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Abstract. Reinforced concrete (RC) framed and dual wall-frame structures represent an important 

fraction of the building stock in some European cities. Many of these were constructed without seismic 

provisions. Therefore, it is important to assess their ability to withstand seismic events and to define 

strategies to reduce their potential vulnerability. This work focuses on the numerical simulation of the 

seismic behaviour of RC walls making use of fibre-based nonlinear beam-column elements. Even 

though it is common to assume a perfect bond between the reinforcing bars and concrete, the relative 

bond-slip deformations between the two materials can contribute up to 40% of the total lateral 

deformation of columns when ribbed rebars are used and up to 90% when in the presence of smooth 

rebars. This paper intends to be a contribution to understand the importance of these effects in old RC 

walls, namely through the consideration of both ribbed and smooth rebars with different anchorage 

lengths and provide indications regarding the use of a simplified bond-slip model.  

1 INTRODUCTION 

An important number of RC framed and dual wall-frame RC structures in southern Europe, 

including Portugal, were constructed between 1960's and 1980’s, before the introduction of 

modern seismic codes. Considering their potential seismic vulnerability, it seems important to 

evaluate the validity of different numerical models that can be used to assess the seismic 

performance of these RC walls, in particular the ones featuring smooth rebars.  

Beam-column types of elements are widely used to simulate the nonlinear response of 

structures. The application of such finite element formulation has proved to be adequate for 

framed structures, combining the accuracy in the estimation of global response parameters 

with an appreciable computational efficiency. However, whilst slender framed elements tend 

to exhibit a response dominated by their flexural component, the response of wall structures 

combines other deformation mechanisms, such as shear deformations, that are difficult to be 

explicitly modelled with beam-column elements. In addition, limited investigation has been 

carried out so far to assess the contribution of strain penetration (SP) effects at the anchorage 

region of RC walls.  

Hence, this work is focused on the numerical simulation of RC walls, with particular focus 

on the importance of SP effects to the seismic behaviour of these elements. These effects 

cause fixed-end rotations at wall-foundation interface, which can represent an important 

contribution to the total lateral deformation of the member. Previous studies on RC columns, 

e.g. [1] and [2], indicate that SP deformations can contribute up to 40% of the total lateral 

deformation of columns when ribbed rebars are used. On the other hand, experimental tests 

conducted on both RC columns [3] and beam-column joints [4] with smooth rebars reveal that 

this mechanism may contribute to nearly 90% of the overall member deformation at failure. 
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These results show that these phenomena can be particularly relevant in older RC members, 

which are often characterized by inadequate detailing, insufficient anchorage lengths or the 

presence of smooth rebars.  

This study starts with a brief review of the literature in what regards the use of distributed 

plasticity models, namely regarding the importance of shear deformations and SP effects. The 

consideration of different element formulations of distributed plasticity models is then 

analysed comparing the respective numerical response against the experimental results of a 

slender RC wall tested in the past by Dazio et al. [5]. Subsequently, these numerical models 

are used to explore the consideration of different anchorage conditions such as rebar surface 

(ribbed or smooth) and different embedment lengths. Ultimately, this paper provides practical 

recommendations and simplified solutions to model the nonlinear response of RC walls, 

which can be used in engineering practice to model the seismic response of existing RC 

buildings. 

2 MODELLING ISSUES ASSOCIATED WITH THE NUMERICAL SIMULATION 

OF RC WALLS 

2.1 Element formulation 

Contrarily to slender columns, whose behaviour is essentially governed by flexural 

mechanisms, the seismic response of RC walls is more complex and their failure mode can be 

expressed through flexural, diagonal tension, diagonal compression or sliding shear failure 

[6]. Quasi-static cyclic tests on slender RC walls from Dazio et al. [5] showed that the shear to 

flexural deformation varies between 5 and 13%. Moreover, for increasing displacement 

demand, shear to flexure deformation ratio tends to remain approximately constant if the 

shear capacity of the walls does not significantly degrade [7]. 

The structural behaviour of RC walls depends largely on their geometric characteristics, 

namely the shear span-to-depth ratio. In general, for ratios larger than 3, RC walls are 

classified as slender walls, and are essentially controlled by flexural behaviour. In this case 

the impact of shear deformation on global engineering demand parameters, like member 

forces and inter-storey drift displacements, will be typically small and can possibly be 

neglected. For smaller shear span ratios, walls are considered as squat and shear deformations 

are expected to play an increasing role in the member response [8].  

The above discussion is particularly relevant when selecting the numerical tool to model 

these RC walls. The employment of lumped and distributed plasticity elements offer an 

accurate and efficient solution to model the nonlinear behaviour of slender RC elements. 

However, considering their limitations to account for shear deformations, their application to 

walls should deserve additional attention. On the other hand, advanced modelling approaches, 

such as solid or shell elements, are capable to account directly for the interaction between 

axial force, flexure and shear, but are computationally demanding and not used in common 

engineering practice. For the sake of knowledge, a state of art-review of different macro-

modelling approach for RC walls was presented by Wu et al. [10], addressing important 

modelling issues, including the interaction between flexure and shear. 

In this framework it is worth to refer a study developed by Almeida et al. [11], regarding 

the identification of the most suited approach for modelling the inelastic behaviour of RC 

walls. In this study, shell element models were used as benchmark to assess the extent to 

which pure flexural models, such as beam elements, can capture the response of elements that 

have non-negligible shear deformations. The outcome of this work shows that, for slender 

walls, where a predominant flexural response is expected, the computation of global 
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quantities, such as stiffness up to peak and force is moderately sensitive to the different 

modelling approaches. 

Considering the above limitations, and before addressing the simulation of SP effects, the 

numerical response of the RC wall was firstly validated through a comparison of the 

numerical response, featuring different formulation and discretization schemes, against the 

experimental response of an RC wall subjected to experimental tests in the past. This 

preliminary study is described in more detail in Section 3.2. 

2.2 Strain Penetration effects 

RC members subjected to seismic loading can show localized deformation occurring 

between the reinforcement and the concrete of adjacent members. The transfer mechanism of 

rebar forces to the surrounding concrete occurs due to chemical adhesion between steel and 

concrete, frictional forces at the interface between both materials and bearing force of the ribs 

against the concrete [12]. These phenomena are generally referred to as SP or bond-slip 

effects and lead to the development of an additional rotation at the extremity of the members, 

when these are subjected to lateral loads. 

This fixed-end rotation results from the spread of the rebars strains through the anchorage 

region, which causes strain incompatibility between the reinforcement and the surrounding 

concrete. To limit these deformations, it is necessary to provide a sufficiently long 

embedment length (Le) allowing the transfer of the axial load at the rebar to the surrounding 

concrete through the contact surface. Whenever the embedment length is insufficient, the 

rebar experiences an important increase of slip, leading to a large increase of the element’s 

base rotation or even failure of the anchorage system (Figure 1). 
 

 
Figure 1: Behaviour of anchorage region with adequate (left) and limited (right) embedment length 

(adapted from [20]). 
 

Generally, the numerical simulation of RC structures assumes a perfect bond between the 

two materials. However, for increasing loads demand, breaking of the bond occurs and bond-

slip between reinforcing steel and surrounding concrete takes place. Even though relatively 

large anchorage lengths are provided, avoiding the failure of the anchorage system, these 

deformations can represent an important contribution to the global deformations of the 

members (e.g., [13], [14], [1] and [2]). In older RC structures, with inadequate anchorage 

detailing and/or smooth rebars, with much reduced bond strength, these effects become more 

relevant, as noted by Verderame et al. [3] and Melo et al. [4]. 

Despite the recognized contribution of SP effects to the overall member’s deformations, 

the numerical models available to simulate these nonlinear effects are still very limited. 

Although these effects can be explicitly simulated in finite element software featuring highly 

discretized solid elements capable of describing the anchorage region (e.g., [15], [16], [17], 

[18] and [19]), conventional beam elements formulation does not allow modelling the 

interface between the reinforcement and the surrounding concrete. To overcome these 

limitations, several studies have been conducted in the recent years to develop models 

compatible with beam elements formulation capable of accounting for the bond-slip effects 
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(e.g., [1], [20], [21] and [22]). Despite the number of studies developed, only a few have been 

incorporated in commercial software packages used by practitioners. The interested reader 

can find a description of some of these models in [12]. 

Considering the previous limitations, engineering practitioners often resort to simplified 

modelling approaches such as the elongation of the structural element by the strain 

penetration length or the definition of linear rotational springs at the extremities of the 

elements. Despite the improvements in the computed response, the former approaches present 

important limitations, namely the change in the elastic properties of the structure or the 

underestimation of the shear forces developed at the element [23].  

An alternative, and simpler approach, involves the modification of the reinforcing steel 

constitutive law. According to [24], it is possible to take into account the bond-slip effect 

through a correction factor ( ) that modifies the reinforcement constitutive law. This slippage 

factor represents the ratio between concrete and steel strain (Equation 1), and expresses the 

correction of the average steel strain in a RC finite element [24]. According to this proposal, 

the steel constitutive law is assumed to be bilinear with an elastic perfectly-plastic behaviour, 

as represented in Figure 2. In turn, Equation 2 to 4 express, respectively, the modifications in 

the strain, stress and modulus of elasticity of the steel, to account for the bond-slip effect ([24] 

and [25]). 
 

 
Figure 2: Correction of the steel reinforcing law (adapted from [24]). 

 
At the current state-of-the-art, these models lack clear application guidance. Furthermore, 

they require additional calibration with the aim of adjusting the different parameters to 

alternative element typology and anchorage conditions, such as the presence of smooth rebars 

or insufficient anchorage length. As an attempt to contribute to minimize these limitations, the 

following section presents a case study where the response of one RC wall, submitted to 

experimental cyclic tests, is numerically simulated considering different anchorage 

conditions. The outcome of these analyses provides indicative parameters to modify the 

reinforcing steel constitutive law in order to take into account the bond-slip effects under 

different loading conditions. 
 

   
  

  
 (1) 

 

     
                                                   

 

 
     (2, 3, 4) 

3 CASE STUDY 

3.1 Description of the experimental test 

In the current study, the wall specimen WSH4 analysed by Dazio et al. [5] was numerically 

modelled and subjected to pushover analysis. The characteristics of the RC wall specimen are 
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representative of constructions without seismic detailing, with total reinforcement ratio 

typically smaller than 1%, a relatively low axial load ratio (N/Agfc) and limited ductility 

properties of the longitudinal reinforcement. In addition, the wall has no confining or 

stabilising reinforcement, i.e. it was not specifically designed for ductile behaviour. The test 

unit is 2.00 m long and 0.15 m wide. The length of the shear span is 4.56 m for a shear span 

ratio of 2.28 m. The details of the reinforcement (ribbed rebars) are shown in Figure 3, whilst 

Table 1 and Table 2 summarize the information regarding the axial force, reinforcement ratios 

and material properties. A detailed description of the test can be found in [5]. 
 

 
Figure 3: Reinforcement layout in the plastic zone of the wall WSH4. All dimensions in mm. (Adapted 

from Dazio et al., 2008). 
 

Table 1: Summary of test unit WSH4 properties. 

Sectional forces at the base Reinforcement rations 

N (kN) N/Agfc (-) ρbound (%) ρweb (%) ρtot (%) ρh (%) 

695 0.057 1.54 0.54 0.82 0.25 

ρbound - boundary reinforcement; ρweb - web reinforcement; ρtot - total reinforcement ratio; ρh - horizontal 
reinforcement 

 
Table 2: Summary of test unit WSH4 material properties. 

Material properties 

 fc (MPa) εc (‰) Ec (GPa)   

Concrete -40.9 -2 38.5   

      

 fy (MPa) fu (MPa) εsy (‰) εsu (‰) Es (GPa) 

Steel Φ 12 mm 576 674.9 2.74 75 210.3 

Steel Φ 8 mm 583.7 714.4 2.66 75 219.5 

Concrete: fc – maximum strength; εc – strain at maximum strength; Ec - modulus of elasticity 
Steel: fy - yield strength; fu - ultimate strength; εsy, - yield strain; εsu – ultimate strain; Es - modulus of elasticity 

 

3.2 Numerical modelling options 

Before addressing the numerical simulation of strain penetration effects, it is fundamental 

to guarantee that the behaviour of the wall, i.e., the response of the element above the 

anchorage region, can be accurately represented with the consideration of beam elements with 

distributed plasticity. In this section, three distinct modelling options to simulate the 

behaviour of the cantilever wall are presented. They differ with regard to the beam element 

formulation and mesh discretization.  

Fibre-based non-linear beam elements idealize a section into a number of discrete fibres to 

which a uniaxial material constitutive relation is assigned. These fibre sections are defined 

along the different elements through a finite number of integration points (IPs) allowing to 

describe the spread of inelasticity along the element. The definition of the different response 

parameters at the different IPs can be accomplished following a force-based (FB) or 

displacement-based (DB) formulation, which verifies the equilibrium in an exact and 
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averaged way, respectively. In this regard, and contrarily to the FB case, where a single 

element with a certain number of IPs can be used to compute the element response (through 

Gauss-Lobatto integration scheme), in the DB case, the RC member need to be discretized in 

several elements. In this latter case, two IPs per element are sufficient to determine the 

element response (through Gauss-Legendre integration scheme). 

In the present study, the RC wall was modelled in the OpenSees platform [26] considering 

3 different formulation/discretization schemes, namely 2 FB models and 1 DB model. 

Although for the FB formulation 5 IPs are generally sufficient [27], it has been shown that the 

post-peak element response is highly dependent on the number of IPs [11]; therefore an 

additional scheme with 9 IPs was also considered. Regarding the DB model, the wall was 

modelled with 4 elements, each one with two Gauss-Legendre IPs. 

For all the cases described above, the section of the wall was discretized in 200 fibres, 

which corresponds to 1 fibre for each centimetre, for both cover and core. Moreover, the 

reinforcing steel was modelled using the uniaxial material ‘Steel02’ based on the Giuffre-

Menegotto-Pinto constitutive model [28]. On the other hand, the cover and core concrete were 

modelled using the uniaxial material ‘Concrete 04’, which is based on the model proposed by 

Popovics [29]. The mechanical properties of the confined concrete were determined according 

to Mander et al. [30], with a geometrical effectiveness coefficient of confinement Ce = 0.5 

[11]. 

A comparison of the shear force-top displacement curves presented in Figure 4 shows a 

good agreement between the numerical and experimental results. Up to peak strength, the 

numerical predictions are very similar and are in line with the experimental results. 

Nonetheless, the model using FB elements appears to provide a better estimation of the peak 

strength than the model employing DB elements, which shows an overestimation of the 

maximum lateral resisting force. After the peak strength, the predictions with the different 

modelling approaches diverge due to a numerical pathology named localization, wherein 

curvatures concentrate at the most stressed sections of the elements [31]. 

Overall, and despite the potential limitations in the use of beam elements to model RC 

walls, highlighted in section 2.1, the results obtained indicate that the application of these 

models appear to produce reliable and acceptably accurate predictions of the behaviour of the 

RC wall. Based on the results obtained, the investigation of the importance of SP effects in 

old RC walls presented in the following section is conducted considering the numerical model 

featuring one force-based element with 5 IPs. 

 

 

Figure 4: Shear force-top displacement for the RC wall specimen WSH4, considering both FB and DB 
formulation. 
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4 NUMERICAL RESULTS 

This section presents the results of the numerical analysis conducted to evaluate the SP 

effect in the seismic behaviour of RC walls considering ribbed and smooth rebars with 

different embedment lengths. Based on the results obtained, it was possible to establish 

reference parameters that can be used to adjust the properties of the reinforcement constitutive 

models in order to implicitly reflect the SP effects in the anchorage region of RC walls. 

4.1 SP effects for different anchorage conditions 

Current software packages featuring beam elements, including the one used in this study, 

provide limited solutions to simulate SP effects, especially under specific conditions such as 

smooth rebars and limited anchorage length. Hence, these effects were firstly determined with 

the explicit bond-slip model proposed by Sousa et al. [22]. In addition to the geometric and 

mechanic properties of the anchorage region of the elements, this model explicitly simulates 

other important effects such as the cyclic degradation and rebar yielding of the embedded 

rebars. This element replicates the member-end section and simulates the embedded region 

with virtual integration points distributed along the embedment length with independent 

bond-slip constitutive relations based on the model proposed in Model Code 2010 [32]. 

Once the moment-rotation relation associated with the bond-slip effects at the base of the 

RC wall is determined, a monotonic (tri-linear) law was adjusted to the computed cyclic 

response in order to calibrate the nonlinear rotational springs to be assigned at the base of the 

RC wall element modelled in OpenSees (Figure 5). The numerical simulation of the wall 

specimen WSH4 was conducted considering moment-rotation relationships that describe the 

bond-slip effects at the base of the wall for the following anchorage conditions: 

1. Case 1 - Ribbed rebars with embedment length of 1.5 m; 

2. Case 2 - Smooth rebars with embedment length of 1.5 m; 

3. Case 3 - Smooth rebars with embedment length of 1.0 m; 

4. Case 4 - Smooth rebars with embedment length of 0.5 m. 

 

 
  

a) b) 

Figure 5: Moment-rotation relation for ribbed (a) and smooth rebars with different embedment length 
(b) for the RC wall specimen WSH4. 
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It should be mentioned that, for the case of ribbed rebars, the effect of bond stress 

reduction due to cyclic degradation was included, while this effect was neglected for the case 

of smooth rebars. Considering the absence of ribs in the rebars, it is expected that most of the 

bond force results from adhesion and friction between the reinforcement and the surrounding 

concrete. Consequently, it is not expected that the anchorage system exhibits meaningful bond 

degradation due to cyclic loading [12]. 

The results presented in the previous figure show that, for the case of smooth rebars, the 

anchorage system can only withstand a fraction of the maximum bending moment developed 

for the case with ribbed rebars. Given the absence of ribs, the bond stress is significantly 

lower and the rebars cannot sustain large anchorage forces. The decrease in anchorage 

strength becomes more pronounced as the embedment length is reduced. If this length 

becomes too short, the bond forces developed along the embedment length become 

insufficient to sustain the yielding force of the rebar and, consequently, the moment capacity 

of the wall can be considerably reduced. The combination of smooth rebars with 0.5 m of 

embedment length (Figure 5, b) led to a reduction on the bending moment capacity of about 

half the one sustained with adequate bond conditions, i.e., ribbed rebars with an embedment 

length of 1.5 m (Figure 5, a). 

Once the cyclic response of the anchorage system is determined for the four different 

anchorage conditions considered, simplified tri-linear moment-rotation relationships were 

adjusted to the numerical results (Figure 5). As noted before, these relations are to be assigned 

to zero-length elements that, in turn, will be defined at the base of the wall element. These 

new models, defined in OpenSees, were submitted to nonlinear static (pushover) analysis in 

order to evaluate the changes in the global behaviour resulting from the consideration of the 

SP effects with different anchorage conditions. The results obtained, expressed in terms of 

base shear-top displacement, are presented in Figure 6. 

The results presented in the following figure show that the consideration of the SP leads to 

an increase of the overall flexibility of the walls. This effect can be noted in a softer capacity 

curve of the models with SP effects with respect to the one with fixed base conditions. 

Furthermore, in the models featuring smooth rebars with reduced embedment length (i.e., 

Le=1.0 m and Le=0.5 m), the RC wall present also a reduction in the shear strength, as the 

embedment length of the rebars decreases. 
 

  

a) b) 

Figure 6: Shear force-top displacement relation for ribbed (a) and smooth rebars with different 
embedment length (b) for the RC wall specimen WSH4. 
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    With respect to the previous figure, it should be noted that, despite the strength of the 

anchorage system with smooth rebars and Le=1.5 m is lower than the one with ribbed rebars 

with the same anchorage length (see Figure 5), its strength is still sufficiently large to sustain 

the maximum lateral strength that the wall can develop. For this reason, the maximum shear 

force in the wall is very similar for both cases.  

4.2 Calibration of reinforcement properties to account for SP effects 

The results presented in the previous section demonstrate the importance of incorporating 

the SP effects in seismic analyses, particularly for structures with smooth rebars. Considering 

the limitations in the numerical models available to simulate these effects, this section 

presents the results of a calibration procedure carried out to establish reference reduction 

values for the Young’s Modulus and the maximum stress of the reinforcing steel.  

In order to estimate the reduction of the rebar’s capacity, a constant averaged bond stress is 

considered along the total anchorage length. Taking in consideration the geometrical 

characteristic of the rebars (the area As and the perimeter P) and the maximum constant 

averaged bond stress τmax, it is possible to evaluate the maximum steel strength fs developed 

for different embedment lengths, through equilibrium considerations between the force in the 

rebar Fy,max and the anchorage force Fa: 
 
                                         τ    (5, 6) 

 
The value of τmax considered follows the one adopted in the Model Code 2010 (fib, 2011), 

for the case of smooth rebars:  
 

 τ            (7) 

 
where fcm is the mean value of the concrete compressive strength in MPa. 

The application of this procedure leads to reductions of Fy,max that ranged from 0 to 60% of 

the expected rebar strength. These values are summarized in Table 3, together with the values 

of the reduction of the Young Modulus obtained for all cases. 

Applying a rotational spring at the anchorage region of the RC walls conducted to a 

reduction on the Young Modulus of the steel material of the rebars of approximately 20% for 

ribbed rebars and 40% for smooth rebars. 
 
Table 3: Summary of the percentage reduction for the Young modulus (E) and the maximum strength 

(Fy,max) of the reinforcing steel. 

Ribbed rebars  Smooth rebars  

 Reduction 

of E (%) 

 Reduction 

of E (%) 

Reduction 

of Fy,max (%) 

Le = 1.5m 20 Le = 1.5m 40 - 

  Le = 1.0m 40 30 

  Le = 0.5m 40 60 

 

The appropriateness of these values was determined through the comparison of the 

correspondent numerical response against benchmark numerical outcomes obtained with the 

model in [22], as illustrated in Figure 7. The results show that the response of the model with 

the calibrated parameters is in line with the one obtained considering a rotational spring with a 

tri-linear relation. Nonetheless, the responses in the post-peak branch present some important 

differences. This is essentially because the model with the tri-linear rotational spring accounts 
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for the SP deformations throughout the entire response of the wall, i.e., both at the linear and 

nonlinear regime, whilst the reduction in the Young Modulus increases the wall flexibility 

only up to yielding of the rebars. This effect can be appraised in the larger lateral 

displacement of the wall when the strength decreases abruptly (Figure 7, a). In the presence of 

smooth rebars (Figure 7, b), the anchorage system becomes even more flexible, reducing the 

loading demand in the wall for the same level of lateral top displacement, precluding the wall 

to reach its maximum lateral strength. In these cases, the wall will eventually fail due to 

failure of the anchorage system. 

 

 
 

a) b) 

Figure 7: Comparison of the shear force-top displacement relation for ribbed (a) and smooth rebars 
with different embedment length (b), considering the model with reinforcement parameters calibrated 

and the one considering a rotational spring with a tri-linear relation. 
 

5 CONCLUSION 

This work presents a numerical study addressing the behaviour of slender RC walls, in 

particular, the importance of strain penetration effects in the seismic behaviour of these 

elements. For this purpose, a slender RC wall experimentally tested in the past was used as 

benchmark for which different anchorage conditions were considered.  

The quantification of the SP effects was firstly determined with an explicit bond-slip 

model capable of accounting for different properties of the anchorage region. Once the 

moment-rotation relationships were determined for different rebar properties (ribbed and 

smooth) and anchorage lengths, these relations were incorporated through zero-length 

elements at the base of the model of the wall.  

The results of the pushover analyses carried out showed that the consideration of the SP 

effects introduces a non-negligible flexibility at the base of the wall that becomes more 

relevant as the anchorage conditions deteriorate, namely with the consideration of smooth 

rebars and reduced anchorage lengths. Moreover, when in presence of reduced embedment 

lengths, the lateral strength of the wall can be significantly compromised due to failure of the 

anchorage system. 

Despite being limited to a single wall specimen, the results allowed to define indicative 

values that can be used to reduce the Young Modulus and the maximum strength of the rebars 

in order to implicitly account for such effects in numerical analyses in a very expedite 
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manner. Hence, it was observed that, for ribbed rebars with appropriate embedment length, 

the reduction in the Young Modulus should be in the order of 20%, whilst in the presence of 

smooth rebars, this value should increase to values in the order of 40%, regardless of the 

embedment length. In what regards the rebars strength, this value is naturally dependent on 

the embedment length, and may need to be reduced to values in the order of 60% of its 

expected value. Appropriate general expressions to estimate this parameter for different 

anchorage lengths were presented in this paper. In the future, the authors intend to extend the 

present study to a larger number of RC walls with different properties in order to establish 

more general reference values for its parameters. 

REFERENCES 

[1] Sezen H. and Moehle J., “Strength and Deformation Capacity of Reinforced Concrete Columns 

with Limited Ductility”, Proceedings of 13
th
 World Conference on Earthquake Engineering, 

Vancouver, Canada, 2004. 

[2] Goodnight J. C., Feng Y., Kowalsky M. J. and Nau J. M., "The Effects of Load History and 

Design Variables on Performance Limit States of Circular Bridge Columns – Volume 1", 

Technical Report, Alaska Department of Transportation and Public Facilities, USA, 2015b. 

[3] Verderame G. M., Fabbrocino G. and Manfredi G., “Seismic response of r.c. columns with 

smooth reinforcement. Part I: Monotonic tests”, Engineering Structures, 30 (9), 2277-2288, 2008. 

[4] Melo J., Fernandes C., Varum H., Rodrigues H., Costa A. and Arêde A., “Numerical modelling of 

the cyclic behaviour of RC elements built with plain reinforcing bars”, Engineering Structures, 33  

(2), 273-286, 2011. 

[5] Dazio A., Beyer K. and Bachmann H., “Quasi-static cyclic tests and plastic hinge analysis of RC 

structural walls”, Engineering Structures, 31 (7), 1556-1571, 2009.  

[6] Paulay T., Priestley M.J.N., “Seismic Design of Reinforced Concrete and Masonry Buildings”, 

John Wiley & Sons, Inc., New York, 1992. 

[7] Beyer K., Dazio A. and Priestley M.J.N., “Shear deformations of slender reinforced concrete 

walls under seismic loading”, ACI Structural Journal, 108 (2), 167 – 177, 2011. 

[8] Priestley M.J.N., Calvi G.M. and Kowalsky M.J., “Direct displacement-based seismic design of 

structures”, IUSS Press, Pavia, 2007. 

[9] Sritharan, S, Priestley, N, and Seible, F, "Nonlinear finite element analyses of concrete bridge 

joint systems subjected to seismic actions", Finite Elements in Analysis and Design, Vol. 36, 

No.3-4, pp. 215–233, 2000. 

[10] Wu Y. and Lan T., “Macro-modelling of reinforced concrete structural walls: state-of-the-art”, 

Journal of Earthquake Engineering, 2016. 

[11] Almeida J., Tarquini D. and Beyer K., “Modelling approaches for inelastic behaviour of RC 

walls: multi-level assessment and dependability of results”, Archive of Computational Methods in 

Engineering, 2014. 

[12] Sousa R., “Development and Verification of Innovative Modelling Approaches for the Analysis 

of Framed Structures Subjected to Earthquake Action”, PhD thesis, UME School, IUSS Pavia, 

Pavia, Italy, 2015. 

[13] Filippou F., Popov E. and Bertero V., "Effects of Bond Deterioration on Hysteretic Behaviour of 

Reinforced Concrete Joints", Report No. UCB/EERC-83/19, Earthquake Engineering Research 

Center, University of California, Berkeley, USA, 1983. 

[14] Popov E., “Bond and Anchorage of Reinforcing Bars Under Cyclic Loading”, ACI Journal, 81 

(4), 340–349, 1984. 

[15] Lowes L., “Finite Element Modeling of Reinforced Concrete Beam-Column Bridge 

Connections”, PhD Thesis, University of California, Berkeley, USA, 1999. 



C. Caruso et al. 

 12 

[16] Salem H. and Maekawa, K., “Pre- and Postyield Finite Element Method Simulation of Bond of 

Ribbed Reinforcing Bars”, Journal of Structural Engineering, 130 (4), 671–680, 2004. 

[17] Jendele L. and Cervenka J., “Finite element modelling of reinforcement with bond”, Computers 

& Structures, 84 (28), 1780–1791, 2006. 

[18] Casanova A., Jason L. and Davenne L., “Bond slip model for the simulation of reinforced 

concrete structures”, Engineering Structures, 39, 66–78, 2012. 

[19] Mendes L. and Castro L., “A new RC bond model suitable for three-dimensional cyclic 

analyses”, Computers & Structures, 120, 47–64, 2013. 

[20] Zhao J., Sritharan S., Modeling of Strain Penetration Effects in Fiber-Based Analysis of 

Reinforced Concrete Structures, ACI Structural Journal, 104 (2), 133–141, 2007. 

[21] Monti G., Filippou F. and Spacone E., “Finite Element for Anchored Bars under Cyclic Load 

Reversals”, Journal of Structural Engineering, 123 (5), 614–623, 1997. 

[22] Sousa R., Correia A. A., Almeida J. P. and Pinho R., “A fibre-based frame element with explicit 

consideration of bond-slip effects”, Proceedings of the 16
th
 World Conference on Earthquake, 

Santiago, Chile, (9-13/01), 2017. 

[23] Sousa R., Correia A.A., Almeida J.P. and Pinho R., “Blind prediction tests as a benchmark to 

improve the seismic response of fibre models”, 2
nd

 European Conference on Earthquake 

Engineering and Seismology, Istanbul, Turkey, 2014. 

[24] Varum H., “Seismic assessment, strengthening and repair of existing buildings”, PhD Thesis, 

Civil Engineering Department, University of Aveiro, Portugal, 2003. 

[25] Fernandes C., Varum H. and Costa A., “Concrete-steel bond characterization of RC structural 

elements built with smooth plain reinforcement bars”, 2
nd

 Symposium “Connections between Steel 

and Concrete, 2007. 

[26] McKenna F., Fenves G.L., Scott H.M. and Jeremic. B., “Open system for earthquake engineering 

simulation (OpenSEES)”, Pacific Earthquake Engineering Research Center, University of 

California, CA, 2000. 

[27] Neuenhofer A. and Filippou F.C., “Evaluation of nonlinear frame finite-element models”, Journal 

of Structural Engineering, 123 (7), 958–966, 1997. 

[28] Menegotto M. and Pinto P.E., “Method of analysis for cyclically loaded RC plane frames 

including changes in geometry and non-elastic behaviour of elements under combined normal 

force and bending”, IABSE Symposium on resistance and ultimate deformability of structures 

acted on by well defined repeated loads—Final Report, 1973. 

[29] Popovics S., “A numerical approach to the complete stress–strain curve of concrete”, Cement and 

concrete research, 3 (5), 583–599, 1973. 

[30] Mander J.B., Priestley M.J.N., Park R, "Theoretical stress–strain model for confined concrete", 

Journal of Structural Engineering , 114 (8), 1804–1826, 1988. 

[31] Calabrese A., Almeida J.P., Pinho R., “Numerical issues in distributed inelasticity modeling of 

RC frame elements for seismic analysis”, Journal of  Engineering, 14 (S1), 38–68, 2010. 

[32] fib (2011). Model Code 2010. International Federation for Structural Concrete, Lausanne, 

Switzerland. 

 

 

 


