16.42
BM 1.78 0.06 1.84

In this case we have
By =(s+1s+1)N{g),
where

g=(s1+ S+ 1281+ 25 + 3)(4s1 + 652 + 5)(4s1 + 652 + 7).



4. Conclusions and challenges

We have tred to explain how the diffeent number of variables required by the
Od&u-Takayama and Brigpno—Maisonobe methods, respectively-2 4p and 2 + 2p,
produce very different effects in the calculations of annihilators and, hence, of the
Bernstein—Sato ideals. As we have mentidnan the non-commutative setting the role
of the number of variables has a more intense influence in the Buchberger algorithm.
A more mmplete explanation of the apparently much lower complexity of the BM method
is beyond the scope of this work.

From the point of view of the limits of the available methods and systems, the
calculation of3 for two cuspids remains open. We hope that an optimized implementation
of the BM method will solve this problem. Then, perhaps, the next step would be the
calculation of the Bernstein—Sato ideals fwvo transverse Reiffen curves and other
families of non-quasi-homogeneous plane curves.

A rich source of hard examples is the hyperplane arrangements. The calculation of
the corresponding annihilators is beyond the current limits of computation, already in
dimension four with, say, a dozen hyperplanes.
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