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Abstract: The two-fluid equations are used to derive a model of
collisional drift waves for cylindrical magnetized plasmas. Both the
radial electron temperature variation and the sheared Ex B rotation
in the plasmas have been taken into account. It is found that the
presence of the Ex B rotation leads to an important modification of
the theory of drift waves derived by Aebischer H.A. and Sayasov
Yu.S. (1988). The theory is applied to an experimental data of
helium plasma using Runge-Kutta integration method. Our
calculation shows that the temperature variation and the ExB
rotation are important in the predictions of drift wave frequency and
radial position of the maximum wave amplitude.
PACS: 52.25.Xz, 52.35-g,52.35.Fp,52.35Kt, 52.35Ra
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COLLISIONAL DRIFT WAVES OF...

1. Inroduction

Universal instabilities occur as a result of gradients in density and
temperature in a plasma. In laboratory conditions, any finite plasma
confined by a static magnetic field possess these gradients, hence the
resulting waves are called “universal instabilities”. These waves are low
frequency oscillations ® <<, (where w_, is the electron cyclotron

frequency) propagating azimuthaly mainly perpendicular to both the
magnetic field and the gradients with the well-known electron diamagnetic
drift velocity V, , so it is termed “drift waves” or “drift instability”. Drift

waves are chracterized by their azimuthal mode number m (number of

cycles occuring azimuthally). Usually they are found to localize where the

radial plasma density gradient is largest: a region which typically falls about

midway between the center of the column and the edge [1, 2].

The drift instability has been observed in many devices both linear
and toroidal, and in both the collisionless and collisional dominated regimes
[2-10]. The instability amplitude can attain very high levels and in many
cases drift waves lead to anomalous transport of plasma across magnetic
field lines [5, 6, 11, 12]. The overall appearance of the drift mode and its
harmfull effect on plasma confinement have made it a prime candidate for
both theoretical and experimental study.

In the last few years, some theoretical work has been done in
cylindrical plasma geometry. In these papers, which always use the two-
fluid equations of motion [2, 4, 5, 7], some simplifying theoretical
assumptions are made that are inconsistent with the real situation as,

(i)  The electron- density distribution is usually taken into account, but the
electron-temperature distribution is always assumed to be constant. In
fact, however, in cylindrical plasmas, the electron temperature drops
dramatically from the center to the edge [13, 14]. Therefore, the
variation of the radial electron temperature should be considered.

(i) The radial electric fields are often not considered. This does not make
much physical sense, since in cylindrical plasma, the particles diffuse
in a direction opposite the gradient in density. The step length is the
magnitude of the Larmor radius r, which is the radius of gyration. As

a result, the ions move faster than electrons because of their higher
Larmor radius, and hence a radial electric field is build up in the
direction of density gradient as shown in Fig. 1 [1].

When drift waves occur in a plasma column which has a radial electric
field, the drift-wave frequency is affected by plasma column rotation
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by an “Ex B drift”. The frequency of plasma column rotation o,

caused by the é X LI} drift is given by [1, 2]

m E
0, =—— 1
" r B, M

In his work, Zhang [14] had considered this field, but he had been
eliminated the electron temperature oscillation in the theory. He also
had been considered a collisionless plasma.

In the present paper, we show that the inclusion of temperature

gradients and Ex B rotations is essential and important in the
predictions of drift wave frequency and radial amplitude distribution.
We first formulate our theory independently of any given laboratory
plasma, using the full non-viscous electron-energy equation and
considering the radial dependent of the collision frequencies, making
assumptions that are usually well satisfied in the plasma used to study
drift waves, so that the theory is valid for a variety of plasmas. We
then apply it to specific experimental data from [4] and demonstrate
its usefulness.
The outline of the paper is as follows. In sec. 2, we formulate our
theory based on thelinclusion of tl}e ellectron-temperature variations and the

radial electric field E (and hence E x B rotation). In sec. 2.1, the basic two-
fluid hydrodynamical equations are given. In sec. 2.2, we apply these
equations to drift waves and derive the final differential equation for the
oscillating potential, the eigenvalue of which is the complex drift-wave
frequency. From the eigenfunction, representing the radial distribution of
the oscillating potential, the radial distributions of all other oscillating
quantities can be calculated with the formula given. Section 3 is a
description of the numerical method used to solve the complex-eigenvalue
problem. Section 4 presents the numerical results of the application of our
theory to experimental data from [4] and the comparison of the theoretical
and experimental results. Section 5 gives our conclusions.

2. Formulation of The Theory
2.1 Basic Equations

We shall consider a weakly ionized cylindrical low-f plasma
(coordinates r,0,z) in which collisions between charged particles and
neutrals are important but coulomb collisions can be neglected [13]. This
plasma is immersed in a strong, constant and homogeneous magnetic field
pointing in the axial direction Z:
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B, =B,2 )
The two-fluid equations (a =e, 1) are as follows;
(i) The equation of motions [15] are;

r rr r r r r r
H(zn’1a|:aa‘/: +(‘/(z v)‘/(z:|:_vpa +e,n (E+‘/( XB())_Inanava‘/a (3)

a oL

1
where collisions are represented by the drag term m n, v V, .

FIG. 1 CYLINDRICAL PLASMA COLUMN. GRADIENT IN DENSITY
AND TEMPERATURE GIVE RISE TO THE ELECTRON (ION)
DIAMAGNETIC VELOCITY (AFTER CHEN, 1984).

(ii) The equation of continuity [16] is;

r r
agf +V-(n,v,)=0 4)
(iii) The equations of state as we take the ideal gas law [17] are;
P, =nK,T, (%)

(iv) The non-viscous electron-energy equation in its reduced form, i.e. the
kinetic energy and the Ohmic dissipation terms have been eliminated with
the aid of the electron equations of motion and continuity [18]:

3 (o I T rr rr
En{gw V]KT =-V-q.-nK,TV-V, (6)
E]e is the electron thermal flux vector.
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The system of equations will be closed with the quasi-electrostatic
1 1
approximation as E=-V¢ and the assumption of quasi-neutrality as

n,=n,.

2.2 Second Order Differential Equation For Drift Waves

Equations (3)-(6) can easily be solved by the procedure of
linearization. By this we assume that the amplitude of oscillation is small.
Thus, terms with higher power of amplitude factors can be neglected [1].
The most important features in identifying the drift instability are the
oscillation (fluctuation) level in plasma density, electron temperature and
electrostatic potential. We separate th? dependent variables, namely the

particle density n_, the fluid velocities V, , the electric potential ¢, and the
electron temperature T, into two parts: an “equilibrium” part, indicated by

a subscript 0, and a comparatively small oscillating perturbation part
indicated by a subscript 1. Considering the propagation properties of drift

waves mentioned above, we can represent n,,V, ,¢ and T, in the form [13]

\Pa — \Pao + \Pal (r)ei(m9+kzzf(,u t) (7)
where o is the complex drift wave frequency given by
0=0,+Ii0, (8)

Where o, is the real part of @, and imaginary part o, represents the

growth rate of the corresponding drift wave mode m.

Applying the general set of equations (3)-(6) to drift waves, and
adopting the following assumptions as described in different literatures [2,
9, 14], we have

()The ions are relatively cold: T, << T,. This allows us to neglect the
pressure gradient — VP, and the ion drift velocity V,, in the ion equation of

motion and the continuity equation.

[13] indicated that T, is usually 5-6 times smaller than T, in
plasmas used to study drift waves, so the ions are considered to be cold
(];O =~ 0).

(ii) The applied magnetic field is strong enough such that the total electron
collision frequency is much lower than the electron cyclotron frequency:
v,<<w,. This allows us to neglect the collision term in the electron

1
motion perpendicular to B,. This assumption further allows us to assume
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1
that the electron diamagnetic velocity V, has a component in the 0 -
direction only. It follows from the equilibrium electron equation of motion

that,

r r
Vo = ‘/de ==
¢ eB,

©)

k;T,( 1 dT, 1 dn, ).
€ € + € 9

T, dn, dr
The temperature-gradient term enters naturally when T, is allowed to vary

radially in a magnetized plasma. For simplicity, let us introduce the
following shorthand notation:

r 1 dn, 5 ro1dT,
K= r, K' = < f
n, dr T, dr
So equation (9) becomes:
r k. T, A
V,=—<(K'+K) (10)
¢ eB,

The thermal flux vector é]e can also be assumed to be parallel to the

magnetic field,
and is given by [18]

bo=2,%%s (10

Z

where A, is the thermal conductivity along the magnetic field B,.

(111) We assume a sheared radial electric potent1a1 ¢0( ) i.e. an electric field

E in the direction of Vn this field produces an E X B drift velocity VE,
r E X B
\%

E:

X Bo (12)

0

(iv)The plasma may carry a current along B, which can be represented by a

drift of the electrons at speed u, in the z-direction.

(v)The phase velocity of the drift wave parallel to EO is much higher than

1
kBTi“JZ . This allows us to neglect ion motion

z mi

the ion thermal velocity ® - {
k

parallel to EO .
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(vi)The plasma is quasi-neutral at all times: n, = n,. The condition required
1

for this approximation to be valid is that the Debye length ;- (“:OI‘B}JQ of
n,e

the plasma is small compared with the physical size of the plasma L
(Ap << L) [10]. This assumption implies that n, =n,=mn, and
n, =n, = n, atall times.

(vi)The drift wave frequencies are low: o << o << o, [5].

With the seven assumptions stated above, and neglecting electron
inertia, we obtain the following set of linearized equations from the general
hydrodynamical equations (3)-(6)

—ion,mV, =-en,V ¢ —en,V ¢,+en, BV, xz+en,V,Bi-mn,v.V, (13)
) 1 On, r r rr
—ion, +—8—9‘VE +Vn, -V, +n,V, -V, =0 (14)
r

0= —kBHCIIVLTCO - kB];oIVLnel - kBIVL(];l n, )+ eHCIIVLd)O + eneOIVLd)l
r
—eBn,V, xz-eBn, (V,, +V, )

(15)
0=ik,(~k,T,n, —kyn, T, +n,e¢ )-my.n,V, (16)
. V,+V, on, dn, rr
—ilw-o)n, +-—%—E <4V < 4n, V-V, =0 (17)
¢ r 00 ¢ dr ¢ ¢
3 , m 2
“n, {kBTeo V.K +1(Vde—(a) ~ o, —a)E)jkBTe, } =-A,k,’k,T,
—ikBTeO (a) -0, —a)E)ne, +kBTeO [i\/;emne, +n, Ve,,Kj
r
where
o, =k,u, (19)
and

0, =kV, =2 =T (20)

represent the drift wave frequency due to the electron motion parallel B,

and E x B rotation respectively. Equation (13) is the ion equation of motion,
(14) is the ion equation of continuity, (15) is the electron equation of motion
perpendicular to the magnetic field lines, (16) is the electron parallel
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equation of motion, (17) is the electron equation of continuity, and (18) is
the full non-viscous electron-energy equation.

It is possible to reduce the above system of equations to one single
ordinary differential equation for the oscillating potential ¢, by the
procedure described below. The intermediate formulas that will be obtained
are useful to describe the drift wave phenomena and to reveal important
relations between the physical quantities.

The linearized ion equation of mlotion (13), is giving us the

expression of the oscillating ion velocity V,, in terms of the oscillating

potential ¢, :

r 1| .o+iv, | F n, r n, n n r n, . r n, A
Vio=— i—| V¢ +—V,¢p,— B —V.i|+2xV ¢, +——2xV¢p,—- B ——V,0

BO O)Ci Hi" Hi" o 0

1)
Substituting this expression into the ion equation of continuity (14), yields
the ion-density oscillation n, in terms of ¢,:

n, e | o+iv, 0’ 10¢, m’ 0 O 4

1 — P2 ¢;l +_ﬂ__2¢l+Kﬂ +—d¢1
n, kT, (0-w,) or" ror r o ) (0w-o,)

(22)

where p is the ion Larmor radius, but with the electron temperature T, in

the numerator instead of the ion temperature T, [13]:
k,T,

- 2
mia) ci

2

(23)

The procedure for the electron equations is more involved. First, the
electron perpendicular equation of motion (15) can be solved for the
components V,, and V,, . The electron parallel equation of motion (16) can

also be solved for the component V,, of the oscillating electron velocity
V., . This yields

k,T, n, T,
v, ——jne m e Mo (24)
¢ eB, r kBTeO n, Teo
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on, dT, dn, T, de o
k _Tnie_ |7€_T|76_ 0 ‘ + 1 0+ 07]
! B( ¢ or K dr ¢ dr K or J e dr = or (25)

—eByn, (V, +V;)

0
(5]

.k n,
V, =—i—= [kBTeO ——+ kT, - etj)l] (26)
my, n

The above equations can then be substituted into the electron equation of
continuity (17). After mathematical treatments, we have obtained a simple
form for the electron equation of continuity in terms of ¢,,n,, and the

electron-temperature oscillation T, :

v,n, n,
—i(0 -, @, +iv,)n, +——= (kBTC.—efbl)—iEBC Ko =0 (27)
Bl 0

where v, is a shorthand notation for the expression

k,'k,T,
V// = (28)
meve
We then continue by substituting the expression (24) for V,, into the

electron energy equation (18) and solving for the electron-temperature
oscillation T, . We get;

n,

1.]—:?0 {[wde _;w;e] ke(zl +[§0);€ _a)s] : }
n
Bl 0

T, = 1 : (29)
a)z+5(5wde—3a)s)
where
O, =0—-0, —0O (30)
0, =2k} G1)
n,
and
kT, kT,
w,=——TK @, =-—2LTK (32)
eB, r eB, r

If we then substitute equation (30) for T, into the equation of continuity

(27), the electron density oscillation in terms of ¢, can be produced, as
which have done for the ions in (22):
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(v// - iwde)|:wz + ié(o‘)de’F - ws ):l + wde(a)de - wc’lej
i 2 b (33)
He" (v// - st )|:wz + 1% (0‘)(1;F - ws ):l + ws(o‘)de - ;w;ej + iv// (0‘)(1;F - ws ) kB’Te"

where

=, to), (34)

From the quasi-neutrality condition, it then follows that (22) and
(33) can be put equal to each other. This leads to the desired differential
equation for the radial distribution of the oscillating potential ¢, :

&‘Z(T)+B+K(r)}%r(rh{(?(ﬂw)—lf_j}bl(r):o (35)

P

(5]

dr
where
Cluo)-—0=2c_
p \w+1v,; (36)
(V// _iwdc{wz +i§<wdc* _ws):| +wdc(wdc _ngjcj
@ e 2 2

X —

0—-0F . .3 . 3, . .
(v//_lws{wz-'—IE(wdc _ws):|+ws(wdc_5wdc TV 04 —O

with boundary conditions at the plasma beam center r = 0, and the plasma
beam radius r =r, [2,13]

¢, (0) =0, ¢, (ro) =0 (37)
The difference between equation (35) and the equation obtained by
[13] is the Q(r,a)) value. We have noticed that when the plasma column

1
rotation is not considered, and the electron motion parallel to B, is

neglected, then Q(r,) in equation (36) becomes:

Ar.w)=—"——
plo+iv)

(v// _ia)de{a)z _‘_i%(a)de;k _a))i| +a)de(a)de _;a):iej

S (38)
@ (v, —ia))[a)z +1%(a)d: —a))} +a)(a)de —;a);ej+iv// (a)d: —a))

which is the expression obtained by [13]. On other hand, if the radial
electron temperature is also considered constant, i.e.

d]—;() *
it 0, and 0, =0, (39)

then, equation (36) becomes similar to the expression derived by [5] .
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Equations (35)-(37) represent a complex-eigenvalue problem for the
complex drift-wave frequency @ and the complex eigenfunction ¢, (r), the
radial distribution of the oscillating electric potential. It can be solved
numerically, especially for arbitrary given undistributed density and
temperature profiles n,(r) and T, (r). Once ¢,(r) is known, the remaining

oscillating quantities can be computed with the aid of (21)-(34). In addition,
the maximum wave amplitude position of the drift wave can be determined.
This would show where the drift wave localize in the plasma beam region.

3. Numerical Method

Equation (35) is a second order differential equation which predicts an
eigenvalue problem for the complex drift-wave frequency @ and the
eigenfunction ¢, (r), which represents the radial distribution of the
oscillating electric potential. One suitable general strategy for numerical
solution of an eigenvalue problem is an iterative one (this strategy is
sometimes called the “shooting method”). We guess a trial eigenvalue and
generate a solution by integrating the differential equation as an initial value
problem. If the resulting solution does not satisfy the boundary conditions,
we change the trial eigenvalue and integrate again, repeating the process
until a trial eigenvalue is found for which the boundary conditions are
satisfied, such that if one integrates the differential equation (35), starting at
one boundary and considering the boundary condition there, the resulting
solution ¢, (r) automatically satisfies the condition at the other boundary.
The boundary value problem is thus transformed into an initial-value
problem. This can be solved with the aid of the Runge-Kutta integration
method if one transforms the original complex second-order equation (35)
into a set of coupled first-order equations [19].

4. Numerical Results

We apply our theory to the weakly ionized helium plasma described
by [4]. The main plasma parameters are B)= .077T, r,= 2.8cm, kBTe(,Z
3.5ev, v, =2.1x10°, v, =7.7x10°, o, =1.7v,. The drift wave frequency
for m = 6 mode is @, =3.5x10"s™" and the growth rate @, =1x10%s™".
The measured radial number density profile can be approximated by the

relation p(r)= % . 7 ), where a is constant [ 14]. The fitting curve for the
+ 2
a
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measured electron temperature is also approximated as T (r)= % AN
‘ 1+7 / 2)
C

where c is similar to, but smaller than a [14] (a = 7mm, ¢ = 4mm). In such
circumstances, equation (35) becomes:

Co) [ 2 1o w0 a0

du’ u l+u’| du

where
u="L (41)
a
and Q(u,a)) is the same as in equation (36), but r is replaced by u and Lz
by A, where A is:
A=— (42)

and

k,T,

p =4x107| 22 (43)
eB,

To see how the variation of the electron temperature and Ex B

rotation affect the drift-wave characteristics, we solved the radial wave
equation (40) for theoretical plasma which has a racllial Idensi‘[y variation, but
a constant electron temperature in radius and no E x B rotation terms (i.e.
the equation that obtained by [5]). In this process the eigen-frequency for m
= 6 mode is 3.3x10°s" is purely real. To demonstrate that the radial
temperature profile T,(r) influences the radial drift-wave amplitude
distribution, the radial wave equation was also solved for a real laboratory
plasma which has both radial variations of electron density and temperature
(i.e. the equation that obtained by [13]). For this case we find that the eigen-
frequency for m = 6 mode is: w,=4.3x10°s", ®, =0.86x10*s™" ie.
@, >0 This proves the importance of the effect of the electron-temperature
variation and the usefulness of the theory of [13]. The two eigen-functions
for the theoretical and real laboratory plasmas are shown in Fig. 2. Clearly,
the position of the maximum drift-wave amplitude for the real laboratory
plasma moves further towards the plasma edge than in the theoretical
plasma. The maximum wave amplitude is found at 2.39 for the theoretical
case and 2.63 for the real laboratory plasma.
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In the present work, the electric field is included by considering a
sheared electric potential given by ¢,(r)=b, + b,r*, where b, and b, are

constants [20]. This potential produces a sheared electric field E(r) and

hence a non-sheared rotation frequency o, . If E=0 then, @, =0 and the
eigenfunction ¢, (r) and the eigenvalue ® become as those obtained by
[13].

The numerical results of the present work are found for the same
mode number m = 6 as follows: w, =4.9x10°s™", w, =1.1x10*s™" which
is slightly different froml‘[heI measured value given above. This indicates
that the inclusion of the E x B rotation into the theory is important and has

an effect on the drift wave frequency. In Fig. 2 we have plotted the eigen-
function of our th?ory, the distribution of the radial wave shape from the
solution with E x B rotation becomes more pronounced and the maximum
amplitude is shifted further more to the edge of the plasma beam. The
maximum wave amplitude is found at 2.9. ]:hislshift is attributed to the
inclusion of both temperature gradient and Ex B rotation as well as the
density profile in the theory.

— THEDRITICAL PLASMA
“ REALLABORATORY FPLASIA

oo WITH v 5 ROTATION

FIG. 2 THE EIGENFUNCTION ¢, (u) IN ARBITRARY UNITS (a.u.) FOR
m =6 MODE, FOR THE THREE CASES DESCRIBED ABOVE.
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5. Conclusions

We have presented a radial wave equation for drift waves in cylincllriczlll

geometry in which the gradients in electron temperature and the Ex B
rotation are included. Our calculations have been carried out by three
procedures.

In the first procedure, we only consider the gradients in electron density.
The second procedure is concerned with both gradients in electron
density and temperature.

1 1
The third procedure is concerned with E x B rotation in addition to both
gradients in electron density and temperature.
We find that the drift wave frequency and the radial drift wave structure
are irllﬂuenced by the variation of the radial electron temperature and the

Ex B rotation. Therefore the inclusion of temperature variation and
1 1
E x B rotation are very important to theory.
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