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Abstract 
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*

has been introduced. It 

extends the reals . The hyperreals properties and the main topological definitions for with the 

standard topology have been presented in the nonstandard context. Nonstandard proofs of well-

known theorems from the topology on have been given and compared with the standard ones. 
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1. Introduction:
For over three hundred years, a basic question
about calculus remained unanswered. Do the
infinitesimals as conceptional understood by
Leibniz and Newton, exist as formal mathe-
matical objects? The question was answered
affirmatively by Abraham Robinson [1] and
the subject termed “Nonstandard Analysis”
was introduced to the scientific world [2–6].
According to Machover and Herschfeld [6],
the aim of Robinson’s theory can perhaps be
explained best by discussing an example from
topology: A mapping f of a topological space
X into a topological space Y is continuous at p
if f(x) is near f(p) provided x is near p. Now
a natural question to ask is: How this notion
of “nearness” can be made precise? In par-
ticular, for the real line (with standard topol-
ogy) this would mean giving a precise mean-
ing to a number being “near” zero; i.e.,
“infinitesimal” [5, 7].
On the other hand, one cannot treat any of
the already existing non-zero points of the real
line as infinitesimals without getting an im-
mediate contradiction. Now if one try to add
the infinitesimals as new “ideal” elements of
the real line, one would spoil its nice algebro-
topological properties.
Robinson’s theory solves this problem
completely, by showing, e.g., how a topologi-
cal space R can be imbedded in a “topological
space” ∗R such that:
(i) For any p in R the set {x : x ∈ R and x
is “near” p} can be defined rigorously and has
all desirable properties.
(ii) For any mathematical property of R, ∗R
has the “same” property.
The reason for surrounding “topological
space” and “same” by quotes is that ∗R does
not really have the same properties as R, but
only formally so. More precisely, given any
mathematical property of R, one writes down
a sentence expressing the fact that this prop-
erty holds for R. Then one re-interprets this
sentence (also in a way specified in advance)
and under this new interpretation the sentence

claims ∗R has a certain property; moreover,
∗R actually does have that property. Thus
to every property of R there corresponds a
property of ∗R which is expressed by the same
formula. It follows that formal reasoning and
calculation can be performed for ∗R in exactly
the same way as for R. It turns out that one
can prove theorems about R by first “going
cut” to ∗R and later “coming back” to R. This
is the essence of nonstandard analysis.
In this paper, we will use a sequential ap-
proach presented in Tom Lindstrom [3] to con-
struct ∗R. We will concentrate on the main
definitions and applications of the topology
on R using the nonstandard methods. Among
other things, we shall concentrate on present-
ing nonstandard proofs of some well-known
theorems and we shall compare these proofs
with the standard ones. For more about non-
standard topology and its applications, we re-
fer the reader to the references [3, 8–17].
This paper can be considered as a survey
article on nonstandard topology on R. It can
be used as a teaching tool for beginners, and as
a reference for a (graduate) student studying
nonstandard analysis or nonstandard topol-
ogy.

2. Ultrapower Construction of ∗R:
Depending on the sequential approach pre-
sented in Tom Lindstrom [3], we give here
a construction of the nonstandard model ∗R
which is richer than the standard reals R.
This is an ordered field which extends the
real numbers to include non-zero infinites-
imals; that is, numbers the absolute value of
which is smaller than any real number; and
also positive and negative infinite numbers.
There are several ways of constructing ∗R [1–
4, 6, 12, 13, 18, 19]. Here we use an ultra-
power construction.

Definition 2.1. Let RN represents the set of
all sequences with domain N and range val-
ues (images) in R. Of course, sequences are
functions, (maps, mappings, etc.). We define
binary operations + and ·, for sequences by
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simply taking any two A, B ∈ RN and defin-
ing A + B = C to be the sequence C where
the values of C are Cn = An + Bn and A · B
= D to be the sequence D where the values
of D are Dn = An · Bn for each n ∈ N. This
forms what is called a ring with unity.

What we will do later is to show that
there’s a subset of RN that behaves like the
real numbers, with respect to the defined op-
erations, and we will use this subset as if it is
the real numbers.

Definition 2.2 (Free Ultrafilter on N).
A free ultrafilter U on N is a collection of sub-
sets of N that is closed under finite intersec-
tions and supersets (i.e., A ⊆ B and A ∈ U
implies B ∈ U), contains no finite sets and for
every A ⊆ N, either A ∈ U or N−A ∈ U .

In all that follows, U will always be a free ul-
trafilter on N.

Definition 2.3 (Equality in U). Let A,B ∈
RN. Define A =U B iff {n : An = Bn} = U ∈
U (the set of all n ∈ N such that the values of
the sequences A and B are equal.)

Theorem 2.4. [2] The relation =U is an
equivalence relation on RN.

Proof. Of course, properties of the = for mem-
bers of R are used. First, notice that {n :
An = An} = N ∈ U for any A ∈ RN.
Thus, the relation is reflexive. Clearly, for
any A,B ∈ RN, if {n : An = Bn} ∈ U , then
{n : Bn = An} ∈ U . Thus, the relation is sym-
metric. Finally, suppose that A,B,C ∈ RN

and A =U B and B =U C. Then, {n : An =
Bn} ∈ U and {n : Bn = Cn} ∈ U . Since U is
a filter, the word “and” implies

{n : An = Bn} ∩ {n : Bn = Cn} ∈ U .

Of course, this “intersection” need not give
all the values of N that these three sequences
have in common, but that does not matter
since the “superset” property for a filter im-
plies from the result

{n : An = Bn} ∩ {n : Bn = Cn} ⊆ {n : An =
Cn}, that {n : An = Cn} ∈ U . Thus, the rela-
tion is transitive. Hence =U is an equivalence
relation.

Definition 2.5 (Equivalence Classes).
We now use the relation =U to define subsets
of RN. For each A ∈ RN, let the set

[A] = {x ∈ RN : x =U A}.

Note that for each A,B ∈ RN, either
[A] = [B] or [A] ∩ [B] = ∅ (The = here is
the set-theoretic equality). Denote the set
of all of these equivalence classes by ∗R; i.e.,
∗R := RN/=U and call this set the set of all
hyperreal numbers. (The ∗ is often translated
as “hyper”). Consequently,

∗R = {[A] : A ∈ RN} = RN/ =U .

After various relations are defined on ∗R, the
resulting “structure” is generally called an ul-
trapower.
The reals R are identified with the equiva-
lence classes of constant sequences, so that ∗R
is then an extension of R.

Definition 2.6 (Addition and Multiplication
in ∗R).
Consider any a = [A], b = [B], c = [C] ∈ ∗R.
Define a ∗+ b := c iff {n : An+Bn = Cn} ∈ U .
And define a ∗· b := c iff {n : An ·Bn = Cn} ∈
U .

Theorem 2.7. The operations ∗+ and ∗· are
well-defined.

Proof. Let a, b ∈ ∗R, and let [A], [D] ∈ a, [B],
[F ] ∈ b. Now, since {n : An = Dn} ∈ U
and {n : Bn = Fn} ∈ U , we have {n :
An = Dn} ∩ {n : Bn = Fn} ∈ U , so that
{n : An = Dn} ∩ {n : Bn = Fn} ⊆ {n :
An + Bn = Dn + Fn}, and by the superset
property, we have

{n : An +Bn = Dn + Fn} ∈ U .

Thus the ∗+ is well-defined. In like manner
for the ∗·.
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Theorem 2.8. [19] For the structure 〈 ∗R,
∗+, ∗· 〉, the following holds:

(i) [0] is the additive identity.

(ii) For each a = [A] ∈ ∗R, −a = [−A] is the
additive inverse.

(iii) [1] is the multiplicative identity.

(iv) If a 6= [0], then there exists b = [B] ∈ ∗R
such that a ∗· b = [1].

(v) For each n ∈ N, if Dn = An + Bn and
En = An · Bn, then [A] ∗+ [B] = [D]
and [A] ∗· [B] = [E]. That is, our defini-
tions for addition and multiplication of
sequences and the hyper operations ∗+,
∗· are compatible.

Proof. (i) Let [A] ∗+ [0] = [C]. Consider-
ing that {n : An + 0n = Cn} ∈ U and
{n : An + 0n = Cn} ⊆ {n : An = Cn} ∈ U ,
then [A] = [C].
(ii) Since {n : An+(−An) = 0 = 0n} = N ∈ U ,
we have [A] ∗+ [−A] = [0].
(iii) Let [A] ∗· [1] = [C]. Considering that
{n : An ·1n = Cn} ∈ U and {n : An ·1n = Cn}
⊆ {n : An = Cn} ∈ U , we have [A] = [C].
(iv) Let [A] 6= [0]. Then {n : An = 0 = 0n} =
U /∈ U . Hence, N − U = {n : An 6= 0} ∈ U
since U is an ultrafilter. Define

Bn =

{
A−1
n if An 6= 0

0 if An = 0.

Notice that {n : An · Bn = 1 = 1n} = {n :
An 6= 0} ∈ U . Hence [A] ∗· [B] = [1].
(v) By definition, [A] ∗+ [B] = [C] iff {n :
An+Bn = Cn} ∈ U . However, {n : An+Bn =
Dn} = N ∈ U . Hence,
{n : An +Bn = Cn} ∩ {n : An +Bn = Dn} =
{n : Cn = Dn} ∈ U . Thus [C] = [D]. In
like manner, the result holds for multiplica-
tion.

Definition 2.9 (Order).
For each a = [A], b = [B] ∈ ∗R define a ∗≤ b
iff {n : An ≤ Bn} ∈ U .

Theorem 2.10. [19] The structure 〈 ∗R, ∗+,
∗·, ∗≤ 〉 is a totally ordered field.

Proof. First, notice that {n : An ≤ An} =
N ∈ U . Thus, ∗≤ is reflexive. Next, this rela-
tion needs to be anti-symmetric. So, assume
that [A] ∗≤ [B] and [B] ∗≤ [A]. Then
{n : An ≤ Bn} ∩ {n : Bn ≤ An} ⊆ {n : An =
Bn} ∈ U . Hence, [A] = [B]. For transitivity,
consider [A] ∗≤ [B] and [B] ∗≤ [C]. Then
{n : An ≤ Bn} ∩ {n : Bn ≤ Cn} ⊆ {n : An ≤
Cn} ∈ U . Thus, [A] ∗≤ [C]. It follows that
〈 ∗R, ∗≤ 〉 is a partially ordered set. (Notice
that the same processes seem to be used each
time. That is because U is closed under finite
intersections and supersets.)

Next to show that 〈 ∗R, ∗≤ 〉 is totally or-
dered, let [A], [B] ∈ ∗R. Then by trichotomy
law for R, we have {n : An < Bn} ∈ U or
{n : An > Bn} ∈ U or {n : An = Bn} ∈ U .
Hence [A] ∗< [B] or [A] ∗> [B] or [A] ∗= [B].
To show that 〈 ∗R, ∗+, ∗·, ∗≤ 〉 is a totally or-
dered field, all that’s really needed is to show
that it satisfies two properties related to this
order and the ∗+, ∗· operations [23]. So, let
[A], [B], [C] ∈ ∗R, and let [A] ∗≤ [B]. Then

{n : An ≤ Bn} ⊆ {n : An+Cn ≤ Bn+Cn} ∈ U .

Thus [A] ∗+ [C] ∗≤ [B] ∗+ [C]. Now suppose
that [0] ∗≤ [A], [B]. Then
{n : 0 ≤ An} ∩ {n : 0 ≤ Bn} ⊆ {n : 0 ≤
An · Bn} ∈ U . Hence [0] ∗≤ [A] ∗· [B] ∗=
[AB].

Definition 2.11 (Hyper ∗ Extensions of Stan-
dard Objects [19]).
For any C ⊆ R (a 1−ary relation), let b =
[B] ∈ ∗C, iff {n : Bn ∈ C} ∈ U . Let Φ be any
k−ary (k > 1) relation. Then
(a1, . . . , ak) = ([A1], . . . , [Ak]) ∈ ∗Φ ⇔ {n :
(A1(n), . . . , Ak(n)) ∈ Φ} ∈ U . This extension
process can be continued for other mathemat-
ical entities.

Theorem 2.12. [19] The hyper-extensions of
standard objects are well-defined.
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Proof. In general, for any [B] ∈ ∗R, let [B] =
[B′]. Then {n : Bn = B′n} ∈ U . That is, let
B′ ∈ RN be any other member of the equiva-
lence class [B]. Let C ⊆ R be a 1-ary relation.
Then
{n : Bn = B′n} ⊆ {n : (Bn ∈ C) ⇔ (B′n ∈
C)} ∈ U ,
{n : Bn ∈ C}∩{n : (Bn ∈ C)⇔ (B′n ∈ C)} ⊆
{n : B′n ∈ C} ∈ U ⇒ [B′] ∈ ∗C,
{n : B′n ∈ C}∩{n : (Bn ∈ C)⇔ (B′n ∈ C)} ⊆
{n : Bn ∈ C} ∈ U ⇒ [B] ∈ ∗C. Thus the
1-ary relation C is well defined. For the other
k−ary relations, proceed as just done but al-
ter the proof by starting with
{n : B1(n) = B′1(n)} ∩ · · · ∩ {n : Bk(n) =
B′k(n)} ⊆ {n : (B1(n), . . . , Bk(n)) ∈ Φ ⇔
(B′1(n), . . . B′k(n)) ∈ Φ}. Thus the k−ary rela-
tion Φ is well defined.

Definition 2.13 (Standard Objects Opera-
tor [19]).
For each x ∈ R, let ∗x := [X] ∈ ∗R, where {n :
Xn = x} = N (the constant sequence). Then
for X ⊆ R, let σX := {∗x : x ∈ X} ⊆ ∗R.
For n > 1 and each x = (x1, . . . , xn) ∈ Rn, let
∗x = (∗x1, . . . ,

∗ xn) ∈ ∗(Rn). For X ⊆ Rn let
σX := {∗x : x ∈ X} ⊆ ∗(Rn). Each such ∗x
and σX is called a standard object. Thus, σR
is the set of embedded real numbers.

Theorem 2.14. [19] Let infinite X ⊆ N.
Then there exists a free ultrafilter U such that
X ∈ U . Moreover, if [A], [B] ∈ ∗R, then [A] =
[B] for all free ultrafilters iff {n : An = Bn} ∈
C, where C = {x : (x ⊆ X)∧(X−x) is finite}.

Theorem 2.15 (∗−Algebra [19]).

(i) ∗∅ = ∅.

(ii) If X ⊆ R, then σX ⊆ ∗R

(iii) If X ⊆ R, then ∗x ∈ σX iff x ∈ X iff
∗x ∈ ∗X.

(iv) Let X, Y ⊆ R. Then X ⊆ Y iff ∗X ⊆
∗Y .

(v) Let X, Y ⊆ R. Then ∗(X − Y ) =
∗X − ∗Y .

(vi) Let X, Y ⊆ R. Then ∗(X ∪ Y ) =
∗X ∪ ∗Y . Also ∗(X ∩ Y ) = ∗X ∩ ∗Y .

(vii) Let ∅ 6= X ⊆ R. Then X is finite iff
∗X = σX.

Proof. (i) If S = ∅, then for any a ∈ RN,
{n : An ∈ S} = ∅ /∈ U . Thus ∗∅ = ∅.
(ii) This is simply a repeat of Definition (2.13).
(iii) By definition, ∗x ∈ σX iff x ∈ X. Now
assume that x ∈ X. Then, by definition,
∗x = [A], An = x for each n ∈ N . Hence,
{n : An ∈ X} = N ∈ U . Thus, ∗x = [A] ∈
∗X. Conversely, assume that ∗x = [A] ∈ ∗X.
By definition, An = x for all n ∈ N. Thus
{n : An = x} = N ∈ U . Hence x ∈ X.
(iv) Let X ⊆ Y ⊆ R, and let a = [A] ∈ ∗X.
Then {n : An ∈ X} ∈ U . But, {n : An ∈
X} ⊆ {n : An ∈ Y }. Thus, {n : An ∈ Y } ∈ U .
Hence a ∈ ∗Y and therefore ∗X ⊆ ∗Y . Con-
versely, assume that ∗X ⊆ ∗Y . Then for each
x ∈ X, ∗x ∈ ∗X by (iii). Thus ∗x ∈ ∗Y .
Again by (iii) x ∈ Y . Thus X ⊆ Y .
(v) Let X,Y ⊆ R, and let a = [A] ∈ ∗(X−Y ).
Then {n : An ∈ X − Y } = U ∈ U . But this
implies that U ⊆ {n : An ∈ X} ∈ U and
U ⊆ {n : An /∈ Y } ∈ U . Hence a ∈ ∗X − ∗Y .
Conversely, let a = [A] ∈ ∗X − ∗Y . Then
{n : An ∈ X} ∈ U and {n : An /∈ Y } ∈ U .
Thus {n : An ∈ X} ∩ {n : An /∈ Y } ∈ U .
And so {n : An ∈ (X − Y )} ∈ U . Hence
a ∈ ∗(X − Y ).
(vi) Let C = X ∩ Y . Then C = X − (X − Y ).
Thus, by (v), ∗C = ∗X − (∗X − ∗Y ) =
∗X ∩ ∗Y . Hence ∗(X ∩ Y ) = ∗X ∩ ∗Y . Now
let a = [A] ∈ ∗(X ∪ Y ). Then {n : An ∈
(X∪Y )} ∈ U and so {n : An ∈ X}∪{n : An ∈
Y } ∈ U . Hence either {n : An ∈ X} ∈ U or
{n : An ∈ Y } ∈ U , and so a ∈ ∗X or a ∈ ∗Y .
Thus ∗(X ∪ Y ) ⊆ ∗X ∪ ∗Y . Conversely, since
X ⊆ (X∪Y ) and Y ⊆ (X∪Y ), it follows from
(iv) that ∗X ∪ ∗Y ⊆ ∗(X ∪ Y ) and the result
follows.
(vii) The first part is established by induction.
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Let {x} ⊆ R. By definition a = [A] ∈ ∗{x}
iff {n : An ∈ {x}} = {n : An = x} ∈ U iff
a ∈ {∗x}. Assume the result holds for any
set of k numbers. Then ∗{xi, . . . , xk+1} =
∗({x1, . . . , xk} ∪ {xk+1}) = ∗{x1, . . . , xk} ∪
∗{xk+1} = {∗x1, . . . ,

∗xk+1} by the induction
hypothesis and (v), and so the result holds for
any k ≥ 1.

Conversely, let X ⊆ R be infinite and as-
sume that σX = ∗X. Then there exists an
injection B : N→ X. So that {Bn : n ∈ N} is
an infinite subset of X. Let ∗x = [A] ∈ σX.
Then An = x ∈ X for each n ∈ N. But
{n : An = Bn} is finite. Using Theorem
(2.14), we have [A] 6= [B] since {n : An 6=
Bn} ∈ C. Also {n : Bn ∈ X} = N ∈ U im-
plies that b = [B] ∈ ∗X. Thus there is no
x ∈ X such that ∗x = b ∈ ∗X, which implies
σX 6= ∗X.

3. The Hyperreals:

Definition 3.1. [7] Let x, y ∈ ∗R. We say
that:

(1) x is infinitesimal if |x| < ε, for any posi-
tive real number ε; we write x ≈ 0, where
|.| is the extension of the modolus func-
tion to ∗R. This takes its values in ∗R,
and is defined just as in R, so that |x| = x
if x ≥ 0 and |x| = −x if x < 0.

(2) x is finite if, for some positive real number
ε, |x| < ε.

(3) x is infinite (or infinitely large) if it is not
finite; i.e., |x| > ε for any positive real
number ε; we write x ≈∞.

(4) x, y are infinitely close if x−y is infinites-
imal; we write x ≈ y.

Let I(∗R), F(∗R) and L(∗R) denote the sets
of the infinitesimals, finite and infinitely large
numbers in ∗R, respectively. It can be eas-
ily shown (as in any totally ordered field −

see [19]) that

∗R = F(∗R) ∪ L(∗R), F(∗R) ∩ L(∗R) = ∅,
I(∗R) ⊆ F(∗R), R ⊆ F(∗R),
R ∩ I(∗R) = {0},
L(∗R) = {1/x : x ∈ I(∗R), x 6= 0}.

Figure 1 below illustrates the relationship
between these sets.

. . . r r r . . .

. . . . . . . . . r r r . . . . . . . . . . .

?

0

?

r

?

Z
Z

Z
Z

ZZZ}

Z
Z

Z
Z

ZZZ}

µ(0) = I(∗R)

... ...q0
r ≈ ∞
L(∗R)

r ≈ −∞
L(∗R)

∗R

R

F(∗R)

0

µ(r)

st(r)

... ...qr

Figure 1 The reals and the hyperreals

Definition 3.2. For x ∈ ∗R, the monad of x
is the subset of ∗R given by:

µ(x) := {y ∈ ∗R : x ≈ y}.

Theorem 3.3 (Standard Part Theorem [2]).
If x ∈ ∗R is finite, then there is a unique r ∈ R
such that x ≈ r; that is, any finite hyperreal
x is uniquely expressible as x = r + δ with r
a standard real and δ an infinitesimal.

Proof. For the existence, let r = sup{b ∈
R : b < x}. Since x is finite, r exists. We
must show that x− r is infinitesimal. Assume
not, then there is a real number k such that
0 < k < |x − r|. If x − r > 0, this implies
that r + k < x, contradicting the choice of
r. If x − r < 0, we get x < r − k, also con-
tradicting the choice of r. The uniqueness is
obvious since if x = r1 + δ1 = r2 + δ2, then
r1−r2 = δ2−δ1 is both real and infinitesimal,
so it must be zero.

Definition 3.4 (Standard Part).
If x is a finite hyperreal, then the unique real
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r ≈ x is called the standard part of x, and it
is denoted by st(x) (see Figure 1).

Theorem 3.5. [19] The collection {µ(x) : x ∈
σR} is a partition of F(∗R).

Proof. Technically, to be a partition of F(∗R),
we have to show that µ(x) ∩ µ(y) 6= ∅ implies
µ(x) = µ(y) and that

⋃
{µ(x) : x ∈ σR} =

F(∗R). For the first part, assume that there
exists some a ∈ µ(x) ∩ µ(y). Then a = ε+ x,
a = λ+y where ε, λ ∈ I(∗R). But ε+x = λ+y
implies that ε− λ = y− x. This is only possi-
ble if ε− λ = 0 since y − x ∈ σR. Thus x = y
and so µ(x) = µ(y).

For the second part, let a ∈
⋃
{µ(x) : x ∈

σR}. Then a = ε+ x for some x ∈ σR. Then
|a| = |ε + x| ≤ |ε| + |x| < |x| + 1. Hence
a ∈ F(∗R). Consequently,

⋃
{µ(x) : x ∈

σR} ⊆ F(∗R).
Now assume that a ∈ F(∗R). Then there is
some ∗x ∈ σR+ such that a < ∗x. So, con-
sider the set S := {y : ∗y < a}. This set is
nonempty since −x ∈ S. Also since a < ∗x,
S is a set of real numbers that is bounded
above, so it has a least upper bound z. As-
sume that |z−a| /∈ I(∗R). Then there is some
w ∈ R such that |∗z − a| > ∗w. Suppose
that ∗z < a, then a − ∗z > ∗w implies that
∗z+ ∗w = ∗(z+w) < a, which in turn implies
z+w ∈ S and z is not a least upper bound of
S. So, we must have a < ∗z. This implies that
∗z−a > ∗w, and therefore a < ∗(z−w) < ∗z.
But, z − w is an upper bound for the set S.
This contradicts the fact that z is the least
upper bound of S. Hence, ∗z − a = ε for
some ε ∈ I(∗R), which implies that a ∈ µ(z).
Therefore F(∗R) ⊆

⋃
{µ(x) : x ∈ σR}.

Theorem 3.6 (Transfer Principle [7]). Let φ
be any first order statement. Then φ holds in
R if and only if ∗φ holds in ∗R.
A first order statement φ in R (or ∗φ in ∗R) is
one referring to elements (fixed or variables)
of R (respectively, ∗R), that uses the usual
logical connectives and (∧), or (∨), implies
(⇒) and not (¬). Quantification may be

done over elements but not over relations or
functions; i.e., ∀x, ∃y are allowed, but ∀f , ∃R
are not.

Example 3.7. The density of the rationals in
the reals can be written as

∀x∀y(x < y → ∃z(z ∈ Q ∧ (x < z < y))),

an expression meaning, “between every two
reals there is a rational”. From the transfer
principle we can therefore immediately con-
clude that the statement is true in ∗R; i.e.,
that the hyperrationals are dense in the hy-
perreals.

4. Topology on R:
When we wish to examine the continuity, or
otherwise, of a function f at a point a we find
it necessary to consider that function’s behav-
ior at all points sufficiently near to a, if we
are applying the standard criterion. In the
case of the nonstandard criterion we would be
concerned with all points infinitely close to a.
What connects the two approaches is the fun-
damental idea of a neighborhood of a point.

Definition 4.1 (Standard Neighborhood [20,
21]).
If a is any point in R and if r ∈ R+, then we
denote by B(a, r) the set of all real points x
whose distance from a is less than r:

B(a, r) = {x ∈ R : |a− x| < r}.

Any set M ⊆ R will be called a neighborhood
of a point a ∈ R iff there exists some r > 0
such that

a ∈ B(a, r) ⊆M.

Theorem 4.2 (Nonstandard Neighborhood
[12]).
A set M ⊆ R is a neighborhood of a point
a ∈ R iff every hyperreal x which is infinitely
close to a necessarily belongs to the nonstan-
dard extension ∗M of M ; i.e., M ⊆ R is a
neighborhood of a ∈ R iff:

µ(a) ⊆ ∗M.
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Proof. First, let M be a neighborhood of
a. Then there exists r0 ∈ R+ such that
B(a, r0) ⊆ M . Let x = [A] ∈ ∗R be such
that x ∈ µ(a). Then for any real r ∈ R+ we
have |a − An| < r for almost all values of n;
in particular this is true for r0. It follows that
An ∈ B(a, r0) ⊆M for almost all values of n.
So that x ∈ ∗M .
On the other hand, let µ(a) ⊆ ∗M and suppose,
on the contrary, that M is not a neighbor-
hood of a. Then for each n ∈ N we can
find a point An ∈ R such that:

|a−An| <
1
n

and An ∈ R−M.

But this means that x = [A] is a hyperreal
which belongs to µ(a) but not to ∗M , a contra-
diction. Hence M is a neighborhood of a.

Using Theorem (4.2), we can define the
open sets in R as follows.

Definition 4.3 (Nonstandard Open Set [1]).
A set A ⊆ R is open iff for every x ∈ A we
have µ(x) ⊆ ∗A. (In other words: for any
x ∈ A and y ≈ x, we have y ∈ ∗A).

Theorem 4.4. [19, 22] Let A ⊆ R, p ∈ R.
Then:

(i) p is an accumulation point of A iff µ(p)
∩ ∗A 6= ∅. (In other words: ∃ y ∈ ∗A
such that p ≈ y but p 6= y).

(ii) p is an isolated point of A iff µ(p) ∩
∗A = {p}.

Proof. (i) Let p ∈ R be an accumulation point
for A ⊆ R. Then,

∀x((x ∈ R+)⇒ ∃ y((y ∈ A) ∧ |y − p| < x)).

Then, by transfer principle, we have

∀x((x ∈ ∗R+)⇒ ∃ y((y ∈ ∗A)∧ |y−p| < x)),

so that y ∈ µ(p) ∩ ∗A.
Conversely, assume that µ(p) ∩ ∗A 6= ∅. By
Theorem (4.2), µ(p) ⊆ ∗(−w + p, p + w)

∀w ∈ R+. Hence, letting y ∈ µ(p) ∩ ∗A and
w ∈ R+, we have

∃ y((y ∈ ∗A) ∧ |y − p| < w),

so that, by transfer principle, we have

∀x((x ∈ R+)⇒ ∃ y((y ∈ A) ∧ |y − p| < x)).

Hence p is an accumulation point for A.
(ii) Suppose that p is an isolated point for A.
Then there exists some w ∈ R+ such that

(−w + p, p+ w) ∩A = {p}.

Hence, by transfer principle, we have ∗(−w +
p, p + w) ∩ ∗A = ∗{p} = {p}, and since
p ∈ µ(p) ⊆ ∗(−w + p, p + w), we have µ(p)
∩ ∗A = {p}.
Conversely, suppose that p is not an isolated
point of A, there is a sequence xn ∈ A, xn 6=
p with xn→ p. Hence, by transfer principle,
for any Λ ∈ ∗N, there is some pΛ ∈ ∗A such
that pΛ ≈ p; i.e., pΛ ∈ µ(p) and so pΛ ∈ µ(p)
∩ ∗A. Therefore µ(p) ∩ ∗A 6= {p}.

Definition 4.5 (Point of Closure [1]).
A point x ∈ R is said to be a point of closure
of a set F ⊆ R iff there exists y ∈ ∗F such
that x ≈ y.

Definition 4.6 (Nonstandard Closed Set
[1]).
A set F ⊆ R is closed iff y ∈ ∗F and y ≈ x ∈ R
always implies that x ∈ F . (In other words:
µ(x) ∩ ∗F 6= ∅ implies x ∈ F for each x ∈ R).

Theorem 4.7. F ⊆ R is closed iff its comple-
ment G = R− F is open.

Proof. Suppose that G is open and let y be
any hyperreal in ∗F . If x := st(y) ∈ G, then,
since G is open, we must have

µ(x) ⊆ ∗G = ∗(R− F ) = ∗R− ∗F.

In particular y ∈ ∗R− ∗F , which is a contra-
diction. Hence x must belong to R − G = F
and so, by Definition (4.6), F is closed.
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Conversely, suppose that F is closed and let
x be any point of G. If there exists y ≈ x
such that y ∈ ∗F = ∗(R−G), then, since F is
closed, we must have x ∈ F = R − G, which
is a contradiction. Hence,

µ(x) ⊆ ∗R− ∗F = ∗(R− F ) = ∗G,

and so G is open.

Theorem 4.8 (Boundedness [19]).
A nonempty set A ⊆ R is bounded iff ∗A ⊆
F(∗R).

Proof. Suppose that A is bounded. Then
there is some positive real number x such that,
for each y ∈ A, |y| ≤ x. By transfer principle,
for any a ∈ ∗A we have |a| ≤ ∗x. Conse-
quently, ∗A ⊆ F(∗R).
Conversely, if A is not bounded, then for
any n ∈ N there is some xn ∈ A such that
|xn| > n. Hence, by transfer principle, for
any Λ ∈ ∗N there is some pΛ ∈ ∗A such that
|pΛ| > Λ. Choose Λ ∈ N∞ = ∗N − N. Then
pΛ /∈ F(∗R). Hence ∗A * F(∗R).

Theorem 4.9 (Continuity [1]).
A function f : R → R is continuous at a ∈ R

iff ∗f(x) ≈ ∗f(a) whenever x ∈ ∗R and x ≈ a.

Proof. Suppose that f is continuous at a ∈ R
and let x be a hyperreal such that x ≈ a. We
have to prove that |∗f(x)− ∗f(a)| < ε for each
ε ∈ R+. For any such ε choose δ ∈ R+ such
that

|y − a| < δ ⇒ |f(y)− f(a)| < ε ∀ y ∈

R. Then, by transfer principle, we have

|y − a| < δ ⇒ |∗f(y)− ∗f(a)| < ε ∀ y ∈ ∗R.
Taking y = x, since x ≈ a, we have |x−a| < δ
and so |∗f(x)− ∗f(a)| < ε.
Conversely, assume that ∗f(x) ≈ ∗f(a)
whenever x ≈ a, and let ε ∈ R+ be given.
Pick any positive infinitesimal δ ∈ R+. Then
x ∈ ∗R and |x − a| < δ implies x ≈ a; so, by
assumption,

∃ δ ∈ ∗R, δ ∈ R+, (|x − a| < δ ⇒ |∗f(x) −
∗f(a)| < ε).
Then, by transfer principle, we have

|x− a| < δ ⇒ (|f(x)− f(a)| < ε∀x ∈ R).

Hence f is continuous at a.

Theorem 4.10. [12] A function f : R → R
is continuous (on R) iff the inverse image
f−1(A) = {x ∈ R : f(x) ∈ A} of any open
set A is itself always an open set.

Proof. Suppose that f is continuous and let A
be an open set in R and x ∈ f−1(A). Then
f(x) ∈ A. If y = [B] ∈ ∗R is such that y ≈ x,
then, by the continuity of f ,

∗f(x) ≈ ∗f(y).

But, since A is open, this implies that ∗f(y) ∈
∗A. This means that f(Bn) ∈ A for almost all
n and therefore that Bn ∈ f−1(A) for almost
all n. Thus y ≈ x always implies that y ∈
∗(f−1(A)), and so f−1(A) is an open set.
Conversely, suppose that the inverse image
under f of every open set A is always itself an
open set. Let x ∈ R and y ∈ ∗R be such
that y ≈ x. If it is false that ∗f(x) ≈ ∗f(y),
then for some r ∈ R+ we must have |∗f(x) −
∗f(y)| > r. Thus, ∗f(y) /

∈ ∗A where

A = (f(x)− r, f(x) + r).

It follows that y /∈ ∗(f−1(A)). This contra-
dicts the hypothesis that f−1(A) is open and
yet we have

y ≈ x ∈ f−1(A).

Definition 4.11. [1] A set A ⊆ R is compact
iff for each b ∈ ∗A there is some p ∈ A such
that b ∈ µ(p) (i.e., b ≈ p) iff ∗A ⊆

⋃
{µ(p):

p ∈ A}.
Theorem 4.12 (Heine−Borel [12]).
A nonempty A ⊆ R is compact iff it is closed
and bounded.
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Proof. Assume that A is compact. Using The-
orem (3.5), we have ∗A ⊆

⋃
{µ(p) : p ∈

A} ⊆ F(∗R). Then, by Theorem (4.8), A is
bounded. Now let µ(q) ∩ ∗A 6= ∅ for some
q ∈ R. Since ∗A ⊆

⋃
{µ(p) : p ∈ A}, µ(q)

∩ µ(p) 6= ∅ for some p ∈ A. Hence Theorem
(3.5) implies that q = p. Thus q ∈ A. Hence,
by Definition (4.6), A is closed.

Conversely, assume that A is closed and
bounded. Since A is bounded, by Theorem
(4.8), we have ∗A ⊆

=

⋃
{µ(p) : p ∈ R}

F(∗R). Also, A 6= R. Since A is closed, Def-
inition (4.6) implies that µ(q) ∩ ∗A = ∅ for
any q ∈ R − A. Thus ∗A ⊆

⋃
{µ(p) : p ∈ A}.

Hence, by Definition (4.11), A is compact.

Theorem 4.13 (Bolzano−Weierstrass [12]).
If A ⊆ R is an infinite, compact subset of R,
then every infinite subset of A has an accumu-
lation point in A.

Proof. If A has an infinite subset B, then we
can choose a sequence Cn of distinct points of
B which defines a hyperreal y = [C]. Then
y ∈ ∗A (since Cn ∈ B ⊆ A for all n), y is fi-
nite (since A is bounded) and x = st(y) exists
and belongs to A (by compactness of A and
Definition (4.11)). Finally, x ≈ y but x 6= y
(since the Cn are all distinct). It follows from
Theorem (4.4) that x ∈ A is an accumulation
point of B.
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