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ABSTRACT 
 
This paper is part of a broader study under development at LNEC with the main aim of 
defining general policies for the cost-effective seismic retrofitting of the existing 
Portuguese building stock. 
The paper will summarise the methodology implemented for determining accurate 
capacity and fragility curves of existing pre-seismic design code reinforced concrete 
(RC) buildings when subjected to seismic action. The methodology involved the 
definition of probabilistic models of relevant input variables (geometry and materials), 
performing advanced numerical models of RC buildings under seismic action, setting of 
appropriate limit states and finally analysis of the results in order to derive the updated 
curves for Portuguese building stock. 
This paper will also present a comparison between curves obtained from the current 
study and the corresponding curves currently being used in LNEC’s seismic risk 
assessment platform (LNECloss).  
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1.  INTRODUCTION 
 
Portugal experienced a very large earthquake in 1755 which affected an area 
approximately equal to 800 000 km2 and caused almost 100 000 fatalities. The 
earthquake of 1755 is probably the greatest seismic disaster to have struck western 
Europe [1]. 
In Portugal, almost 70% of the existing building stock was not designed with respect to 
earthquakes and is therefore potentially vulnerable to this type of hazard.  
Despite the great advances that have been made in the last decades in the areas of 
probabilistic seismic hazard assessment (e.g. [2]; [3]), evaluation of building seismic 
vulnerability [4] and collection of information regarding the elements exposed to the 
hazards (e.g. [5]), an increase in the trend of earthquake losses is still observed [6]; [7]; 
[8]. 
Seismic structural vulnerability can be defined as the likelihood of a certain loss being 
attained due to the effects of an earthquake on a structure. Consequently, the 
vulnerability of the exposed elements to seismic events plays a critical role on the value 
of expected losses. A simple comparison between the consequences of similar 
earthquakes that occurred in different areas of the world reveals the critical importance 
of structural vulnerability. 
The recognition of the importance in understanding structural vulnerability led to a rapid 
rise in demand for accurate and flexible methodologies for its evaluation [4]. A 
fundamental step in seismic vulnerability analyses of structures is the definition of 
capacity and fragility curves. However, most often these curves are defined using 
theoretical models calibrated against a limited set of empirical and/or numerical results 
and are heavily dependent on expert opinion. The use of some of these simplified 
models facilitates the work flow required for performing seismic risk analyses but often 
involves substantial uncertainties which can significantly limit the use of the results 
obtained. The present paper aims to reduce the level of uncertainties associated with 
seismic structural vulnerability analysis of pre-seismic code RC buildings in Portugal. 
 
 
2.  BACKGROUND 
 
2.1.  LNECloss Risk Assessment Platform 
 
2.1.1.  Building damage module 
 
LNECloss is a seismic scenario risk assessment platform, integrated on a Geographic 
Information System (GIS), which comprises modules dealing with bedrock input, local 
soil effects, vulnerability and fragility analysis, human and economic losses. 
Building damage module is well described in [9], from where we extracted the following 
paragraphs. 
LNECloss uses the capacity spectrum [10] and the HAZUS loss estimation 
methodology [10] to evaluate the peak response for each type of building, and 
determine the correspondent seismic performance point. The evaluation of peak 
response, for each type of building, relies on the intersection of its capacity curve with 
the seismic spectral demand at the site. The initial elastic response spectrum is 
reduced to the demand spectra, to take into account the structural dissipation capacity 
when exposed to high intensity seismic motions. The procedure is illustrated in Fig. 1. 
An innovative robust technique was introduced in LNECloss that considers an 
equivalent non-linear stochastic iterative procedure to estimate sequential building 
response, with increasing effective damping, reflecting structure degradation during its 
cyclic response. 
While in HAZUS the modifications of spectral demand are represented by reduction 
factors, in LNECloss those modifications were performed through an iterative 
equivalent nonlinear stochastic methodology. Progressive building responses are 
obtained, until the convergence with the median capacity curve is achieved. 
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Fig. 1 - Iterative methodology to obtain the performance point in the capacity spectrum method [11] 

 
The performance point, obtained this way, corresponds to the absolute maximum value 
of the dynamic response of a structure idealized by a single degree of freedom system. 
The definition of capacity curves follows the FEMA & NIBS [11] methodology, which 
consists of simple rules in a spectral acceleration (SA) vs spectral displacement (SD) 
domain (see Fig. 2). 
 

 
Fig. 2 – Example of a building capacity curve [9] 

 

Those rules use parameters related to the design of structures allowing the definition of 
capacity curves by two control points, yield capacity (SDy, SAy) and ultimate capacity 
(SDu, SAu), expressed by 
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where,  
Cs is the design strength coefficient (fraction of building weight);  
Te the elastic fundamental-mode period of buildings;  
α1 is the fraction of building weight effective in push-over mode;  
γ is an over strength factor relating yield strength to design strength;  
λ is the over strength factor relating ultimate strength to yield strength;  
µ is the ductility factor relating ultimate displacement to λ times the yield displacement. 
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The abscissa of the performance point conditions the cumulative probability 
distributions that model the fragility of buildings. Fragility curves allow the evaluation of 
the probability of exceedance of the threshold of a given damage state, conditioned by 
a level of seismic ground motion. Four damage states are considered, specific for each 
typology: 

• Slight damage; 
• Moderate damage; 
• Extensive damage; 
• Complete Damage. 

 
The threshold of those damage states are established in terms of “equivalent” global 
drift values, SD , for each typology, and fragility curves are defined by a lognormal 
distribution function conditional on the maximum response of each building, referred as 
SDmax: 
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where φ is the standard normal cumulative distribution function and β is the standard 
deviation of the natural logarithm of spectral displacement of damage state d.  
 

2.1.2.  Updating LNECloss 
 
LNECloss platform can be used to perform seismic risk studies of several typologies of 
buildings. However, results are still strongly dependent on expert opinion (used 
primarily to fit to the Portuguese building stock the HAZUS default values of the 
parameters needed to define capacity curves and fragility curves). 
Vulnerability classes in LNECloss are categorised by the typology of buildings and the 
period that they were built (Fig.3).  
 

 
Fig. 3 - Vulnerability Classes in LNECloss risk platform shows in first column; 

On second and third columns: typologies considered in the current study  

 
Reinforced concrete construction accounts for approximately 50% of the Portuguese 
building stock and host 60% of the national population. Within this building class, at the 
time of the 2011 Census Survey [12], 49% of the buildings had not been designed 
according to the most recent seismic code [13], which represents approximately 3.1 
million habitants living in structures that might not be capable of withstanding the 
effects on an eventual earthquake.  
Also according to Census 2011 [12], 97% of the buildings in Portugal are 1 to 4 storeys 
high. 
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Considering the above information and taking into account that the influence of 
numerical uncertainties tend to increase with the height of a building, it was decided to 
update LNECloss with more accurate input data starting from the pre-seismic code RC 
buildings of up to 4 storeys.  
 
 

3.  METHODOLOGY 
 
In this study, a methodology was established based on detailed numerical studies of 
the seismic behaviour of pre-seismic code RC buildings.  
In the first step of the methodology, algorithms automatically generated the geometry 
and the finite element mesh as well as the mechanical properties of three-dimensional 
RC buildings. For the same building typology (1 to 4 storeys), the characteristics of the 
structural materials and geometrical properties considered were determined based on 
the Latin Hypercube Sampling (LHS) method applied to probabilistic models that best 
fit representative samples of the existing building stock. In total, 200 models were 
generated for each building typology. 
Afterwards, nonlinear static (adaptive) analyses were used to simulate the seismic 
behaviour of the buildings, before and after being retrofitted. 
From the thus obtained capacity curves it was possible to determine fragility curves for 
the four damage states considered. 
The abovementioned methodology is detailed in the foregoing sections. 
 
 

3.1.  Numerical Modeling 
 
Numerical analyses were performed [14] using the SeismoStruct FEA software. The 
finite elements used to simulate beams and columns were linear force-based elements. 
Slabs were modelled approximately as rigid diaphragms. The constitutive model used 
for the steel reinforcement was the Menegotto-Pinto model whereas for the concrete 
the Mander nonlinear model was considered. The seismic action was applied using an 
adaptive static pushover analysis, meaning that the load pattern shape could be 
modified as structural damage progresses.  
The values of the most relevant geometrical and mechanical properties of the buildings 
were sampled from Normal distributions whose parameters are shown in Table 1. For 
example, the length of the beam spans in each direction (LX and LY) was considered 
to be a random input variable with mean value equal to 4,4 m, a CV of 16%, a 
minimum value of 2,5 m and a maximum value of 6,5 m. 
 

Table 1 – Distributions established for the different properties of buildings [14] 

 

 

Variáveis Média CV (%) A B 

G (kN/m
2
) 8 12.5 6 10 

N° pisos 1/2/3/4 28/42/15/15 - - 

H1 3.2 10 2.5 5 

 

Hn 2.8 6 2.5 4 

LX/Y (m) 4.4 16 2.5 6.5 

hlaje (m) 0.23 24 0.1 0.35 

fcm (MPa) 23.8 49 5.0 80.0 

fyk (MPa) 235/400/500 25/50/25 - - 

ρl (%) 1 40 0.3 3.5 
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Using the above setup, 200 buildings were randomly generated for typology (1 to 4 
storeys), in two directions (X, Y) that coincided with the principal axes of the buildings. 
Examples of the obtained capacity curves are illustrated in Figure 4. 
 

 

 

 

 

 

 

 

 

 

 
Fig. 4 – Capacity curves of 200 buildings in X and Y direction. 

 

 

3.2.  Limit states definition 
 
Based on the results of the advanced numerical models of representative pre-seismic 
code Portuguese RC buildings under seismic action, appropriate limit states were 
defined.  
It is noted that the possible options for the limit state criterion can vary significantly and 
a recognized common approach regarding which criteria should be employed for the 
development of fragility functions does not seem to exist [15].  
In this study, maximum global drifts (e.g.[16]; [15]) are considered for the limit states 
criterion. 
Four different damage states have been defined based on the following: 
Slight damage: Drift corresponding to 50% of the maximum base shear capacity; 
Moderate damage: Drift corresponding to 75% of the maximum base shear capacity;  
Extensive damage: Drift corresponding to the maximum base shear capacity; 
Collapse: Drift corresponding to 80% of the ultimate drift. 
 
 
3.3.  Fragility curves 
 
Updated fragility curves were determined using Eq. (1). Numerical and modelling 
uncertainties were accounted via the β parameter (the standard deviation of the natural 
logarithm of spectral displacement of damage state d). 
The variability due to the input random variables of the buildings was determined by the 
standard deviation of each one of the four different damage states among the 200 
capacity curves of each building typology. 
The variability due to the uncertainty in the definition of each one of the four different 
damage states was determined from HAZUS [17] and considered equal to 0,40 for all 
building typologies. 
The variability due to the seismic action definition (e.g. seismic spectrum) was 
accounted for in the stochastic models of initiation and propagation of the seismic 
event include in LNECloss [18]. 
The combined effect of the former two sources of uncertainty was determined based on 
a SRSS method. The latter was included directly in the calculation of the seismic 
spectra. 
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4.  RESULTS 
 
Parameter values necessary to compute mean capacity curves and fragility curves 
from original LNECloss are given in Table 2 and for the updated LNECloss in Table 3. 
The values of the parameters Ay, Dy, Au and Du for the updated LNECloss were 
determined based on least-squares regression analyses for each set of 200 curves for 
a given building typology.  
 

Table 2 – Original LNECloss input values for determining capacity and fragility curves 

 

Typology Ay  

(g) 

Dy 

(cm) 

Au  

(g) 

Du 

(cm) 
SD Slight 

(cm) 

SD Moderate 

(cm) 

SD Extensive 

(cm) 

SD Complete 

(cm) 

β 

1 storey 0,122 0,12 0,27 1,36 0,96 2,40 3,84 8,88 0,92 

2 storey 0,096 0,27 0,22 2,99 1,73 4,32 7,10 16,61 

3storey 0,083 0,38 0,19 4,26 2,30 5,76 9,79 23,18 

4 storey 0,070 0,57 0,16 5,13 2,69 6,24 11,90 28,61 

 
Table 3 - Updated LNECloss input values for determining capacity and fragility curves 

 

Typology Ay  

(g) 

Dy 

(cm) 

Au  

(g) 

Du 

(cm) 
SD Slight 

(cm) 

SD Moderate 

(cm) 

SD Extensive 

(cm) 

SD Complete 

(cm) 

β 

1 storey 0,041 0,40 0,26 9,00 1,17 2,16 5,18 16,89 0,33 

2 storey 0,026 0,50 0,19 12,00 1,65 3,15 6,93 15,06 

3storey 0,029 0,85 0,18 16,50 2,41 4,60 10,17 17,47 

4 storey 0,031 1,60 0,17 20,00 3,36 6,36 14,13 21,92 

 

Figure.5 illustrates the updated fragility curves for 1 storey buildings using Eq. (2) and 
the curves generated using the 200 capacity curves obtained from the numerical 
analyses. It can be seen that the lognormal theoretical distribution fits quite well the 
“real” distribution function. 
 

 
Fig. 5 - Fragility curves for 1 storey buildings using Eq. (2) and Numerical Model 

 
Figures 6 to 9 illustrate the original and updated fragility curves for 1 to 4 storey 
buildings. 
Analyzing the figures below it is possible to compare the original LNECloss curves with 
the updated ones. 
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A big gap in curves is observed between the original and updated LNECloss curves. 
For all damage limit states (i.e. slight up to collapse), the original curves always start 
returning higher probabilities of exceedance for the same value of the spectral 
displacement of performance points, but as the seismic output increases the contrary 
situation occurs. It is also possible to observe that as the number of storey increases 
the range of spectral displacements where the updated curves return higher values 
probabilities of exceedance tend to become larger. 
The above findings highlight the importance of performing refined calibration/validation 
exercises in seismic risk assessment in order to perform rational engineering decision-
making.  

 

Fig. 6 - Original and updated fragility curves for 1 storey buildings. 

 
Fig. 7 - Original and updated fragility curves for 2 storey buildings. 
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Fig. 8 - Original and updated fragility curves for 3 storey buildings. 

 

 
Fig. 9 - Original and updated fragility curves for 4 storey buildings. 

 

 

5.  FINAL REMARKS 
 
This study presents new fragility curves for the Portuguese pre-seismic code reinforced 
concrete buildings, for four damage states and compares them with fragility curves that 
are included in LNECLoss and used in previous studies of seismic risk assessment for 
Portugal.  
Although not here presented, fragility curves, using the same methodology described in 
this paper, were also obtained for four different retrofit strategies for RC buildings: (i) 
column jacketing, (ii) FRP column wrapping, (iii) execution of new RC walls and (iv) 
installation of structural steel brace elements. 
How this new fragility curves will influence the seismic risk of the metropolitan area of 
Lisbon, is a work in progress, together with the seismic risk assessment using fragility 
curves for different retrofit strategies. 
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