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Comparison of Parametric and Nonparametric 
Techniques for Water Consumption Forecasting 
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Abstract— Forecasting water consumption is an important foundation for the development of water demand management strategy. In this 

paper, a parametric time series exponential smoothing state space (ETS) method was employed to monthly water consumption for Gaza 

City/Palestine. It is compared with nonparametric Reweighted Nadaraya-Watson (RNW) method. The root mean square error (RMSE) and 

mean absolute scaled error (MASE) are used for comparing the forecasting accuracy. This paper finds statistically significant evidence 

showing that the ETS state space model outperforms RNW approach at forecasting water consumption. 

Index Terms— Exponential smoothing, Nadaraya-Watson estimator, Nonparametric, Parametric, Reweighted, State space models, Water 

consumption forecast. 

——————————      —————————— 

1 INTRODUCTION                                                                     

ith the rapid growth of world population, problems of 
water consumption are threatening and involving the at-
tention of every human being. The implementation of 

long-term water consumption forecasting stands as one solu-
tion to the problem of water consumption. A good path to water 
management and design is through water prediction and water 
consumption forecasting. They can give crucial water data re-
quired in future development and predict other types of water 
problems. As a result, water consumption forecasting holds a 
significant theoretical and practical value that raises the predic-
tive accuracy of water consumption. There are different con-
ventional approaches to water consumption forecasting includ-
ing parametric and nonparametric techniques. 

Located along the Mediterranean Sea, the Gaza Strip is a 
very small Palestinian territory. It is 362-kilometer square and 
is home to a population of more than 2 million people. There-
fore, it ranks as one of the most densely populated places 
around the world. As the siege continues to escalate, normal life 
would not be viable since the standards of living are declined. 
This paper focuses on the city of Gaza as it contains most of the 
population. The water crisis in Gaza is resulted from over-
pumping of the aquifer, water loss, and salt accumulation. Wa-
ter consumption forecasts can provide crucial insights into the 
future needs of Gaza’s life requirement. This paper attempts to 
provide a coherent water consumption forecasting model for 
Gaza policy makers as well. The objective of this study is to 
evaluate the application of two different forecasting techniques 
for Gaza City. These techniques include both parametric expo-
nential smoothing state space (ETS) and nonparametric Re-
weighted Nadaraya-Watson (RNW). 

The literature on forecasting water consumption is rich since 
it is a very important field of study. Maidment [20] applied 
short-term Box and Jenkins models on daily municipal water 
use study. These ARIMA time series models were used as a 
function of rainfall and air temperature. 

 
 

The technique of artificial neural networks (ANN) was used in 
several civil engineering applications. In addition, [27] con-
ducted a study to forecast daily municipal water demand using 
time series models. Jowitt and Xu [17] used exponential 
smoothing and autoregression to forecast water demand. 
Shvarster et al. [26] provided a model for hourly water use fore-
cast based on time series analyses and pattern recognition. 
Moreover, [15] presented a technique to forecast daily water 
use. This technique includes two steps; the first step uses an ex-
ponential smoothing algorithm to forecast monthly average 
water use. The second step contains the monthly average fore-
cast that is employed to obtain a daily forecast. Zhou [33] de-
veloped time series models for daily water consumption in Mel-
bourne, Australia. Khan and Coulibaly [19] provided a compar-
ative study between time series models in the forecasting of the 
water level of a lake.  Horielova and Zadachyn [10] concluded 
that ARIMA models and ANN models are most adequate in 
forecasting water consumption of large cities. 
Data Source: We use the data set of water consumption in Gaza 
City / Gaza Strip/ Palestinian Territories from Municipality of 
Gaza https://www.gaza-city.org. We considered monthly data 
sets for water consumption from January 1990 to July 2016. 

The section above contains a summary of water consump-
tion problem with an application on Gaza City. In addition, an 
overview of previous literature is also included. The remainder 
of the paper is organized as follows. Section 2 presents the par-
ametric exponential smoothing state space models and the non-
parametric Reweighted Nadaraya-Watson methods used in 
this paper. Section 3 discusses the methodology used in the se-
lection of parametric and nonparametric techniques and fore-
casting evaluation. Data description and empirical results are 
provided in section 4. Section 5 presents the summary and con-
clusion of this paper. 

2 MATERIALS AND METHODS  

2.1 The Reweighted Nadaraya-Watson Estimator 

Let ,( ), 1, 2, ,t tX Y t n  be observations of a bivariate ran- 

dom variable ( , )X Y and assume that all are continuously 
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distributed with joint probability density function ( , )f x y . 

This section presents a kernel regression estimator known as 
the reweighted Nadaraya-Watson estimator.  

Let 
( , )

( )
( )

f x y
f y x

g x
  be the conditional density of  tY  

given tX  where ( ) ( , )g x f x y dy  is the marginal den-

sity of tX .  The simple nonparametric regression function for 

tY  on tX  is defined as 

( , )
( ) E( | )

( )
t t

yf x y
m x Y X x dy

g x
   

 
The basic idea is to estimate this non-parametrically, with 

minimal assumptions about ( ).m x  Suppose the relationship 

between the dependent variable Y and the independent 

variable ,X  the regression equation can be written as, 

( ) , 1,2, ,t t tY m X t n   
 

Where , 1,2, ,t t n   are called the measurement errors 

such that E( | ) 0t tX   and
2 2E( | ) ( ).t tX x x    Us-

ing the kernel estimation, the regression mean function ( )m x

is estimated by  m x , where 

 ( ) ( )m x y f y x dy   

A class of kernel-type estimator is called the Nadaraya-Watson 
(NW) estimator which is one of the most widely known and 

used for estimating ( )f y x .  The NW estimator has been sug-

gested independently by [29] and [22]. 

Let 
NW

( )f y x  stands for Nadaraya-Watson kernel estima-

tion and defined as, 


NW

1

1

( )
( )

( )

n

h t tt
n

h tt

K x X Y
f y x

K x X













 , 

Where (.)k  is a kernel function, 
1 .

(.)hK K
h h

 
  

 
 and 

0nh h    is the bandwidth. Consequently, the NW estima-

tor,   m x ,  of the regression mean function ( )m x  can be 

defined as  

   1

1

( ) 
x .

( )NW

n

h i ii
n

h ii

K x X Y
m

K x X













 

It is worth noting that there is some weakness in applying the 
NW estimator especially when the estimation is done near the 

boundary points or when the design density is highly clustered. 
For more details see [8], [4], [5], and [32].   

To overcome the weakness of the NW estimator, a new class of 
the kernel estimation of the conditional density function and re-

gression mean function has been proposed by [8]. The new es-
timator is called the Reweighted Nadaraya-Watson (RNW) es-

timator, see [4], [6]. The RNW estimator of ( )f y x  is denoted 

by  ( )
RNW

f y x  and defined as 

 

    

 
1

1

  ( )
( ,)

  ( )RNW

n

i h i h ii
n

i h ii

x K
f y x

x X K y Y

x K x X










 




   

where    t x are probability weights functions satisfying the 

following properties 

1.   0t x  ,  

2.  
1

1
n

t
t

x


 , 

3.     
1

1.
n

h
t

t t tx X x K x X


    

 
    

1

1t t

t

h

x
n X x K x X





  

  

Where  is the unique minimizer of ( )L  , Where  ( )L   is 

defined by  

      
1

log 1 .
n

h
t

ttL X x K x X 


     

  Moreover, the Reweighted Nadaraya-Watson estimator, 

 ( )
RNW

m x , of  ( )m x  is given by 

  
 

 
1

1

  ( ) 
x .

  ( )
RNW

n

i h i ii
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i h ii
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
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

 

Recently, [25] studied the RNW and proved the joint asymp-
totic normality of it estimated at a finite number of conditional 
points. 

2.2 Exponential Smoothing State Space Models 

 
A common class of forecasting models are exponential smooth-

ing techniques. It’s simple but very helpful of adjusting time se-
ries forecasting. R. G. Brown [3], [9], and [31] have initially in-
troduced these methods in their early works. The idea behind 

forecasting using exponential smoothing is to assign exponen-
tially declining weights to observations as they go back in age, 
i.e., recent observations have a larger weight than the old ones. 
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Pegels [24] was the first to classify exponential smoothing 
techniques and propose a taxonomy of the trend component 

and seasonal component. Pegels’ taxonomy was later ex-
tended by [7], who added damped trend to the classfication. 

This extension is then modified by [15], before the final exten-
sion is proposed by [28] who extended the classification to in-
clude damped multiplicative trends. 

 
TABLE 1 

THE FIFTEEN EXPONENTIAL SMOOTHING METHOD 

 

Trend 

Compotent 

Seasonal Component 

N 

(None) 

A 

(Addi-

tive) 

M 

(Mult.) 

N 

A 

dA  

M 

dM  

(None) 

(Addtive) 

(Addi. damped) 

(Multiplicative) 

(Mult. damped) 

N,N 

A,N 

dA  

M,N 

dM  

N,A 

A,A 

dA  

M,A 

dM  

N,M 

A,M 

dA  

M,M 

dM  

 

The classification of exponential smoothing methods shows a 
total of 15 different methods regarding trend and seasonal com-
ponents [12], [11]. These methods can be seen in Table 1. Each 

method is labelled by ordered pair of letters (T,S) showing the 
type of ‘trend’ and ‘seasonal’ components. However, some of 

the methods are better known with other names. For instance, 
cell (N,N) is the simple exponential smoothing (or SES). Simi-
larly, cell (A,N) describes Holt’s linear method, and the damped 

trend method corresponds to cell ( dA ,N). Also, cell (A,A) and 

(A,M) are the additive and the multiplicative Holt-Winters’ 
methods, respectively [12]. The following component is to illus-
trate the additive Holt-winter method (A,A) for an observed 

time series  ty . The following notation follows that in [12], 
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1 1

1 1

|
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m
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Where m is the number of seasons in a year (e.g. for quarterly 

data 4,m  and for monthly data 12m  ). t  is the level, tb  

is growth, ts is the seasonal component,  
|

ˆ
t h ty 

 denotes the h

-step-ahead forecast and ( 1) mod 1mh h m       which es-

tablishes that the estimates of the seasonal indices for forecast-

ing come from the last year of the sample.  (The notation u    

means the largest integer not greater than u .) 

The smoothing parameters, , 
and ,  show how fast the 

level, trend and seasonality, respectively, fit to new infor-
mation. For more details regarding the component for all fifteen 

exponential smoothing methods, see [12] pp.18. 
 

In the state space approach for the exponential smoothing 
methods, the error terms are smoothed. The corresponding 
models are called innovation state space models. Note that it is 

an innovation because all equations in this type use the same 

error term t . For more details, see [1], [2], and [11]. Hyndman 

[15], [23] and [28] showed that there are two possible underly-
ing state space models, for each of the 15 methods in Table 1. 

There is one with additive errors and one with multiplication 
errors. A list of all the 30 possible specifications are described 
in [12]. An extra letter for error is added in the method notation. 

Each stated space model is labelled as ETS( , , )    for (error, 

trend, seasonal). So ETS(M, A, A)  refers to a model with 

multiplicative error, additive trend and additive seasonality. To 
illustrate the idea of the multiplicative error model 

ETS(M, A, A) , let first 1
ˆ

t t t t my s       denote the 

one-step forecast of ty supposing that all parameters are 

known. Also, let ( ) /t t t ty    , so that t is a relative er-

ror. The general form of the resulting state equations is (See [12] 
pp. (19-22) 
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1 1 1 1
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)
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                (2.1)                  

 

By defining the state space vector as 

1 1( , , , , , ) ,t t t t t t mx b s s s  
    the system (2.1) can be 

written in standard state space notation: 
 

 

 

 

1

1

1

1 1 0 0 1 (1 ),

1 1 0 0 1

0 1 0 0 0

0 0 0 0 1

1 1 0 0 1
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 
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  
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 
  











          (2.2)  

where 1tx  ,  is the state space vector such that 

1 1 1 1 2( , , , , , ) .t t t t t t mx b s s s     
    Usually the assump-

tion of the error term t  is that
2NID(0, )t  . 

. 
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3 MODEL SELECTION 

3.1 Bandwidth Selection 

The RNW estimator,  ( )
RNW

m x  is a nonparametric approach 

which has no need for a distributional assumption. The good-
ness of the kernel regression estimate depends decisively on the 

selection of bandwidth, .h  When the bandwidth is very small, 

the estimate will be very close to the original data. If the band-

width is very large, the estimate will be very smooth, lying close 
to the mean of the data. 
Many suggestions for bandwidth selection have been taken by 

[30]. Formally, the suitable bandwidth is the one minimizing 
the mean square error (MSE) of the RNW estimator, 

MSE( ( ))
RNW

xm . 

3.2 Automatic Forecasting  

The parametric ETS method is an automatic forecasting method 

which is applied to perform forecasting using ets() function via 

the forecast package in R software. The suitable exponential 

smoothing model is selected among 30 ETS models using max-

imum likelihood estimator (MLE) and selecting the best model 

based on information criteria AIC, AICc, and BIC. The model 

which minimizes the criteria is chosen as preferable for the data. 

For more details, see [15], [12], [11]. 

3.3 Forecast Evaluation 
There are many different accuracy measures which can be used to 
select the forecasting model perform carefully. Denote the actual 

observation at time t by ty  and its forecasted value by ˆ .ty  The 

following accuracy measures are considered in Table 2. 
 

TABLE 2 
ACCURACY MEASURES 

Acronyms Definition Formula 

MSE Mean square error 2

1

n

ii
e n

  
MAE Mean absolute error 

1
| |

n

ti
e n

  
RMSE Root mean square error MSE  
MAPE Mean absolute percent-

age error 1

| |
100

n i i

i

e y

n
 

 

where n  is the number of observations in the sample. It is worth 
noting that MSE, MAE and RMSE are scale dependent measures 
and because of that they should not be used in comparing models 

estimated from different data sets. Moreover, MAPE measure is 
based on percentage error which has the benefit of being scale in-

dependent but is not valid for series that are very sparse and scat-

tered, as they are undefined or infinite for 0ty  . This makes 

MAPE inappropriate in this application. 
The accuracy measure, suggested by [13], proposes comparing the 
errors given by the forecasting models to the errors from naïve 

models, i.e., a method where the forecast for the observation time 

t is simply the observation at time 1t  . The scaled error would 

then be defined as, 

12

1
| |

1

t
t

n

t tt

e
q

y y
n









 
Measures based on scaled errors have benefit of being neither scale 

dependent nor implicated by series fluctuating around zero. The 
mean absolute scaled error (MASE) is given by 

1
| |

MASE = ,

n

tt
q

n


 
Moreover, the MASE is very flexible and has a simple interpreta-

tion. If the value is less than one, it means the forecast is more ac-
curate than the naïve forecast. 

4 APPLICATION TO REAL DATA 

4.1 Data 

We have analyzed the monthly water consumption series in 

Gaza city/Gaza strip/ Palestinian territories from January 
1990 to July 2016. We have transformed the data by dividing it 
by 1000000. Table 3 presents some descriptive statistics for this  

data set.  
TABLE 3 

DESCRIPTIVE STATISTICS FOR MONTHLY WATER CONSUMPTION 

DATA 1990:1-2016:7 

n   Min. 1st Qu Mean Std.dev 3rd Qu Max 

319 1.379 1.880 2.262 0.528 2.519 3.906 

 

Figure 1 displays a graphical representation of the decomposed 
series of water consumption. Clearly by studying the plot of the 
water consumption in the first panel of Figure 1, it is easy to 
realize that the series does not have a constant mean. This 
reflects that the water consumption is a non-stationary series. 
It gives us an indication of the seasonality of water 
consumption. The series displays periodic attitude every 12 
months. Moreover, the third panel in Figure 1 displays the 
trend of the series. It is the same series, but with seasonality 
extracted.  
 

 
Fig.1. Decomposition of the water consumption series 
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We use the first 307 observations from January 1990 to July 2015 
as training sample for model prediction, and the remaining 12 

observations from August 2015 to July 2016 as post-sample for 
forecast evaluation. 

 
4.2 Empirical Study 

This section establishes the empirical results on the training 
sample for fitting models of water consumption in Gaza City 

by using the two different methods, the nonparametric RNW 
kernel estimation method and the parametric ETS method.  

R statistical software was used for fitting the models and to 
forecast water consumption in Gaza City for 12 months from 
August 2015 to July 2016. The procedure for the nonparamet-

ric RNW is based on selecting the suitable bandwidth, h , 

which minimizes MSE( ( ))
RNW

xm . Table 4 shows different 

values of bandwidth and the corresponding 

MSE( ( ))
RNW

xm . Comparing the values to obtain that the 

minimum value of MSE( ( ))
RNW

xm  is equal to 0.1898 corre-

sponding to the bandwidth 0.4939h  . 

 
TABLE 4 

COMPARISON OF THE BANDWIDTH WITH CORRESPONDING VALUE OF  

MSE( ( ))
RNW

xm  

 

 

MSE( ( ))
RNW

xm

 

The bandwidth h  

0.10974 0.21949 0.49385 0.54872 

0.36144 0.26491 0.18975 0.99956 

 
 
When fitting an exponential smoothing model with a state 
space approach, the ets() function in forecast package was used. 

It is used to choose the suitable model automatically on the ba-
sis of maximum likelihood method (MLE) and then to calculate 
the point forecasts for water consumption in Gaza City for the 

12 months from August 2015 to July 2016. When applying the 
function, the results showed that the best performing model 

was ETS(M, A, A) , that is a model with multiplicative error, 

additive trend and additive seasonality. The general equation 
of this model was explained in section 2.2 by the system 1.2. 
 
4.3 Forecasting Models 

Table 5 compares the actual with the point forecast for the 12 
months in the period from August 2015 to July 2016 for water 

consumption in Gaza City in the Palestinian Territories based 
on ETS and RNW methods. 
 

 
 

TABLE 5 
ACTUAL AND PREDECTION FOR WATER CONSUMPTION FOR GAZA 

CITY IN 2015:8-2016:7 
  Prediction 

Month Actual Data ETS(M,A,A) RNW method 

Aug 2015 3798939 3973588 3298502 

Sep 2015 3994249 3821226 3700635 

Oct 2015 3842813 3922643 3085275 

Nov 2015 3361297 3678210 3243449 

Dec 2015 3956254 3583795 3850790 

Jan 2016 3589814 3489380 3505749 

Feb 2016 3657156 3516415 3492082 

Mar 2016 4229867 3607954 3699882 

Apr 2016 3795809 3694175 3266582 

May 2016 4151937 3865150 4255222 

Jun 2016 3972153 4019894 3544637 

Jul 2016 3837802 3917415 3094285 

 

It is quite clear that the forecast error of ETS(M, A, A)  tech-

nique is much less than that of the RNW technique. This out-

come points out that ETS(M, A, A) method fits water con-

sumption data much better than the RNW kernel estimator 

method. It is interesting to note that the parametric exponen-
tial smoothing model outperforms the nonparametric Re-
weighted Nadaraya-Watson kernel estimator method. Com-

paring the results of the measures of forecast accuracy in Table 

6, the ETS(M, A, A) model still performs best based on all 

the measures values.  

The predicted values using ETS(M, A, A) is highly accurate 

as RMSE = 0.2620172 and MASE = 0.613292; it has the lowest 
RMSE and MASE estimate. 
 

TABLE 6 
FORECAST ACCURACY FOR THE ETS AND RNW TECHNIQUES 

 

 MAE RMSE MASE 

RNW estimator 0.3631308 0.4356086 1.070811 

ETS(M,A,A) 0.2079781 0.2620172 0.613292 

 

The smoothing parameters of the exponential smoothing state 

space model ETS(M, A, A) that adequately fit the water con-

sumption data are listed as follows: 
 

0.1502, 0.0026, 0.0001      

with initial states (the components of the state space vector 

1tx  ) are listed as follows: 

1 11.7337, -0.0031

-0.1573, -0.0519, 0.2035, 0.1129, 0.2763, 0.0998,

          0.2131, 0.0693, -0.

~~~~~~~~~~~~~~~

0907, -0.166, -

~~

0.2465, -0

~~~~

.2626

t tb

s
  




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where s above refers to the values of the seasonal initials 

1 2, , ,t t t ms s s   .  Putting all these values in the system (2.2) 

above to obtain the standard state space equations of  

ETS(M, A, A)  model. 

Figure 2 shows the forecasts from ETS(M, A, A)  model. The 

thin blue indicates the fitted values, while the forecasts are 
shown as the dashed thicker red line. The prediction intervals 

are clarified by the light 95% and dark 80% grey confidence 
bands.  

 

 
Fig. 2.  Forecast for h=12 months ahead with ETS (M,A,A) model. 

 

However, to make prediction intervals using exponential 

smoothing techniques, the prediction intervals require that the 

forecast errors should be uncorrelated and normally distrib-
uted with mean zero and constant variance. 

Fig. 3.  Residual diagnostics for ETS(M,A,A) model. 
 

 
 

The sample correlation in Figure 3 displays that the most sam-
ple autocorrelation coefficients of the residuals are within the 

confidence limits, consequently the residuals are white noise 

reflecting that ETS(M, A, A) is adequate.  

To confirm the evidence of autocorrelations, the Box-Ljung 
test p-value result in Table 7 displays that there is evidence of 

no autocorrelations in the forecasts errors. Furthermore, the 
Jarque Bera test p-value shows that there is a strong evidence 
for normality of forecasts errors. Moreover, the test of homo-

scedasticity p-value proves the evidence that the variance is 
constant.  

 
TABLE 7 

RESIDUAL DIAGNOSTICS TEsts 
 

Residual Test p-values 

Residual Autocorrelation test 
Box-Ljung test 

 
057.695*10

  

Residual  Normality test 
Jarque Bera Test 

 
16 2.2*10   

Homoscedasticity test 

Box-Ljung test  (Squared Reiduals) 
 

0.01018 

  

5 CONCLUSION REMARKS 

The main objective of this paper is to forecast water consump-
tion in Gaza City/ Palestinian Territories from January 1990 to 

July 2016. Two approaches are used attempting to obtain a suit-
able fit. They are a parametric exponential smoothing state 

space (ETS) model and a nonparametric Reweighted Nadaraya-
Watson (RNW) kernel estimator method. 
The analysis recognizes that the ETS state space model has good 

prediction results than the RNW approach based on both mean 
absolute error (MAE), root mean square error (RMSE) and 

mean absolute scaled error (MASE). However, we can note that 
although ETS state space models are not widely applied in fore-
casting of water consumption, the empirical results assert the 

importance of their application 
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