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ج للموجات المنحرفة فى البلازما المحصورة بواسطة مجال مغناطيسى معتمدا ذنمو
 على التذبذب فى طاقة الإكترون و الدوران الناشئ عن المجال الكهربي

 درس هذا البحث الموجات المنحرفة في البلازما المحصورة في أسطوانة :ملخص
 ظاهرتيين فيزيائيتين ذ في عين الإعتبارخبواسطة مجال مغناطيسي خطي، مع الأ

 .أساسيتين هما التذبذب في طاقة الإلكترون و الدوران الناشئ عن المجال الكهربائي
لقد وجدت هذه الدراسة أن وجود المجال الكهربي و الدوران الناشئ عنه أدى إلى 
حدوث تغير مهم في نظرية الموجات المنحرفة التي صيغت بواسطة أبشر و 

ة التي تم دراستها طبقت على بلازما الهيليوم بطريقة رنجا النظري). 1988(سياسوف 
 كوتا، و الحسابات الناتجة أوضحت أن الدوران الناتج عن المجال الكهربي و -

التغير في طاقة الإلكترون أدى إلى حدوث تغير في تردد الموجات المنحرفة وسعة 
 .الجهد الكهربي المتذبذب

 
Abstract: The two-fluid equations are used to derive a model of 
collisional drift waves for cylindrical magnetized plasmas. Both the 
radial electron temperature variation and the sheared BE

rr
×  rotation 

in the plasmas have been taken into account. It is found that the 
presence of the BE

rr
×  rotation leads to an important modification of 

the theory of drift waves derived by Aebischer H.A. and Sayasov 
Yu.S. (1988). The theory is applied to an experimental data of 
helium plasma using Runge-Kutta integration method. Our 
calculation shows that the temperature variation and the BE

rr
×  

rotation are important in the predictions of drift wave frequency and 
radial position of the maximum wave amplitude. 
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1. Inroduction 
 Universal instabilities occur as a result of gradients in density and 
temperature in a plasma. In laboratory conditions, any finite plasma 
confined by a static magnetic field possess these gradients, hence the 
resulting waves are called “universal instabilities”. These waves are low 
frequency oscillations ceωω <<  (where ceω  is the electron cyclotron 
frequency) propagating azimuthaly mainly perpendicular to both the 
magnetic field and the gradients with the well-known electron diamagnetic 
drift velocity deV , so it is termed “drift waves” or “drift instability”. Drift 
waves are chracterized by their azimuthal mode number m (number of 
cycles occuring azimuthally). Usually they are found to localize where the 
radial plasma density gradient is largest: a region which typically falls about 
midway between the center of the column and the edge [1, 2]. 
 The drift instability has been observed in many devices both linear 
and toroidal, and in both the collisionless and collisional dominated regimes 
[2-10]. The instability amplitude can attain very high levels and in many 
cases drift waves lead to anomalous transport of plasma across magnetic 
field lines [5, 6, 11, 12]. The overall appearance of the drift mode and its 
harmfull effect on plasma confinement have made it a prime candidate for 
both theoretical and experimental study.  
 In the last few years, some theoretical work has been done in 
cylindrical plasma geometry. In these papers, which always use the two-
fluid equations of motion [2, 4, 5, 7], some simplifying theoretical 
assumptions are made that are inconsistent with the real situation as, 
(i)  The electron- density distribution is usually taken into account, but the 

electron-temperature distribution is always assumed to be constant. In 
fact, however, in cylindrical plasmas, the electron temperature drops 
dramatically from the center to the edge [13, 14]. Therefore, the 
variation of the radial electron temperature should be considered.  

(ii)  The radial electric fields are often not considered. This does not make 
much physical sense, since in cylindrical plasma, the particles diffuse 
in a direction opposite the gradient in density. The step length is the 
magnitude of the Larmor radius Lr  which is the radius of gyration. As 
a result, the ions move faster than electrons because of their higher 
Larmor radius, and hence a radial electric field is build up in the 
direction of density gradient as shown in Fig. 1 [1]. 
When drift waves occur in a plasma column which has a radial electric 
field, the drift-wave frequency is affected by plasma column rotation 
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by an “ BE
rr

×  drift”. The frequency of plasma column rotation Eω  
caused by the BE

rr
×  drift is given by [1, 2] 

               
0B

E
r
m

E =ω                                         (1) 

In his work, Zhang [14] had considered this field, but he had been 
eliminated the electron temperature oscillation in the theory. He also 
had been considered a collisionless plasma.   

In the present paper, we show that the inclusion of temperature 
gradients and BE

rr
×  rotations is essential and important in the 

predictions of drift wave frequency and radial amplitude distribution. 
We first formulate our theory independently of any given laboratory 
plasma, using the full non-viscous electron-energy equation and 
considering the radial dependent of the collision frequencies, making 
assumptions that are usually well satisfied in the plasma used to study 
drift waves, so that the theory is valid for a variety of plasmas. We 
then apply it to specific experimental data from [4] and demonstrate 
its usefulness. 

 The outline of the paper is as follows. In sec. 2, we formulate our 
theory based on the inclusion of the electron-temperature variations and the 
radial electric field E

r
 (and hence BE

rr
×  rotation). In sec. 2.1, the basic two-

fluid hydrodynamical equations are given. In sec. 2.2, we apply these 
equations to drift waves and derive the final differential equation for the 
oscillating potential, the eigenvalue of which is the complex drift-wave 
frequency. From the eigenfunction, representing the radial distribution of 
the oscillating potential, the radial distributions of all other oscillating 
quantities can be calculated with the formula given. Section 3 is a 
description of the numerical method used to solve the complex-eigenvalue 
problem. Section 4 presents the numerical results of the application of our 
theory to experimental data from [4] and the comparison of the theoretical 
and experimental results. Section 5 gives our conclusions. 
 
2. Formulation of The Theory 
2.1 Basic Equations 
 We shall consider a weakly ionized cylindrical low- β  plasma 
(coordinates zr ,,θ ) in which collisions between charged particles and 
neutrals are important but coulomb collisions can be neglected [13]. This 
plasma is immersed in a strong, constant and homogeneous magnetic field 
pointing in the axial direction ẑ : 



COLLISIONAL DRIFT WAVES OF… 

 22

zBB ˆ00 =
r

                                            (2) 
The two-fluid equations (α =e, i) are as follows; 
 (i) The equation of motions [15] are; 

( ) ( ) αααααααααα
α

αα ν VnmBVEnePVV
t

V
mn

rrrrrrrr
r

−×++∇−=







∇⋅+

∂
∂

0
            (3) 

where collisions are represented by the drag term αααα ν Vnm
r

. 
 

 
FIG. 1 CYLINDRICAL PLASMA COLUMN. GRADIENT IN DENSITY 

AND TEMPERATURE GIVE RISE TO THE ELECTRON (ION) 

DIAMAGNETIC VELOCITY (AFTER CHEN, 1984). 

 
 (ii) The equation of continuity [16] is; 

( ) 0=⋅∇+
∂

∂
αα

α Vn
t

n rr
                                   (4) 

(iii) The equations of state as we take the ideal gas law [17] are; 
ααα TKnP B=                                          (5) 

(iv) The non-viscous electron-energy equation in its reduced form, i.e. the 
kinetic energy and the Ohmic dissipation terms have been eliminated with 
the aid of the electron equations of motion and continuity [18]: 

eeBeeeBee VTKnqTKV
t

n
rrrrrr

⋅∇−⋅∇−=





 ∇⋅+

∂
∂

2
3              (6) 

eqr is the electron thermal flux vector. 
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The system of equations will be closed with the quasi-electrostatic 
approximation as φ∇−=

rr
E  and the assumption of quasi-neutrality as 

ie nn = . 
 
2.2 Second Order Differential Equation For Drift Waves 
 Equations (3)-(6) can easily be solved by the procedure of 
linearization. By this we assume that the amplitude of oscillation is small. 
Thus, terms with higher power of amplitude factors can be neglected [1]. 
The most important features in identifying the drift instability are the 
oscillation (fluctuation) level in plasma density, electron temperature and 
electrostatic potential. We separate the dependent variables, namely the 
particle density αn , the fluid velocities αV

r
, the electric potential φ , and the 

electron temperature eT , into two parts: an “equilibrium” part, indicated by 
a subscript 0, and a comparatively small oscillating perturbation part 
indicated by a subscript 1. Considering the propagation properties of drift 
waves mentioned above, we can represent φαα ,,Vn

r
 and eT  in the form [13] 

( ) ( )tzkmi zer ωθ
ααα

−+Ψ+Ψ=Ψ 10                                 (7) 
where ω  is the complex drift wave frequency given by 

IR iωωω +=                                            (8) 
Where Rω  is the real part of ω , and imaginary part Iω  represents the 
growth rate of the corresponding drift wave mode m. 
 Applying the general set of equations (3)-(6) to drift waves, and  
adopting the following assumptions as described in different literatures [2, 
9, 14], we have  
(i)The ions are relatively cold: 00 ei TT << . This allows us to neglect the 

pressure gradient iP∇−
r

, and the ion drift velocity 0iV
r

 in the ion equation of 
motion and the continuity equation. 
 [13] indicated that 0iT  is usually 5-6 times smaller than 0eT  in 
plasmas used to study drift waves, so the ions are considered to be cold 
( )00 ≈iT . 
(ii) The applied magnetic field is strong enough such that the total electron 
collision frequency is much lower than the electron cyclotron frequency: 

cee ων << . This allows us to neglect the collision term in the electron 

motion perpendicular to 0B
r

.   This assumption further allows us to assume 
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that the electron diamagnetic velocity 0eV
r

 has a component in the θ -
direction only. It follows from the equilibrium electron equation of motion 
that, 

θ̂
11 0

0

0

0

0

0

0










+−==

dr
dn

ndr
dT

TeB
Tk

VV e

e

e

e

eB
dee

rr
                  (9) 

The temperature-gradient term enters naturally when 0eT  is allowed to vary 
radially in a magnetized plasma. For simplicity, let us introduce  the 
following shorthand notation: 

       r
dr

dT
T

Kr
dr

dn
n

K e

e

e

e

ˆ1,ˆ1 0

0

0

0

=′=
rr

                          

So equation (9) becomes: 

                                 ( )θ̂
0

0

0 KK
eB

Tk
V eB

e +′−=
r

                                (10) 

The thermal flux vector eqr  can also be assumed to be parallel to the 
magnetic field, 
and is given by [18] 

z
z

Tq e
ze ˆ

∂
∂

−= λ
r                                        (11) 

where zλ  is the thermal conductivity along the magnetic field 0B . 
 
(iii) We assume a sheared radial electric potential ( )r0φ  i.e. an electric field 

E
r

 in the direction of n∇
r

, this field produces an BE
rr

×  drift velocity EV
r

, 

θ̂
0

2
0

0

B
E

B
BE

VE =
×

=

rr
r

                                  (12) 

(iv)The plasma may carry a current along 0B
r

, which can be represented by a 
drift of the electrons at speed 0u  in the z-direction. 

(v)The phase velocity of the drift wave parallel to 0B
r

 is much higher than 

the ion thermal velocity 
2
1

0









>>

i

iB

z m
Tk

k
ω . This allows us to neglect ion motion 

parallel to 0B
r

. 
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(vi)The plasma is quasi-neutral at all times: ie nn = . The condition required 

for this approximation to be valid is that the Debye length 2
1

2
0

0








=

en
Tk eB

D
ε

λ  of 

the plasma is small compared with the physical size of the plasma L 
( LD <<λ ) [10]. This assumption implies that 000 nnn ie ==  and 

111 nnn ie ==  at all times. 
(vii)The drift wave frequencies are low: ceci ωωω <<<<  [5]. 
 With the seven assumptions stated above, and neglecting electron 
inertia, we obtain the following set of linearized equations from the general 
hydrodynamical equations (3)-(6) 
 

⊥⊥⊥ −+×+∇−∇−=− ⊥⊥ 101101010 ˆˆ 0001 iiiiEiiiiiiii VnmrBVenzVBenenenVmni
rrrrr

νφφω   (13) 
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(15) 
( ) zeeeeeeeBeeBz VnmenTnknTkik 1000101 10 νφ −+−−=            (16) 
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1

1
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∂
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where  

01 ukz=ω                                           (19) 
and 

dr
d

Br
m

B
E

r
mVk EE

0

00

1 φ
ω θ ===                         (20) 

represent the drift wave frequency due to the electron motion parallel 0B  
and BE

rr
×  rotation respectively. Equation (13) is the ion equation of motion, 

(14) is the ion equation of continuity, (15) is the electron equation of motion 
perpendicular to the magnetic field lines, (16) is the electron parallel 
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equation of motion, (17) is the electron equation of continuity, and (18) is 
the full non-viscous electron-energy equation. 

It is possible to reduce the above system of equations to one single 
ordinary differential equation for the oscillating potential 1φ  by the 
procedure described below. The intermediate formulas that will be obtained 
are useful to describe the drift wave phenomena and to reveal important 
relations between the physical quantities. 
 The linearized ion equation of motion (13), is giving us the 
expression of the oscillating ion velocity ⊥1iV

r
 in terms of the oscillating 

potential 1φ : 
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
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B
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B
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(21)        
 Substituting this expression into the ion equation of continuity (14), yields 
the ion-density oscillation 1in  in terms of 1φ : 

( ) ( ) 











−
+




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2
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i
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K

r
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rrr
i

Tk
e

n
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(22) 
where ρ  is the ion Larmor radius, but with the electron temperature 0eT  in 
the numerator instead of the ion temperature 0iT  [13]: 

cii

eB

m
Tk

2
2 0

ω
ρ =                                          (23) 

 The procedure for the electron equations is more involved. First, the 
electron perpendicular equation of motion (15) can be solved for the 
components reV 1  and θ1eV . The electron parallel equation of motion (16) can 
also be solved for the component zeV 1  of the oscillating electron velocity 

1eV . This yields 









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φ
                       (24) 
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The above equations can then be substituted into the electron equation of 
continuity (17). After mathematical treatments, we have obtained a simple 
form for the electron equation of continuity in terms of 1,1 enφ , and the 
electron-temperature oscillation 1eT : 

( ) ( ) 01
0

1
//

//1
0

1

0

0

1 =−−++−−− φφ
ν

νωωω K
B
n

r
mieTk

Tk
n

nii e
eB

eB

e
eE      (27) 

where //ν  is a shorthand notation for the expression 

ee

eBz

m
Tkk

ν
ν

0
2

// =                                        (28) 

We then continue by substituting the expression (24) for reV 1  into the 
electron energy equation (18) and solving for the electron-temperature 
oscillation 1eT . We get; 
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e

e
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

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

 ′−

=                (29) 

where  
Es ωωωω −−= 1                                     (30) 

2

0

1
zzz k

n
λω =                                        (31) 

and 

K
r
m

eB
Tk

K
r
m

eB
Tk eB

de
eB

de ′−=′−=
00

00
, ωω                  (32) 

 
If we then substitute equation (30) for 1eT   into the equation of continuity 
(27), the electron density oscillation in terms of 1φ  can be produced, as 
which have done for the ions in (22): 
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( ) ( )

( ) ( ) ( ) 00
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  (33)   

where  

dedede ωωω ′+=∗                                     (34) 
 From the quasi-neutrality condition, it then follows that (22) and 
(33) can be put equal to each other. This leads to the desired differential 
equation for the radial distribution of the oscillating potential 1φ : 
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2
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2
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where 
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,
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with boundary conditions at the plasma beam center r = 0, and the plasma 
beam  radius 0rr =  [2,13] 

( ) ( ) 0,00 011 == rφφ                             (37) 
 The difference between equation (35) and the equation obtained by 
[13] is the ( )ω,rQ  value. We have noticed that when the plasma column 
rotation is not considered, and the electron motion parallel to 0B

r
 is 

neglected, then ( )ω,rQ  in equation (36) becomes: 
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ωω
+
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(38) 

which is the expression obtained by [13]. On other hand, if the radial 
electron temperature is also considered constant, i.e. 

,0
0

=
dr

dTe   and ∗= dede ωω                             (39) 

then, equation (36) becomes similar to the expression derived by [5] . 
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 Equations (35)-(37) represent a complex-eigenvalue problem for the 
complex drift-wave frequency ω  and the complex eigenfunction 1φ (r), the 
radial distribution of the oscillating electric potential. It can be solved 
numerically, especially for arbitrary given undistributed density and 
temperature profiles ( )rn0  and ( )rTe0 . Once ( )r1φ  is known, the remaining 
oscillating quantities can be computed with the aid of (21)-(34). In addition, 
the maximum wave amplitude position of the drift wave can be determined. 
This would show where the drift wave localize in the plasma beam region. 
 
3. Numerical Method 

Equation (35) is a second order differential equation which predicts an 
eigenvalue problem for the complex drift-wave frequency ω  and the 
eigenfunction ( )r1φ , which represents the radial distribution of the 
oscillating electric potential. One suitable general strategy for numerical 
solution of an eigenvalue problem is an iterative one (this strategy is 
sometimes called the “shooting method”). We guess a trial eigenvalue and 
generate a solution by integrating the differential equation as an initial value 
problem. If the resulting solution does not satisfy the boundary conditions, 
we change the trial eigenvalue and integrate again, repeating the process 
until a trial eigenvalue is found for which the boundary conditions are 
satisfied, such that if one integrates the differential equation (35), starting at 
one boundary and considering the boundary condition there, the resulting 
solution ( )r1φ  automatically satisfies the condition at the other boundary. 
The boundary value problem is thus transformed into an initial-value 
problem. This can be solved with the aid of the Runge-Kutta integration 
method if one transforms the original complex second-order equation (35) 
into a set of coupled first-order equations [19]. 
 
4. Numerical Results 
 We apply our theory to the weakly ionized helium plasma described 
by [4]. The main plasma parameters are 0B = .077T, or = 2.8cm, oeBTk = 

3.5ev,  5101.2 ×=iν , 5
// 107.7 ×=ν , //7.1 νω =z . The drift wave frequency 

for m = 6 mode is 15105.3 −×= sRω  and the growth rate 14101 −×= sIω . 
The measured radial number density profile can be approximated by the 
relation ( ) ( )2

2
0

1 a
r

nrn
+

= , where a is constant [14]. The fitting curve for the 
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measured electron temperature is also approximated as ( ) ( )2
2

1 c
r

TrT oe
e

+
= , 

where c is similar to, but smaller than a [14] (a = 7mm, c = 4mm). In such 
circumstances, equation (35) becomes: 

( ) ( ) ( ) ( ) 0,
1

21
12

2
1

22
1

2

=







−+





+
−+ u

u
muQ

du
ud

u
u

udu
ud

φω
φφ          40) 

where 

a
ru =                                          (41) 

and ( )ω,uQ  is the same as in equation (36), but r is replaced by u and 2

1
ρ

 

by A, where A is: 

2

2

ρ
aA=                                         (42) 

and                                      

 









×= −

2
0

82 0
104

eB

Tk eBρ                             (43) 

 To see how the variation of the electron temperature and BE
rr

×  
rotation affect the drift-wave characteristics, we solved the radial wave 
equation (40) for theoretical plasma which has a radial density variation, but 
a constant electron temperature in radius and no  BE

rr
×  rotation terms (i.e. 

the equation that obtained by [5]). In this process the eigen-frequency for m 
= 6 mode is 15103.3 −× s  is purely real. To demonstrate that the radial 
temperature profile ( )rTe  influences the radial drift-wave amplitude 
distribution, the radial wave equation was also solved for a real laboratory 
plasma which has both radial variations of electron density and temperature 
(i.e. the equation that obtained by [13]). For this case we find that the eigen-
frequency for m = 6 mode is: 15103.4 −×= sRω , 141086.0 −×= sIω  i.e. 

0>Iω  This proves the importance of the effect of the electron-temperature 
variation and the usefulness of the theory of [13]. The two eigen-functions 
for the theoretical and real laboratory plasmas are shown in Fig. 2. Clearly, 
the position of the maximum drift-wave amplitude for the real laboratory 
plasma moves further towards the plasma edge than in the theoretical 
plasma. The maximum wave amplitude is found at 2.39 for the theoretical 
case and 2.63 for the real laboratory plasma. 
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 In the present work, the electric field is included by considering a 
sheared electric potential given by ( ) 2

210 rbbr +=φ , where 1b  and 2b  are 

constants [20]. This potential produces a sheared electric field ( )rE
r

 and 
hence a non-sheared rotation frequency Eω . If 0=E

r
 then, 0=Eω  and the 

eigenfunction ( )r1φ  and the eigenvalue ω  become as those obtained by 
[13].  
 The numerical results of the present work are found for the same 
mode number m = 6 as follows: 15109.4 −×= sRω , 14101.1 −×= sIω  which 
is slightly different from the measured value given above. This indicates 
that the inclusion of the BE

rr
×  rotation into the theory is important and has 

an effect on the drift wave frequency. In Fig. 2 we have plotted the eigen-
function of our theory, the distribution of the radial wave shape from the 
solution with BE

rr
×  rotation becomes more pronounced and the maximum 

amplitude is shifted further more to the edge of the plasma beam. The 
maximum wave amplitude is found at 2.9. This shift is attributed to the 
inclusion of both temperature gradient and BE

rr
×  rotation as well as the 

density profile in the theory.  
 

 
 

FIG. 2 THE EIGENFUNCTION ( )u1φ  IN ARBITRARY UNITS (a.u.) FOR 
m = 6 MODE, FOR THE THREE CASES DESCRIBED ABOVE. 
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5. Conclusions 
- We have presented a radial wave equation for drift waves in cylindrical 

geometry in which the gradients in electron temperature and the BE
rr

×  
rotation are included. Our calculations have been carried out by three 
procedures. 

- In the first procedure, we only consider the gradients in electron density. 
- The second procedure is concerned with both gradients in electron 

density and temperature. 
- The third procedure is concerned with BE

rr
×  rotation in addition to both 

gradients in electron density and temperature. 
- We find that the drift wave frequency and the radial drift wave structure 

are influenced by the variation of the radial electron temperature and the 
BE
rr

×  rotation. Therefore the inclusion of temperature variation and 
BE
rr

×  rotation are very important to theory.  
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