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The polarization-dependant reflection spectra of fiber Bragg grating (FBG) sensors in polarization-
maintaining fibers are influenced by shear strain. This influence can be evaluated from a tensorial coupled-
mode theory approach. Yet, this approach requires the numerical integration of the four coupled-mode equa-
tions. We present an easy to handle, completely analytical treatment of the polarization-dependent reflection
spectra of FBGs. We derive the required equations and compare the results to the numerical integration of
the four tensorial coupled mode equations. © 2009 Optical Society of America
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Fiber Bragg gratings (FBG) are currently being in-
vestigated for their employment as multiparameter
strain sensors [1–5]. FBGs written into polarization-
maintaining fibers (PMFs) exhibit two narrow reflec-
tion peaks at the Bragg wavelengths �B,p and �B,s cor-
responding to the two modes of polarization, p and s.
These modes possess two different effective refractive
indices ne,p/s yielding the two differing Bragg wave-
lengths from the Bragg condition �B,i=2ne,i�, where
� is the grating period. Both ne,i and � are functions
of the strain applied to the fiber at the position of the
FBG, represented by the strain tensor ē. It has been
suggested to add a second FBG at the same position
but at a strongly different wavelength such that four
individual parameters can be extracted from the
FBG’s position. Then the principal strains, i.e., the
diagonal entries of the strain tensor and the tem-
perature, can be reconstructed [6]. A requirement is
that the influence of the off-diagonal strain tensor en-
tries, namely the shear strains, on the spectral re-
sponse of the FBG are negligible.

However, these shear strains, explicitly the exy
component, do influence the spectral response, as we
recently pointed out [7,8]. This influence may be cal-
culated by a tensorial coupled-mode analysis, consid-
ering the four full guided modes of the polarization-
maintaining fiber. The results show that a polari-
zation cross coupling between the modes of orthogo-
nal polarization is induced by the shear strain. This
cross coupling is overlapped by the characteristic
forward–backward coupling of the grating. As a re-
sult, a complicated spectral response of the reflected
amplitudes of the two polarization directions can be
observed that is strongly distorted with respect to the
original, unloaded response. This has implications for
the extraction of the measurand, the Bragg wave-
lengths �B,i, and in turn the reconstruction of the di-
agonal strain tensor entries and the temperature, as
we discuss in [9].

The tensorial coupled mode analysis [7] or a trans-
fer matrix method [8] is able to predict the spectral
response of the shear strain loaded FBG. However,

this prediction can only be conducted by either nu-
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merically integrating the coupled-mode equations or
numerically performing the transfer matrix ap-
proach. Yet, to gain further insight into the problem
and possibly derive a solution for it, a manageable
analytical solution is required that either approxi-
mates the problem well enough or ideally solves it ex-
actly. In this work, we demonstrate how such a solu-
tion can be constructed and how it approximates or
matches the numerical solution from the tensorial
coupled mode analysis. We therefore consider an
FBG that is subjected to a strain tensor with shear
strains. This situation may arise in an application
where the FBG is embedded in a host material. A
treatment of shear strains within embedded FBGs
has also been given by van Steenkiste and Springer
[10], yet this is not applicable to the case in question,
since it does not consider the projection of the funda-
mental modes of the polarization-maintaining mea-
surement fiber onto the perturbed fundamental
modes of the shear strain loaded FBG, as will be
shown in the following treatment. It is this projection
that leads to the observed polarization cross cou-
pling, and therefore to the distortion of the Bragg
grating spectra.

The mechanical loading of the host material will
result in a strain tensor within the FBG that may, in
general, take an arbitrary form. From Pockels law of
photoelasticity [11] the change in the impermeability
tensor B̄ upon a load represented by a strain ē within
the fiber may be computed. In a weakly guiding opti-
cal fiber only the transversal components of the fields
possess a noteworthy amplitude [12], and thus the
longitudinal field components are neglected.

From Maxwell’s equations a vectorial wave equa-
tion may be derived for the transversal field compo-
nents Dt= �Dx ,Dy�T, which for homogeneous media in
the direction of propagation takes the form [13]

�Bxx − ne,i
−2 Bxy

Bxy Byy − ne,i
−2� · Dt = M� i · Dt = 0. �1�

The effective refractive indices of the p- and the

s-polarized mode ne,p and ne,s may be found from the
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requirement that Eq. (1) possesses a solution and
hence the determinant of M� i vanishes. Equation (1)
only has nontrivial solutions if M� i exhibits off diago-
nal entries, viz. Bxy is nonzero and hence the shear
strain component exy is nonzero. Yet, for the case
where Bxy is zero, the analytical solution of the prob-
lem is known [14,15]. The effective refractive indices
are thus given by [13]

ne,p/s
−2 =

�Bxx + Byy� ± ��Bxx − Byy�2 + 4Bxy
2

2
. �2�

We derive the displacement fields of the fundamental
modes of the loaded FBG by solving the wave equa-
tion (1). This yields for the displacement fields of the
p- and s-modes of the loaded fiber

D̃p = �−
M1,12

M1,11
,1	T

, D̃s = �−
M2,12

M2,11
,1	T

, �3�

where all variables in the coordinate system of the
loaded FBG are indicated by the � symbol. To obtain
the polarization, we compute the normalized electric
fields Ẽp ,Ẽs of the modes by

Ẽj = B · D̃j/
B · D̃j
. �4�

The PMF guiding the light to the FBG is assumed
to have its fundamental modes polarized parallel to
the coordinate axes x and y (Fig. 1). Thus, the polar-
ization of these fundamental modes can be approxi-
mated by Ep= �1,0,0�T and Es= �0,1,0�T. The ampli-
tudes of the four modes in the PMF are labeled A+
= �Ap+,As+�T for the forward-propagating modes and
A−= �Ap−,As−�T for the backward-propagating ones.
The amplitudes of the modes inside the FBG are la-
beled Ãj accordingly.

We now know the polarization of the modes of the
loaded FBG. To find the amplitudes of the fundamen-
tal modes of the loaded FBG upon an arbitrary illu-
mination, a projection of the PMF modes onto the
FBG modes is required. This projection is found from
the continuity requirement of the transversal electric
fields, yielding

Fig. 1. FBG subject to a mechanical load �ē�. The funda-
mental modes of the FBG change their polarization due to

¯
the mechanical perturbation B.
A+ = �Ẽp,x Ẽs,x

Ẽp,y Ẽs,y
� · Ã+ = Q� · Ã+. �5�

In the fundamental system of the loaded FBG, the
coupled-mode equations for polarization cross cou-
pling are decoupled. We can thus treat the problem
for each mode separately, by considering the
forward–backward coupling induced by the grating
structure alone. For this problem, the analytical so-
lution is known, see for example [14]. It is described
by the complex reflection coefficient �i=Ai−/Ai+ for
mode i, which depends on fixed parameters such as
the length of the grating and on variable parameters
such as the grating period � and the effective refrac-
tive index ne,i of the corresponding mode. If we as-
sume that the fixed parameters do not change in an
actual measurement situation, the parameters of the
analytical solution in the fundamental system of the
loaded fiber may be described by �̃i=��� ,� ,ne,i�. For
the two modes of polarization the two complex reflec-
tion coefficients may be summarized in the matrix

�̃� = diag����,�,ne,p�,���,�,ne,s��T. �6�

From these definitions, the amplitudes of the re-
flected modes in the fundamental system of the
loaded FBG are given by

Ã− = �̃� · Ã+. �7�

Equations (5) and (7) then yield

A− = Q� · Ã− = Q� �̃� · Ã+ = Q� �̃�Q� −1 · A+ �8�

Equation (8) can be interpreted as follows: First
the modes of the fiber guiding the light to the FBG
are projected onto the fundamental modes of the
loaded FBG. In the system of fundamental modes, no
polarization coupling takes place, and the conven-
tional reflection coefficients are employed to compute
the amplitudes of the reflected fundamental modes.
The reflected fundamental modes are then projected
back onto the fundamental modes of the fiber. The
last step includes the polarization mode coupling and
generates the distorted spectra.

To compare the theoretical results with the nu-
merically integrated four-mode coupled-mode theory
we compute a wide range of reflection spectra with
different parameters of the FBG, all of which show a
close agreement with the derived theory. One par-
ticular example is given in Fig. 2. The figure shows a
simulation of a 3-mm-long FBG with a refractive in-
dex modulation amplitude �n=1�10−4 in a PMF
with a beat length LB of 3.5 mm.

The shear strain is set to exy=0.5�10−3 and exy=1
�10−3, which could arise in an application where the
FBG is embedded in a laminated composite, such as
in [16], with the difference in the transversal far-field
strains ed

� being 6400 �m/m [10] and the fibers’ prin-
cipal axes being oriented at 45° to the coordinate sys-
tem of the far-field strains and thus transformed fol-

lowing the derivation given in [7]. The illuminating
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amplitudes are chosen to be A+= �1,1�T. The coupled-
mode theory solution closely matches the presented
analytical solution, although a small deviation in the
peak amplitude may be observed.

The results for a different FBG with a beat length
of 4.2 mm and a refractive index modulation ampli-
tude of �n=0.5�10−4 are shown in Fig. 3. Addition-
ally we choose the light source polarization only in
the x direction using A+= �1,0�T. The polarization
mode coupling can easily be observed in this case as
the reflected light shows an intensity in both polar-
ization directions.

Figure 4 illustrates the results of a grating 7 mm
in length, with incident illumination set to A+
= �0.3,1�T. The beat length is set to 10.6 mm. Again
both results are in close agreement.

Summing up, we demonstrated the analytical
treatment of shear strain loaded fiber Bragg grating
sensors. We derived the required transformation rule
from a vectorial wave equation and demonstrated
that the results closely match those of the tensorial
four-wave coupled-mode approach we previously pre-
sented [7]. This analytical treatment may allow the

Fig. 2. Results for a grating with LB=3.5 mm, exy=1
�10−3, L=3 mm, and �n=1�10−4.

Fig. 3. Results for a grating with LB=4.2 mm, exy=1
−3 −4
�10 , L=3 mm, and �n=0.5�10 .
derivation of algorithms capable of processing the
spectral information reflected from shear strain
loaded FBGs in such a way that the actual value of
the shear strain may be extracted. This would allow
for a true reconstruction of the strain tensor at the
FBG’s sensor position.
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