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Abstract: The first-order second-degree equations satisfying the Fuchs theorem concerning
the absence of movable critical points, related with Painlevé equations, and one-parameter fam-
ilies of solutions which solve the first-order second-degree equations are investigated.
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1 Introduction

Painlevé equations, PI-PVI, which are second order first-degree equations 𝑣′′ = 𝐹 (𝑣′, 𝑣, 𝑧) where 𝐹 is ra-
tional in 𝑣′, algebraic in 𝑣 and locally analytic in 𝑧 with the Painlevé property, which were first derived at
the beginning of the 20𝑡ℎ century by Painlevé and his school [1]. A differential equation is said to have
Painlevé property if all solutions are single valued around all movable singularities. Movable means that the
position of the singularities varies as a function of the initial values. Painlevé equations may be regarded as
the nonlinear counterparts of some classical special functions. They also arise as reductions of solutions of
soliton equations solvable by the inverse scattering method (IST). Ablowitz, Ramani, and Segur [2] showed
that all the ordinary differential equations (ODE) obtained by the exact similarity transforms from a partial
differential equation (PDE) solvable by IST have the Painlevé property. The Painlevé property confirms the
integrability properties of a PDE. Wiess, Tabor and Carnevale [3] defined a Painlevé property for PDE that
does not refer to that for ODE’s. This method is commonly used to investigate the integrability of a given
PDE [4, 5]. Painlevé equations can also be obtained as the compatibility condition of the isomonodromy
deformation problem. Recently, there have been studies of integrable mappings and discrete systems, in-
cluding the discrete analogous of the Painlevé equations.

The Riccati equation is the only example for the first-order first-degree equation which has the Painlevé
property. By Fuchs theorem, the irreducible form of the first order algebraic differential equation of the
second-degree with Painlevé property is given as

(𝑣′)2 = (𝐴2𝑣
2 +𝐴1𝑣 +𝐴0)𝑣

′ +𝐵4𝑣
4 +𝐵3𝑣

3 +𝐵2𝑣
2 +𝐵1𝑣 +𝐵0, (1)

where 𝐴𝑗 , 𝑗 = 0, 1, 2 and 𝐵𝑘, 𝑗 = 0, 1, 2, 3, 4 are functions of 𝑧 and set of parameters denoted by 𝛼 [6].
Higher order (𝑛 ≥ 3) and second order higher-degree (𝑘 ≥ 2) with Painlevé property were subject to the
articles [7–9].

Painlevé equations, PI-PVI, possess a rich internal structure. For example, for certain choice of the
parameters, PII-PVI admit one parameter families of solutions, rational, algebraic and expressible in terms
of the classical transcendental functions: Airy, Bessel, Weber-Hermite, Whitteker, hypergeometric functions
respectively. But, all the known one parameter families of solutions appear as the solutions of Riccati
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equations. In this article, we investigate the one parameter families of solutions of PII-PVI which solves the
first-order second-degree equation of the form (1). Let 𝑣(𝑧) be a solution of one of the Painlevé equations

𝑣′′ = 𝑃2(𝑣
′)2 + 𝑃1𝑣

′ + 𝑃0, (2)

where 𝑃0, 𝑃1, 𝑃2 depend on 𝑣, 𝑧 and set of parameters 𝛼. Differentiating equation (1), and using (2) to
replace 𝑣′′ , and (1) to replace (𝑣′)2 , one gets

Φ𝑣′ +Ψ = 0, (3)

where

Φ = (𝑃1 − 2𝐴2𝑣 −𝐴1)(𝐴2𝑣
2 +𝐴1𝑣 +𝐴0) + 𝑃2(𝐴2𝑣

2 +𝐴1𝑣 +𝐴0)
2 + 2𝑃0 − 4𝐵4𝑣

3

− (3𝐵3 +𝐴′
2)𝑣

2 − (2𝐵2 +𝐴′
1)𝑣 − (𝐵1 +𝐴′

0) + 2𝑃2(𝐵4𝑣
4 +𝐵3𝑣

3 +𝐵2𝑣
2 +𝐵1𝑣 +𝐵0),

Ψ = (𝐵4𝑣
4 +𝐵3𝑣

3 +𝐵2𝑣
2 +𝐵1𝑣 +𝐵0)[𝑃2(𝐴2𝑣

2 +𝐴1𝑣 +𝐴0) + 2𝑃1 − 2𝐴2𝑣 −𝐴1]
− 𝑃0(𝐴2𝑣

2 +𝐴1𝑣 +𝐴0)− (𝐵′
4𝑣

4 +𝐵′
3𝑣

3 +𝐵′
2𝑣

2 +𝐵′
1𝑣 +𝐵′

0).

(4)

One can determine the coefficients 𝐴𝑗 , 𝑗 = 0, 1, 2 and 𝐵𝑘, 𝑗 = 0, 1, 2, 3, 4 of (1) by setting Φ = Ψ = 0.
Therefore, the Painlevé equation (2) admit one-parameter family of solutions characterized by equation (1)
if and only if Φ = Ψ = 0. For the sake of the completeness, we will examine all possible cases, and hence,
we recover some of the well known one-parameter families of solutions as well as the new ones.

2 Painlevé II Equation

Let 𝑣 be a solution of the PII equation
𝑣′′ = 2𝑣3 + 𝑧𝑣 + 𝛼. (5)

In this case, equation (3) takes the form of

(𝜙3𝑣
3 + 𝜙2𝑣

2 + 𝜙1𝑣 + 𝜙0)𝑣
′ + 𝜓5𝑣

5 + 𝜓4𝑣
4 + 𝜓3𝑣

3 + 𝜓2𝑣
2 + 𝜓1𝑣 + 𝜓0 = 0, (6)

where

𝜙3 = 4(𝐵4 +
1
2𝐴

2
2 − 1), 𝜙2 = 𝐴′

2 + 3𝐵3 + 3𝐴1𝐴2,
𝜙1 = 𝐴′

1 + 2𝐵2 + 2𝐴0𝐴2 +𝐴2
1 − 2𝑧, 𝜙0 = 𝐴′

0 +𝐵1 +𝐴0𝐴1 − 2𝛼,
𝜓5 = 2𝐴2(𝐵4 + 1), 𝜓4 = 𝐵′

4 +𝐴1𝐵4 + 2𝐴2𝐵3 + 2𝐴1

𝜓3 = 𝐵′
3 +𝐴1𝐵3 + 2𝐴2𝐵2 + 2𝐴0 + 𝑧𝐴2, 𝜓2 = 𝐵′

2 +𝐴1𝐵2 + 2𝐴2𝐵1 + 𝑧𝐴1 + 𝛼𝐴2,
𝜓1 = 𝐵′

1 +𝐴1𝐵1 + 2𝐴2𝐵0 + 𝑧𝐴0 + 𝛼𝐴1, 𝜓0 = 𝐵′
0 +𝐴1𝐵0 + 𝛼𝐴0.

(7)

Setting 𝜓5 = 0 yields 𝐴2 = 0 or 𝐵4 = −1. If 𝐴2 = 0, then one can not choose 𝐴𝑗 , 𝑗 = 0, 1 and 𝐵𝑘, 𝑘 =
0, 1, ..., 4 so that 𝜙𝑗 = 0, 𝑗 = 0, 1, 2, 3 and 𝜓𝑘 = 0, 𝑘 = 0, 1, ..., 4. If 𝐵4 = −1, then 𝜙𝑗 = 0, 𝑗 = 0, 1, 2, 3,
and 𝜓𝑘 = 0, 𝑘 = 0, 1, ..., 4 if and only if 𝐴2 = ±2, 𝐴1 = 0, 𝐴0 = ±𝑧, 𝐵3 = 𝐵1 = 0, 𝐵2 = −𝑧,
𝐵0 = −1

4𝑧
2, and 𝛼 = ±1

2 . With these choices of 𝐴𝑗 , 𝐵𝑘, equation (1) gives the well known equation

2𝑣′ = ±(2𝑣2 + 𝑧), (8)

which gives the one-parameter family of solutions of PII if 𝛼 = ±1/2, [10]. There is no first-order second-
degree equation related with PII.

3 Painlevé III Equation

Let 𝑣 solve the third Painlevé equation PIII

𝑣′′ =
1

𝑣
(𝑣′)2 − 1

𝑧
𝑣′ + 𝛾𝑣3 +

1

𝑧
(𝛼𝑣2 + 𝛽) +

𝛿

𝑣
. (9)

Then equation (3) takes the following form:

(𝜙4𝑣
4 + 𝜙3𝑣

3 + 𝜙2𝑣
2 + 𝜙1𝑣 + 𝜙0)𝑣

′ + 𝜓6𝑣
6 + 𝜓5𝑣

5 + 𝜓4𝑣
4 + 𝜓3𝑣

3 + 𝜓2𝑣
2 + 𝜓1𝑣 + 𝜓0 = 0, (10)
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where

𝜙4 = 2𝛾 − 2𝐵4 −𝐴2
2, 𝜙3 =

2𝛼
𝑧 −𝐴′

2 −𝐵3 −𝐴1𝐴2 − 1
𝑧𝐴2, 𝜙2 = −(𝐴′

1 +
1
𝑧𝐴1),

𝜙1 =
2𝛽
𝑧 +𝐵1 +𝐴0𝐴1 −𝐴′

0 − 1
𝑧𝐴0, 𝜙0 = 𝐴2

0 + 2𝐵0 + 2𝛿,
𝜓6 = −𝐴2(𝐵4 + 𝛾), 𝜓5 = −(𝐵′

4 +
2
𝑧𝐵4 +𝐴2𝐵3 + 𝛾𝐴1 +

𝛼
𝑧𝐴2),

𝜓4 = 𝐴0𝐵4 −𝐵′
3 − 2

𝑧𝐵3 − 𝛾𝐴0 − 𝛼
𝑧𝐴1 −𝐴2𝐵2,

𝜓3 = 𝐴0𝐵3 −𝐵′
2 − 2

𝑧𝐵2 −𝐴2𝐵1 − 𝛽
𝑧𝐴2 − 𝛼

𝑧𝐴0,

𝜓2 = 𝐴0𝐵2 −𝐵′
1 − 2

𝑧𝐵1 −𝐴2𝐵0 − 𝛽
𝑧𝐴1 − 𝛿𝐴2,

𝜓1 = 𝐴0𝐵1 −𝐵′
0 − 2

𝑧𝐵0 − 𝛽
𝑧𝐴0 − 𝛿𝐴1, 𝜓0 = 𝐴0(𝐵0 − 𝛿).

(11)

Setting 𝜓0 = 𝜓6 = 0 gives
𝐴0(𝐵0 − 𝛿) = 0, 𝐴2(𝐵4 + 𝛾) = 0. (12)

Thus, one should consider the following four cases separately:
Case 1. 𝐴0 = 𝐴2 = 0: If 𝐵4 = 𝛾, 𝐵3 =

2𝛼
𝑧 , 𝐵2 =

𝐾
𝑧2

, 𝐵1 = −2𝛽
𝑧 , 𝐵0 = −𝛿, and 𝐴1 =

2𝑎1
𝑧 then,

𝜙𝑗 = 0, 𝑗 = 0, 1, ..., 4, and 𝜓𝑘 = 0, 𝑘 = 1, 2, ...5, where 𝐾 is arbitrary constant and 𝑎1 is a constant and
satisfies

𝛾(𝑎1 + 1) = 0, 𝛼(𝑎1 + 1) = 0, 𝛽(𝑎1 − 1) = 0, 𝛿(𝑎1 − 1) = 0. (13)

Therefore, we have the following subcases: i. 𝑎21 − 1 ∕= 0, 𝛼 = 𝛽 = 𝛾 = 𝛿 = 0 ii. 𝑎1 = −1, 𝛽 = 𝛿 =
0 and iii. 𝑎1 = 1, 𝛼 = 𝛾 = 0.

When 𝛼 = 𝛽 = 𝛾 = 𝛿 = 0, the general solution of PIII is 𝑣(𝑧; 0, 0, 0, 0) = 𝑐1𝑧
𝑐2 where 𝑐1, 𝑐2 are

constants.
When 𝑎1 = −1, 𝛽 = 𝛿 = 0, (1) gives the following first-order second-degree equation for 𝑣

(𝑧𝑣′ + 𝑣)2 = 𝛾𝑧2𝑣4 + 2𝛼𝑧𝑣3 + (𝐾 + 1)𝑣2. (14)

The transformations

𝑣 =
𝑤′

𝛾1/2(𝑤 + 1) + 𝛼
, 𝑧𝑣′ = −𝛾1/2𝑧𝑣2 + 𝑤𝑣, (15)

give one-to-one correspondence between solutions 𝑣 of PIII, and solutions 𝑤(𝑧) of the following Riccati
equation

2𝑧𝑤′ − 𝑤2 − 2𝑤 +𝐾 = 0. (16)

𝛽 = 𝛿 = 0 case for PIII was also considered in [10, 11].
When 𝑎1 = 1, 𝛼 = 𝛾 = 0, 𝑣 satisfies the following first-order second-degree equation

(𝑧𝑣′ − 𝑣)2 = (𝐾 + 1)𝑣2 − 2𝛽𝑧𝑣 − 𝛿𝑧2. (17)

Equation (17) was also considered in [9], and the solution of PIII for 𝛼 = 𝛾 = 0 was first given in [10].
Case 2. 𝐴0 ∕= 0, 𝐴2 ∕= 0: Equation (12) gives 𝐵4 = −𝛾 and 𝐵0 = 𝛿. To set 𝜙𝑗 = 0, 𝑗 = 0, 1, ..., 4 and
𝜓𝑘 = 0, 𝑘 = 1, 2, ..., 5, one should choose

𝐵3 =
1
𝑧 [2𝛼−𝐴2(2𝑎1 + 1)], 𝐵2 = −[

𝑎21
𝑧2

+ 1
2𝐴0𝐴2],

𝐵1 = −1
𝑧 [2𝛽 + 2𝑎1𝐴0 −𝐴0],

(18)

and 𝐴1 =
2𝑎1
𝑧 , 𝐴2

0 = −4𝛿, where 𝑎1 = 2𝛼
𝐴2

− 1 and 𝛼, 𝛽, 𝛾, 𝛿 satisfy

𝛽𝛾1/2 + 𝛼(−𝛿)1/2 + 2𝛾1/2(−𝛿)1/2 = 0. (19)

Then, equation (1) becomes

𝑧𝑣′ + 𝛾1/2𝑧𝑣2 + [𝛼𝛾−1/2 + 1]𝑣 + (−𝛿)1/2𝑧 = 0. (20)

Equation (20) was given in the literature before, see for example [10].
Case 3. 𝐴0 ∕= 0, 𝐴2 = 0: Equation (12) gives 𝐵0 = 𝛿. One should choose 𝐵4 = 𝛾, 𝐵3 =

2𝛼
𝑧 ,
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𝐵2 = −𝑎21, 𝐵1 = −1
𝑧 [2𝛽 + 2𝑎1𝐴0 − 𝐴0], 𝐴2

0 = −4𝛿, 𝐴1 = 2𝑎1
𝑧 , and 𝛼 = 0 in order to get 𝜙𝑗 = 0, 𝑗 =

0, ..., 4, and 𝜓𝑘 = 0, 𝑘 = 1, ..., 5, where 𝑎1 is a constant such that

𝛾(𝑎1 + 1) = 0, 2𝛽 +𝐴0(𝑎1 − 1) = 0. (21)

So, if 𝛾 ∕= 0, then 𝛽 = −2(−𝛿)1/2 and (1) gives the equation (20) with 𝛼 = 0. If 𝛾 = 0 then (1) gives the
equation (17) with 𝐾 = −1− 𝛽2

𝛿 .
Case 4. 𝐴0 = 0, 𝐴2 ∕= 0: Equation (12) gives 𝐵4 = −𝛾, and if 𝐵0 = −𝛿, 𝐵3 =

1
𝑧 [2𝛼−𝐴2(2𝑎1 + 1)],

𝐵2 = −𝑎21
𝑧2

, 𝐵1 = −2𝛽
𝑧 , 𝐴2

2 = 4𝛾, 𝐴1 =
2𝑎1
𝑧 , and 𝛽 = 0, then 𝜙𝑗 = 0, 𝑗 = 0, ..., 4, 𝜓𝑘 = 0, 𝑘 = 1, ..., 5,

where 𝑎1 is a constant and satisfies

𝛿(𝑎1 − 1) = 0, 2𝛼−𝐴2(𝑎1 + 1) = 0. (22)

So, if 𝛿 ∕= 0, equation (1) gives the equation (20) for 𝛽 = 0. If 𝛿 = 0, then 𝑣 solves the equation (14) with
𝐾 = 𝛼2

𝛾 − 1.

4 Painlevé IV Equation

Let 𝑣 be a solution of the PIV equation

𝑣′′ =
1

2𝑣
(𝑣′)2 +

3

2
𝑣3 + 4𝑧𝑣2 + 2(𝑧2 − 𝛼)𝑣 +

𝛽

𝑣
. (23)

Then equation (3) takes the form of

(𝜙4𝑣
4 + 𝜙3𝑣

3 + 𝜙2𝑣
2 + 𝜙1𝑣 + 𝜙0)𝑣

′ + 𝜓6𝑣
6 + 𝜓5𝑣

5 + 𝜓4𝑣
4 + 𝜓3𝑣

3 + 𝜓2𝑣
2 + 𝜓1𝑣 + 𝜓0 = 0, (24)

where

𝜙4 = 3(1−𝐵4 − 1
2𝐴

2
2), 𝜙3 = 8𝑧 −𝐴′

2 − 2𝐵3 − 2𝐴1𝐴2,
𝜙2 = 4(𝑧2 − 𝛼)−𝐵2 − 1

2𝐴
2
1 −𝐴0𝐴2 −𝐴′

1, 𝜙1 = −𝐴′
0, 𝜙0 =

1
2𝐴

2
0 +𝐵0 + 2𝛽,

𝜓6 = −3
2𝐴2(𝐵4 + 1), 𝜓5 = −(𝐵′

4 +
1
2𝐴1𝐵4 +

3
2𝐴2𝐵3 + 4𝑧𝐴2 +

3
2𝐴1),

𝜓4 =
1
2𝐴0𝐵4 −𝐵′

3 − 1
2𝐴1𝐵3 − 3

2𝐴2𝐵2 − 2(𝑧2 − 𝛼)𝐴2 − 4𝑧𝐴1 − 3
2𝐴0,

𝜓3 =
1
2𝐴0𝐵3 −𝐵′

2 − 1
2𝐴1𝐵2 − 3

2𝐴2𝐵1 − 2(𝑧2 − 𝛼)𝐴1 − 4𝑧𝐴0,
𝜓2 =

1
2𝐴0𝐵2 −𝐵′

1 − 1
2𝐴1𝐵1 − 3

2𝐴2𝐵0 − 2(𝑧2 − 𝛼)𝐴0 − 𝛽𝐴2,
𝜓1 =

1
2𝐴0𝐵1 −𝐵′

0 − 1
2𝐴1𝐵0 − 𝛽𝐴1, 𝜓0 =

1
2𝐴0(𝐵0 − 2𝛽).

(25)

Setting 𝜓0 = 𝜓6 = 0 implies

𝐴2(𝐵4 + 1) = 0, 𝐴0(𝐵0 − 2𝛽) = 0. (26)

respectively. Therefore, there are four subcases: i. 𝐴0 = 𝐴2 = 0; ii. 𝐴0 = 0, 𝐴2 ∕= 0; iii. 𝐴0 ∕= 0, 𝐴2 ∕= 0,
and iv. 𝐴0 ∕= 0, 𝐴2 = 0. For the first case, there are no choice of 𝐴𝑗 and 𝐵𝑘 such that Φ = Ψ = 0. In the
second and third cases, one should choose 𝐴2 = 2𝜖, 𝐴1 = 4𝜖𝑧,𝐴0 = 2(−2𝛽)1/2, 𝐵4 = −1, 𝐵3 = −4𝑧,
𝐵2 = −4[𝑧2 + 𝛼+ 𝜖(−2𝛽)1/2 + 𝜖], 𝐵1 = −4𝜖(−2𝛽)1/2𝑧,𝐵0 = 2𝛽, and

(−2𝛽)1/2 + 2𝜖𝛼+ 2 = 0, (27)

where 𝜖 = ±1. Then 𝑣 satisfies the following Riccati equation

𝑣′ = 𝜖(𝑣2 + 2𝑧𝑣 − 2𝛼− 2𝜖). (28)

Equation (28) was also considered in [12, 13].
When 𝐴0 ∕= 0, 𝐴2 = 0, one has to choose 𝐴0 = −4, 𝐴1 = 0, 𝐵4 = 1, 𝐵3 = 4𝑧, 𝐵2 = 4(𝑧2 − 𝛼),

𝐵1 = 0, 𝐵0 = −4, and 𝛽 = −2. Therefore, one can state the following theorem
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Theorem 1 The Painlevé IV equation admits a one-parameter family of solution characterized by

(𝑣′ + 2)2 − 𝑣4 − 4𝑧𝑣3 − 4(𝑧2 − 𝛼)𝑣2 = 0, (29)

if and only if 𝛽 = −2.

(29) was also given in [14]. If 𝑓(𝑧) = −2𝑧 + 𝑎 and 𝑔(𝑧) = −2𝑧 − 𝑎, where 𝑎2 = 4𝛼, then (29) can be
written as

(𝑣′ + 2)2 = 𝑣2(𝑣 − 𝑓)(𝑣 − 𝑔). (30)

If 𝑎 = 0, that is 𝛼 = 0, then (29) reduces to the following Riccati equation

𝑣′ = 𝜖𝑣(𝑣 + 2𝑧)− 2, 𝜖 = ±1. (31)

Equation (31) is nothing but equation (28) with 𝛼 = 0.
If 𝑎 ∕= 0, by using the transformation 𝑣 = 𝑓𝑤2−𝑔

𝑤2−1
[6], (30) can be transformed to the following Riccati

equation:
2𝑤′ = 𝜖(𝑓𝑤2 − 𝑔), 𝜖 = ±1. (32)

By introducing 𝑤 = −2𝜖𝑦′
𝑓𝑦 , 𝑥 = −2𝑧+𝑎√

2
, (32) can be linearized.

5 Painlevé V Equation

If 𝑣 solves the PV equation

𝑣′′ =
3𝑣 − 1

2𝑣(𝑣 − 1)
(𝑣′)2 − 1

𝑧
𝑣′ +

𝛼

𝑧2
𝑣(𝑣 − 1)2 +

𝛽(𝑣 − 1)2

𝑧2𝑣
+
𝛾

𝑧
𝑣 +

𝛿𝑣(𝑣 + 1)

𝑣 − 1
, (33)

then equation (3) takes the form of

(𝜙5𝑣
5+𝜙4𝑣

4+𝜙3𝑣
3+𝜙2𝑣

2+𝜙1𝑣+𝜙0)𝑣
′+𝜓7𝑣

7+𝜓6𝑣
6+𝜓5𝑣

5+𝜓4𝑣
4+𝜓3𝑣

3+𝜓2𝑣
2+𝜓1𝑣+𝜓0 = 0, (34)

where

𝜙5 =
2𝛼
𝑧2

−𝐵4 − 1
2𝐴

2
2, 𝜙4 = 3𝐵4 +

3
2𝐴

2
2 − 6𝛼

𝑧2
−𝐴′

2 − 1
𝑧𝐴2,

𝜙3 = 2𝐵3 +𝐵2 +
1
2𝐴

2
1 + 2𝐴1𝐴2 +𝐴0𝐴2 +𝐴′

2 +
1
𝑧𝐴2 −𝐴′

1 − 1
𝑧𝐴1 +

2
𝑧2
[3𝛼+ 𝛽 + 𝛾𝑧 + 𝛿𝑧2],

𝜙2 = 2𝐵1 +𝐵2 +
1
2𝐴

2
1 + 2𝐴0𝐴1 +𝐴0𝐴2 +𝐴′

1 +
1
𝑧𝐴1 −𝐴′

0 − 1
𝑧𝐴0 − 2

𝑧2
[𝛼+ 3𝛽 + 𝛾𝑧 − 𝛿𝑧2],

𝜙1 = 3𝐵0 +
3
2𝐴

2
0 +

6𝛽
𝑧2

+𝐴′
0 +

1
𝑧𝐴0, 𝜙0 = −(2𝛽

𝑧2
+𝐵0 +

1
2𝐴

2
0),

𝜓7 = −1
2𝐴2(𝐵4 +

2𝛼
𝑧2
), 𝜓6 = 𝐵4(

3
2𝐴2 +

1
2𝐴1 − 2

𝑧 )− 1
2𝐴2𝐵3 +

𝛼
𝑧2
(3𝐴2 −𝐴1)−𝐵′

4,
𝜓5 = 𝐵4(

1
2𝐴1 +

3
2𝐴0 +

2
𝑧 ) +𝐵3(

3
2𝐴2 +

1
2𝐴1 − 2

𝑧 )− 1
2𝐴2𝐵2

− 𝐴2
𝑧2
(3𝛼+ 𝛽 + 𝛾𝑧 + 𝛿𝑧2) + 𝛼

𝑧2
(3𝐴1 −𝐴0) +𝐵′

4 −𝐵′
3,

𝜓4 = 𝐵3(
1
2𝐴1 +

3
2𝐴0 +

2
𝑧 ) +𝐵2(

3
2𝐴2 +

1
2𝐴1 − 2

𝑧 )− 1
2𝐴2𝐵1 − 1

2𝐴0𝐵4

− 𝐴1
𝑧2
(3𝛼+ 𝛽 + 𝛾𝑧 + 𝛿𝑧2) + 𝐴2

𝑧2
(𝛼+ 3𝛽 + 𝛾𝑧 − 𝛿𝑧2) + 3𝛼

𝑧2
𝐴0 +𝐵′

3 −𝐵′
2,

𝜓3 = 𝐵2(
1
2𝐴1 +

3
2𝐴0 +

2
𝑧 ) +𝐵1(

3
2𝐴2 +

1
2𝐴1 − 2

𝑧 )− 1
2𝐴2𝐵0 − 1

2𝐴0𝐵3

− 𝐴0
𝑧2
(3𝛼+ 𝛽 + 𝛾𝑧 + 𝛿𝑧2) + 𝐴1

𝑧2
(𝛼+ 3𝛽 + 𝛾𝑧 − 𝛿𝑧2)− 3𝛽

𝑧2
𝐴2 +𝐵′

2 −𝐵′
1,

𝜓2 = 𝐵1(
1
2𝐴1 +

3
2𝐴0 +

2
𝑧 ) +𝐵0(

3
2𝐴2 +

1
2𝐴1 − 2

𝑧 ) +
𝐴0
𝑧2
(𝛼+ 3𝛽 + 𝛾𝑧 − 𝛿𝑧2)

+ 𝛽
𝑧2
(𝐴2 − 3𝐴1) +𝐵′

1 −𝐵′
0,

𝜓1 = 𝐵0(
3
2𝐴0 +

1
2𝐴1 +

2
𝑧 )− 1

2𝐴0𝐵1 +
𝛽
𝑧2
(𝐴1 − 3𝐴0) +𝐵′

0, 𝜓0 =
−1
2 𝐴0(𝐵0 − 2𝛽

𝑧2
).

(35)

Setting 𝜓7 = 𝜓0 = 0 implies

𝐴0(𝐵0 − 2𝛽

𝑧2
) = 0, 𝐴2(𝐵4 +

2𝛼

𝑧2
) = 0. (36)

Therefore, one should consider the following four distinct cases.
Case 1. 𝐴0 ∕= 0, 𝐴2 ∕= 0: In this case, (36) implies 𝐵4 = −1

4𝐴
2
2, and 𝐵0 = −1

4𝐴
2
0. In order to get
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𝜙𝑗 = 0, 𝑗 = 0, 5, one should choose 𝐴0 = −8𝛽
𝑧2

, 𝐴2
2 = 8𝛼

𝑧2
, then 𝜙𝑗 , 𝑗 = 1, 4 are identically zero, and

𝜙𝑗 = 0, 𝑗 = 2, 3 if

2𝑧2𝐵1 + 𝑧2𝐵2 +
1

2
𝑧2𝐴2

1 + 2𝑧2𝐴1𝐴0 + 𝑧
𝑑

𝑑𝑧
(𝑧𝐴1)− 2𝛼− 6𝛽 − 2𝛾𝑧 + 2𝛿𝑧2 = 0, (37)

2𝑧2𝐵3 + 𝑧2𝐵2 +
1

2
𝑧2𝐴1 + 2𝑧2𝐴1𝐴2 − 𝑧

𝑑

𝑑𝑧
(𝑧𝐴1) + 6𝛼+ 2𝛽 + 2𝛾𝑧 + 2𝛿𝑧2 + 𝑧2𝐴0𝐴2 = 0, (38)

respectively. The equations 𝜓𝑗 = 0, 𝑗 = 1, 6, give𝐵1 = −1
2𝐴0𝐴1 and 𝐵3 = −1

2𝐴1𝐴2. Then, the equations
(37) and (38) give 𝐵2 = −1

4 [(𝐴0 +𝐴1 +𝐴2)
2 +𝐴2

1 + 2𝐴0𝐴2 + 8𝛿], and

𝑑

𝑑𝑧
(𝑧𝐴1) =

𝑧

2
(𝐴2 −𝐴0)(𝐴0 +𝐴1 +𝐴2) + 2𝛾. (39)

With these choices 𝜓5 = 𝜓2 = 0 identically, and 𝜓4 = 𝜓3 = 0 if

(𝐴0 +𝐴1 +𝐴2)
3 + 8𝛿

(
𝐴1 + 2𝐴2 − 2

𝑧

)
− 4𝛾

𝑧
(𝐴0 +𝐴1 +𝐴2) = 0, (40)

(𝐴0 +𝐴1 +𝐴2)
3 + 8𝛿

(
𝐴1 + 2𝐴0 +

2

𝑧

)
+

4𝛾

𝑧
(𝐴0 +𝐴1 +𝐴2) = 0, (41)

respectively.
By adding the above equations, one gets

(𝐴0 +𝐴1 +𝐴2)[(𝐴0 +𝐴1 +𝐴2)
2 + 8𝛿] = 0. (42)

If 𝐴0 +𝐴1 +𝐴2 = 0, then equations (39), and (40) give 𝛾 = 0 and 𝛿(𝐴2 −𝐴0 − 2
𝑧 ) = 0. Thus, if

𝛾 = 0, 𝛿[(2𝛼)1/2 − (−2𝛽)1/2 − 1] = 0, (43)

then 𝑣 solves the following Riccati equation:

𝑧𝑣′ − (2𝛼)1/2𝑣2 − [(−2𝛿)1/2𝑧 − (2𝛼)1/2 + (−2𝛽)1/2]𝑣 + (−2𝛽)1/2 = 0... (44)

If 𝐴0 +𝐴1 +𝐴2 ∕= 0, then equations (42), and (40) give

(−2𝛿)1/2[1− (−2𝛽)1/2 − (2𝛼)1/2] = 𝛾, (45)

and the equations (39) and (41) are identically satisfied. Therefore, if 𝛼, 𝛽, 𝛾, and 𝛿 satisfy the relation (45),
then PV has one-parameter family of solution which is given by the following Riccati equation:

𝑧𝑣′ − (2𝛼)1/2𝑣2 − [(−2𝛿)1/2𝑧 − (2𝛼)1/2 + (−2𝛽)1/2]𝑣 + (−2𝛽)1/2 = 0... (46)

Equation (46) is the well known one-parameter family of solutions of PV [15].
Case 2. 𝐴0 = 𝐴2 = 0: In order to make 𝜙𝑗 = 0, 𝑗 = 1, ..., 5 and 𝜓𝑘 = 0, 𝑘 = 1, ..., 6 one should choose
𝐵4 =

2𝛼
𝑧2

, 𝐵0 =
−2𝛽
𝑧2

, and 𝐴1, 𝐵𝑛, 𝑛 = 1, 2, 3 satisfy the following equations

2𝐵3 +𝐵2 +
1

2
𝐴2

1 −𝐴′
1 −

1

𝑧
𝐴1 +

6𝛼

𝑧2
+

2𝛽

𝑧2
+

2𝛾

𝑧
+ 2𝛿 = 0, (47)

2𝐵1 +𝐵2 +
1

2
𝐴2

1 +𝐴′
1 +

1

𝑧
𝐴1 − 2𝛼

𝑧2
− 6𝛽

𝑧2
− 2𝛾

𝑧
+ 2𝛿 = 0, (48)

−𝐵′
3 +𝐵3(

1

2
𝐴1 − 2

𝑧
) +

4𝛼

𝑧2
𝐴1 = 0, (49)

𝐵′
3 −𝐵′

2 +𝐵3(
1

2
𝐴1 +

2

𝑧
) +𝐵2(

1

2
𝐴1 − 2

𝑧
)−𝐴1(

3𝛼

𝑧2
+
𝛽

𝑧2
+
𝛾

𝑧
+ 𝛿) = 0, (50)

𝐵′
2 −𝐵′

1 +𝐵2(
1

2
𝐴1 +

2

𝑧
) +𝐵1(

1

2
𝐴1 − 2

𝑧
) +𝐴1(

𝛼

𝑧2
+

3𝛽

𝑧2
+
𝛾

𝑧
− 𝛿) = 0, (51)
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𝐵′
1 +𝐵1(

1

2
𝐴1 +

2

𝑧
)− 4𝛽

𝑧2
𝐴1 = 0. (52)

Adding the equations (49-52) gives

𝐴1[𝐵1 +𝐵2 +𝐵3 +
2

𝑧2
(𝛼− 𝛽)− 2𝛿] = 0. (53)

Thus, two cases 𝐴1 = 0 and 𝐴1 ∕= 0, should be considered separately.
Case 2.a. 𝐴1 = 0: Solving equations (49-52), gives 𝐵𝑗 =

𝐾𝑗

𝑧2
, 𝑗 = 1, 2, 3, where 𝐾𝑗 are constants, then

(47) and (48) give

𝛾 = 𝛿 = 0, 2𝐾3 +𝐾2 + 6𝛼+ 2𝛽 = 0, 2𝐾1 +𝐾2 − 2𝛼− 6𝛽 = 0. (54)

If one lets 𝐾2 = 2𝐾, then equation (54) gives 𝐾3 = −(𝐾+3𝛼+𝛽), and 𝐾1 = −(𝐾−𝛼−3𝛽). Thus,
for 𝛾 = 𝛿 = 0, 𝑣(𝑧) satisfies

𝑧2(𝑣′)2 = 2𝛼𝑣4 − (𝐾 + 3𝛼+ 𝛽)𝑣3 + 2𝐾𝑣2 − (𝐾 − 𝛼− 3𝛽)𝑣 − 2𝛽. (55)

The transformation

𝑧𝑣′ = (𝑣 − 1)[𝑤 + 𝜇+
1

2
− 1

2
(2𝜇− 1)𝑣], 𝑣 = − [(𝑤 + 𝜇+ 1

2)
2 + 2𝛽]

2𝑧𝑤′ − (𝑤 + 𝜇+ 1
2)

2 − 2𝛽
, (56)

where (2𝜇− 1)2 = 8𝛼, give one-to-one correspondence between solutions 𝑣 of (55) and solutions 𝑤 of the
following equation

2𝑧𝑤′ = 𝑤2 + 2𝑤 +𝐾 − 3𝛼+ 3𝛽 − 1. (57)

The relation between PV with 𝛾 = 𝛿 = 0 and equation (57) was considered in [16].
Case 2.b. 𝐴1 ∕= 0: In this case, Φ = Ψ = 0 implies that 𝛼+ 𝛽 = 0, 𝛾 = (−2𝛿)1/2 and 𝑣 satisfies

𝑧𝑣′ = (2𝛼)1/2(𝑣 − 1)2 + 𝛾𝑧𝑣. (58)

Equation (58) is the special case 𝛼+ 𝛽 = 0 of the one-parameter family of PV, see equation (44).
Case 3. 𝐴0 = 0, 𝐴2 ∕= 0: Equation (36) gives 𝐵4 = −2𝛼

𝑧2
. Setting 𝜙5 = 0 and 𝜓6 = 0 give 𝐴2

2 = 8𝛼
𝑧2

𝐵3 = −1
2𝐴1𝐴2, and equations 𝜙𝑗 = 0, 𝑗 = 0, ..., 4 are satisfied if

𝐵2 =
1
𝑧2
[𝑧2𝐴′

1 + 𝑧𝐴1 − 𝑧2𝐴1𝐴2 − 1
2𝑧

2𝐴2
1 − 6𝛼− 2𝛽 − 2𝛾𝑧 − 2𝛿𝑧2],

𝐵1 = − 1
𝑧2
[𝑧2𝐴′

1 + 𝑧𝐴1 − 1
2𝑧

2𝐴1𝐴2 − 4𝛼− 4𝛽 − 2𝛾𝑧], 𝐵0 = −2𝛽
𝑧2
,

(59)

and 𝐴1 satisfies the following equations:

𝑧 𝑑2

𝑑𝑧2
(𝑧𝐴1) =

𝑑
𝑑𝑧 (𝑧𝐴1)[

5
2𝑧𝐴2 +

3
2𝑧𝐴1 − 1]− 10𝛼(2𝐴1 +𝐴2)− 2𝛽(𝐴1 +𝐴2)

−𝛾(3𝑧𝐴2 + 2𝑧𝐴1 − 2)− 2𝛿𝑧(𝑧𝐴1 + 2𝑧𝐴2 − 2)− 1
4𝑧

2𝐴2
1(6𝐴2 +𝐴1),

(60)

2𝑧 𝑑2

𝑑𝑧2
(𝑧𝐴1) =

𝑑
𝑑𝑧 (𝑧𝐴1)[3𝑧𝐴2 + 𝑧𝐴1 − 2]− 6𝛼(𝐴1 +𝐴2)− 4𝛽(𝐴1 +𝐴2)
−𝛾(3𝑧𝐴2 + 𝑧𝐴1 − 4) + 2𝛿𝑧(𝑧𝐴1 + 2) + 1

4𝑧
2𝐴2

1(𝐴2 +𝐴1),
(61)

𝑧 𝑑2

𝑑𝑧2
(𝑧𝐴1) =

𝑑
𝑑𝑧 (𝑧𝐴1)[

1
2𝑧𝐴2 − 1

2𝑧𝐴1 − 1] + 2𝛼𝐴1 − 2𝛽(𝐴1 +𝐴2) + 𝛾(𝑧𝐴1 + 2) + 1
4𝑧

2𝐴2
1𝐴2. (62)

Solving equation (60) for 𝑑2

𝑑𝑧2
(𝑧𝐴1) and using in (61) and (62) give the equations for 𝑑

𝑑𝑧 (𝑧𝐴1). Elimi-
nating 𝑑

𝑑𝑧 (𝑧𝐴1) between these equations, and using 𝛼 = 1
8𝑧

2𝐴2
2 give

(𝐴1 +𝐴2)[(𝐴1 +𝐴2)
2 + 8𝛿] = 0. (63)

Therefore, if 𝐴1 +𝐴2 ∕= 0, then equation (63) implies that (𝐴1 +𝐴2)
2 + 8𝛿 = 0. Equations (60), (61),

and (62) are satisfied if (𝐴1 +𝐴2)(𝑧𝐴2 − 2)+ 4𝛾 = 0, and 𝛽 = 0. Thus, if 𝛾+(−2𝛿)1/2[(2𝛼)1/2 − 1] = 0
and 𝛽 = 0, 𝑣 solves the following Riccati equation

𝑧𝑣′ = 𝑣[(2𝛼)1/2𝑣 + (−2𝛿)1/2𝑧 − (2𝛼)1/2)]. (64)
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Equation (64) is a special case, 𝛽 = 0, of (46).
If 𝐴1 +𝐴2 = 0 then equation (60), (61), (62) are satisfied if (𝐴2 − 2

𝑧 )(𝛾 + 2𝛿𝑧) = 0. Therefore, when
𝛾 = 𝛿 = 0, first-order second-degree equation (1) reduces to the following Riccati equation

𝑧𝑣′ = (2𝛼)1/2𝑣(𝑣 − 1) + (−2𝛽)1/2(𝑣 − 1). (65)

Equation (65) is the particular case, 𝐾 = 𝛼− 𝛽, of equation (55).
If 𝛾 and 𝛿 are not both zero, then one has 𝐴2 =

2
𝑧 , and hence 𝛼 = 1

2 . Thus, we have 𝐵4 = − 1
𝑧2

,
𝐵3 =

2
𝑧2

, 𝐵2 = − 1
𝑧2
(2𝛿𝑧2+2𝛾𝑧+2𝛽+1), 𝐵1 =

2
𝑧2
(𝛾𝑧+2𝛽). Then, for 𝛼 = 1/2 and 𝛾, 𝛿 not both zero,

𝑣 solves the following first-order second-degree equation

[𝑧𝑣′ − 𝑣(𝑣 − 1)]2 + 2(𝛿𝑧2 + 𝛾𝑧 + 𝛽)𝑣2 − 2(𝛾𝑧 + 2𝛽)𝑣 + 2𝛽 = 0. (66)

If one lets 𝑓(𝑧) = 𝑏𝑧 + 𝑎, and 𝑔(𝑧) = 𝑐𝑧 + 𝑎, where 𝑎2 = 2𝛽, 𝑎(𝑏+ 𝑐) = 2𝛾, 𝑏𝑐 = 2𝛿, then (66) takes
the following form

[𝑧𝑣′ − 𝑣(𝑣 − 1)]2 = −(𝑓𝑣 − 𝑎)(𝑔𝑣 − 𝑎). (67)

If 𝑎 = 0, that is, if 𝛽 = 𝛾 = 0, then equation (67) is reduced to the following Riccati equation

𝑧𝑣′ = 𝑣(𝑣 − 1) + (−2𝛿)1/2𝑧𝑣. (68)

Equation (68) is the special case, 𝛽 = 𝛾 = 0 and 𝛼 = 1
2 , of (46).

If 𝑏 = 𝑐, that is, if 𝛾2 = 4𝛽𝛿, then equation (67) is reduced to the following Riccati equation

𝑧𝑣′ = 𝑣(𝑣 − 1) + [(−2𝛿)1/2𝑧 + (−2𝛽)1/2]𝑣 − (−2𝛽)1/2. (69)

Equation (69) is the special case, 𝛼 = 1
2 , of (46).

If 𝛽 ∕= 0, and 𝛾2 − 4𝛽𝛿 ∕= 0, then the solution of equation (66) is given by 𝑣 = 𝑎(𝑤2+1)
𝑓𝑤2+𝑔

, where 𝑤(𝑧)
solves the following Riccati equation:

2𝑧𝑤′ = 𝜖(𝑓𝑤2 + 𝑔), 𝜖 = ±1. (70)

(70) can be transformed to the following linear equation by the transformation 𝑤 = −2𝜖𝑧𝑦′
𝑓𝑦 :

𝑧2𝑓(𝑧)𝑦′′ + 𝑎𝑧𝑦′ +
1

4
𝑔(𝑧)𝑓2(𝑧)𝑦 = 0. (71)

If 𝑏 ∕= 0, the change of variable 𝑧 = −𝑎
𝑏𝑥 transforms equation (71) to the equation

𝑦 −
( 1

𝑥− 1
− 1

𝑥

)
𝑦̇ +

𝑎2(𝑥− 1)(𝑐𝑥− 𝑏)

4𝑏𝑥2
𝑦 = 0. (72)

If 𝑏 = 0, that is 𝛿 = 0, then the change of variable 𝑧 = 1
𝑎𝑐𝑥

2 transforms equation (71) to the Bessel
equation

𝑥2𝑦 + 𝑥𝑦̇ + (𝑥2 + 𝑎2)𝑦 = 0. (73)

Case 4. 𝐴0 ∕= 0, 𝐴2 = 0: In this case, equation (36) gives 𝐵0 = 2𝛽
𝑧2

. Setting 𝜙0 = 0 and 𝜓1 = 0 implies
that 𝐴2

0 = −8𝛽
𝑧2

, and 𝐵1 = −1
2𝐴0𝐴1. The conditions 𝜙𝑗 = 0 for 𝑗 = 1, ..., 5 are satisfied if

𝐵2 = − 1
𝑧2
[𝑧2𝐴′

1 + 𝑧𝐴1 + 𝑧2𝐴0𝐴1 +
1
2𝑧

2𝐴2
1 − 2𝛼− 6𝛽 − 2𝛾𝑧 + 2𝛿𝑧2],

𝐵3 =
1
𝑧2
[𝑧2𝐴′

1 + 𝑧𝐴1 +
1
2𝑧

2𝐴2
1 − 4𝛼− 4𝛽 − 2𝛾𝑧], 𝐵4 =

2𝛼
𝑧2
,

(74)

and 𝜓𝑗 = 0, 𝑗 = 2, ..., 6 if,

𝑧 𝑑2

𝑑𝑧2
(𝑧𝐴1) = − 𝑑

𝑑𝑧 (𝑧𝐴1)[
5
2𝑧𝐴0 +

3
2𝑧𝐴1 + 1] + 2𝛼(𝐴1 +𝐴0) + 10𝛽(2𝐴1 +𝐴0)

+𝛾(3𝑧𝐴0 + 2𝑧𝐴1 + 2)− 2𝛿𝑧(𝑧𝐴1 + 2𝑧𝐴0 + 2)− 1
4𝑧

2𝐴2
1(6𝐴0 +𝐴1),

(75)

2𝑧 𝑑2

𝑑𝑧2
(𝑧𝐴1) = − 𝑑

𝑑𝑧 (𝑧𝐴1)[3𝑧𝐴0 + 𝑧𝐴1 + 2] + 4𝛼(𝐴1 +𝐴0) + 6𝛽(𝐴1 +𝐴0)
+𝛾(3𝑧𝐴0 + 𝑧𝐴1 + 4) + 2𝛿𝑧(𝑧𝐴1 − 2) + 1

4𝑧
2𝐴2

1(𝐴0 +𝐴1),
(76)
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𝑧 𝑑2

𝑑𝑧2
(𝑧𝐴1) =

𝑑
𝑑𝑧 (𝑧𝐴1)[

1
2𝑧𝐴1 − 1

2𝑧𝐴0 − 1] + 2𝛼(𝐴0 +𝐴1)− 2𝛽𝐴1 − 𝛾(𝑧𝐴1 − 2) + 1
4𝑧

2𝐴2
1𝐴0. (77)

Solving equation (75) for 𝑑2

𝑑𝑧2
(𝑧𝐴1) and using in (76) and (77) give the first order differential equations for

𝐴1. Eliminating 𝑑
𝑑𝑧 (𝑧𝐴1) between these equations and using 𝛽 = −1

8 𝑧
2𝐴2

0 gives

(𝐴1 +𝐴0)[(𝐴1 +𝐴0)
2 + 8𝛿] = 0. (78)

If 𝐴1 + 𝐴0 ∕= 0, then one obtains (𝐴1 + 𝐴0)
2 + 8𝛿 = 0. The equations (76) and (77) are satisfied if

𝛼 = 0 and (𝑧𝐴0 + 2)(𝐴0 + 𝐴1) = 4𝛾. Thus, when 𝛾 = (−2𝛿)1/2[1 − (−𝛽)1/2], 𝑣 satisfies the following
Riccati equation

𝑧𝑣′ = [(−2𝛿)1/2𝑧 + (−2𝛽)1/2]𝑣 − (−2𝛽)1/2. (79)

This is the special case, 𝛼 = 0, of equation (46).

If 𝐴1 + 𝐴0 = 0, equations(75), (76), (77) are satisfied only if (𝑧𝐴0 + 2)(𝛾 − 2𝛿𝑧) = 0. Therefore, if
𝑧𝐴0 + 2 ∕= 0, then one should have 𝛾 = 𝛿 = 0, and 𝑣 satisfies (65).

If 𝑧𝐴0 + 2 = 0, then 𝛽 = −1
2 and first-order second-degree equation (1) gives

[𝑧𝑣′ − (𝑣 − 1)]2 = 2𝛼𝑣4 − 2(𝛾𝑧 + 2𝛼)𝑣3 − 2(𝛿𝑧2 − 𝛾𝑧 − 𝛼)𝑣2. (80)

The Lie-point discrete symmetry 𝑣 = 1
𝑣 , 𝛼̄ = −𝛽, 𝛽 = −𝛼, 𝛾 = −𝛾, 𝛿 = 𝛿 of PV [10] transforms

solutions 𝑣(𝑧;𝛼,−1
2 , 𝛾, 𝛿) of (80) to solutions 𝑣(𝑧; 12 , 𝛽, 𝛾, 𝛿) of equation (66).

6 Painlevé VI Equation

If 𝑣 solves the sixth Painlevé equation, PVI

𝑣′′ = 1
2{ 1

𝑣 + 1
𝑣−1 + 1

𝑣−𝑧}(𝑣′)2 − {1
𝑧 + 1

𝑧−1 + 1
𝑣−𝑧}𝑣′

+ 𝑣(𝑣−1)(𝑣−𝑧)
𝑧2(𝑧−1)2

{𝛼+ 𝛽𝑧
𝑣2

+ 𝛾(𝑧−1)
(𝑣−1)2

+ 𝛿𝑧(𝑧−1)
𝑣−𝑧)2

}, (81)

then the equation (3) takes the form

(𝜙6𝑣
6 + 𝜙5𝑣

5 + 𝜙4𝑣
4 + 𝜙3𝑣

3 + 𝜙2𝑣
2 + 𝜙1𝑣 + 𝜙0)𝑣

′

+ 𝜓8𝑣
8 + 𝜓7𝑣

7 + 𝜓6𝑣
6 + 𝜓5𝑣

5 + 𝜓4𝑣
4 + 𝜓3𝑣

3 + 𝜓2𝑣
2 + 𝜓1𝑣 + 𝜓0 = 0,

(82)
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where

𝜙6 =
2𝛼

𝑧2(𝑧−1)2
−𝐵4 − 1

2𝐴
2
2, 𝜙5 = 2(𝑧 + 1)𝐵4 + (𝑧 + 1)𝐴2

2 − 4𝛼(𝑧+1)
𝑧2(𝑧−1)2

−𝐴′
2 − (2𝑧−1)

𝑧(𝑧−1)𝐴2,

𝜙4 =
𝑧

(𝑧−1)𝐴2 − (2𝑧−1)
𝑧(𝑧−1)(𝐴1 −𝐴2) +

1
2𝐴

2
1 +𝐴0𝐴2 + (𝑧 + 1)𝐴1𝐴2 − 3

2𝑧𝐴
2
2 +𝐵2 + (𝑧 + 1)𝐵3

− 3𝑧𝐵4 + (𝑧 + 1)𝐴′
2 −𝐴′

1 +
2

𝑧2(𝑧−1)2
[𝛼(𝑧2 + 4𝑧 + 1) + 𝛽𝑧 + (𝛿𝑧 + 𝛾)(𝑧 − 1)],

𝜙3 =
𝑧

(𝑧−1)(𝐴1 −𝐴2)− (2𝑧−1)
𝑧(𝑧−1)(𝐴0 −𝐴1) + 2𝐴0𝐴1 − 2𝑧𝐴1𝐴2

+ 2𝐵1 − 2𝑧𝐵3 + (𝑧 + 1)𝐴′
1 −𝐴′

0 − 𝑧𝐴′
2 − 4

𝑧(𝑧−1)2
[(𝛼+ 𝛽)(𝑧 + 1) + (𝛾 + 𝛿)(𝑧 − 1)],

𝜙2 =
𝑧

(𝑧−1)(𝐴0 −𝐴1) +
(2𝑧−1)
𝑧(𝑧−1)𝐴0 +

3
2𝐴

2
0 − (𝑧 + 1)𝐴0𝐴1 − 𝑧𝐴0𝐴2 − 1

2𝑧𝐴
2
1 + 3𝐵0 − (𝑧 + 1)𝐵1

− 𝑧𝐵2 − 𝑧𝐴′
1 + (𝑧 + 1)𝐴′

0 +
2

𝑧(𝑧−1)2
[𝛼𝑧 + 𝛽(𝑧2 + 4𝑧 + 1) + (𝛾𝑧 + 𝛿)(𝑧 − 1)],

𝜙1 = −[2(𝑧 + 1)𝐵0 + (𝑧 + 1)𝐴2
0 +

4𝛽(𝑧+1)
(𝑧−1)2

+ 𝑧𝐴′
0 +

𝑧
(𝑧−1)𝐴0],

𝜙0 = 𝑧[𝐵0 +
1
2𝐴

2
0 +

2𝛽
(𝑧−1)2

],

𝜓8 = −1
2𝐴2[𝐵4 +

2𝛼
𝑧2(𝑧−1)2

],

𝜓7 = 𝐵4[(𝑧 + 1)𝐴2 +
1
2𝐴1 − 2(2𝑧−1)

𝑧(𝑧−1) ]− 1
2𝐴2𝐵3 +

𝛼
𝑧2(𝑧−1)2

[2(𝑧 + 1)𝐴2 −𝐴1]−𝐵′
4,

𝜓6 = 𝐵4[
3
2(𝐴0 − 𝑧𝐴2) +

2𝑧
(𝑧−1) +

2(2𝑧−1)
𝑧(𝑧−1) ] +𝐵3[(𝑧 + 1)𝐴2 +

1
2𝐴1 − 2(2𝑧−1)

𝑧(𝑧−1) ]− 1
2𝐴2𝐵2 + (𝑧 + 1)𝐵′

4

−𝐵′
3 +

𝛼
𝑧2(𝑧−1)2

[2(𝑧 + 1)𝐴1 −𝐴0]− 𝐴2
𝑧2(𝑧−1)2

[𝛼(𝑧2 + 4𝑧 + 1) + 𝛽𝑧 + (𝛿𝑧 + 𝛾)(𝑧 − 1)],

𝜓5 = 𝐵3[
3
2(𝐴0 − 𝑧𝐴2) +

2𝑧
(𝑧−1) +

2(2𝑧−1)
𝑧(𝑧−1) ] +𝐵2[(𝑧 + 1)𝐴2 +

1
2𝐴1 − 2(2𝑧−1)

𝑧(𝑧−1) ]− 1
2𝐴2𝐵1

−𝐵4[
1
2𝑧𝐴1 + (𝑧 + 1)𝐴0 +

2𝑧
(𝑧−1) ] +

2𝛼(𝑧+1)
𝑧2(𝑧−1)2

𝐴0 − 𝐴1
𝑧2(𝑧−1)2

[𝛼(𝑧2 + 4𝑧 + 1) + 𝛽𝑧+

(𝛿𝑧 + 𝛾)(𝑧 − 1)] + 2𝐴2
𝑧(𝑧−1)2

[(𝛼+ 𝛽)(𝑧 + 1) + (𝛾 + 𝛿)(𝑧 − 1)] + (𝑧 + 1)𝐵′
3 − 𝑧𝐵′

4 −𝐵′
2,

𝜓4 = 𝐵2[
3
2(𝐴0 − 𝑧𝐴2) +

2𝑧
(𝑧−1) +

2(2𝑧−1)
𝑧(𝑧−1) ] +𝐵1[(𝑧 + 1)𝐴2 +

1
2𝐴1 − 2(2𝑧−1)

𝑧(𝑧−1) ]− 1
2𝐴2𝐵0

−𝐵3[
1
2𝑧𝐴1 + (𝑧 + 1)𝐴0 +

2𝑧
(𝑧−1) ] +

1
2𝑧𝐴0𝐵4 − 𝐴0

𝑧2(𝑧−1)2
[𝛼(𝑧2 + 4𝑧 + 1) + 𝛽𝑧 + (𝛿𝑧 + 𝛾)(𝑧 − 1)]

+ 2𝐴1
𝑧(𝑧−1)2

[(𝛼+ 𝛽)(𝑧 + 1) + (𝛾 + 𝛿)(𝑧 − 1)]

− 𝐴2
𝑧(𝑧−1)2

[𝛼𝑧 + 𝛽(𝑧2 + 4𝑧 + 1) + 𝛾𝑧(𝑧 − 1) + 𝛿(𝑧 − 1)] + (𝑧 + 1)𝐵′
2 − 𝑧𝐵′

3 −𝐵′
1,

𝜓3 = 𝐵1[
3
2(𝐴0 − 𝑧𝐴2) +

2𝑧
(𝑧−1) +

2(2𝑧−1)
𝑧(𝑧−1) ] +𝐵0[(𝑧 + 1)𝐴2 +

1
2𝐴1 − 2(2𝑧−1)

𝑧(𝑧−1) ] +
1
2𝑧𝐴0𝐵3

−𝐵2[
1
2𝑧𝐴1 + (𝑧 + 1)𝐴0 +

2𝑧
(𝑧−1) ] +

2𝛽(𝑧+1)
(𝑧−1)2

𝐴2 +
2𝐴0

𝑧(𝑧−1)2
[(𝛼+ 𝛽)(𝑧 + 1) + (𝛾 + 𝛿)(𝑧 − 1)]

− 𝐴1
𝑧(𝑧−1)2

[𝛼𝑧 + 𝛽(𝑧2 + 4𝑧 + 1) + (𝛾𝑧 + 𝛿)(𝑧 − 1)] + (𝑧 + 1)𝐵′
1 − 𝑧𝐵′

2 −𝐵′
0,

𝜓2 = 𝐵0[
3
2(𝐴0 − 𝑧𝐴2) +

2𝑧
(𝑧−1) +

2(2𝑧−1)
𝑧(𝑧−1) ]−𝐵1[

1
2𝑧𝐴1 + (𝑧 + 1)𝐴0 +

2𝑧
(𝑧−1) ] +

1
2𝑧𝐴0𝐵2 + (𝑧 + 1)𝐵′

0

− 𝑧𝐵′
1 +

𝛽
(𝑧−1)2

[2(𝑧 + 1)𝐴1 − 𝑧𝐴2]− 𝐴0
𝑧(𝑧−1)2

[𝛼𝑧 + 𝛽(𝑧2 + 4𝑧 + 1) + (𝛾𝑧 + 𝛿)(𝑧 − 1)],

𝜓1 =
𝛽

(𝑧−1)2
[2(𝑧 + 1)𝐴0 − 𝑧𝐴1] +

1
2𝑧𝐴0𝐵1 −𝐵0[(𝑧 + 1)𝐴0 +

1
2𝑧𝐴1 +

2𝑧
(𝑧−1) ]− 𝑧𝐵′

0,

𝜓0 =
𝑧
2𝐴0[𝐵0 − 2𝛽

(𝑧−1)2
].

(83)
Setting 𝜓8 = 𝜓0 = 0 implies

𝐴0

(
𝐵0 − 2𝛽

(𝑧 − 1)2

)
= 0, 𝐴2

(
𝐵4 +

2𝛼

𝑧2(𝑧 − 1)2

)
= 0. (84)

To solve these equations one may distinguish between the following four cases:
Case 1. 𝐴0 ∕= 0, 𝐴2 ∕= 0: Equation (84) gives 𝐵4 = −2𝛼

𝑧2(𝑧−1)2
, 𝐵0 = 2𝛽

(𝑧−1)2
. If 𝐴2 = 2𝑎2

𝑧(𝑧−1) , 𝐴0 = 2𝑎0
(𝑧−1) ,

𝐵3 = −1
2𝐴1𝐴2, and 𝐵1 = −1

2𝐴1𝐴0 then, 𝜙0 = 𝜙6 = 𝜓1 = 𝜓7 = 0, where 𝑎22 = 2𝛼 and 𝑎20 = −2𝛽. Then
𝜙1 = 𝜙5 = 0 identically, and 𝜙𝑗 = 0, 𝑗 = 2, 3, 4 if 𝐴1 =

2(𝜆𝑧+𝜇)
𝑧(𝑧−1) , and

𝐵2 =
−2

𝑧2(𝑧−1)2
[(𝜆2 + 𝑎0𝜆− 𝛾 − 𝛽)𝑧2 + (2𝜇𝜆+ 𝑎0𝜆+ 𝑎0𝜇− 𝜇+ 2𝑎0𝑎2 − 𝑎0 − 𝛼− 𝛽 + 𝛾 − 𝛿)𝑧

+ 𝜇2 + 𝜇(𝑎0 + 1) + 𝑎0 − 𝛽 + 𝛿],
(85)

where 𝜆 and 𝜇 are constants such that 𝜆 + 𝜇 + 𝑎0 + 𝑎2 = 0, 𝜆(𝑎2 − 𝑎0 − 1) = 𝑎2 − 𝛼 − 𝛽 − 𝛾 − 𝛿,
and 𝜇(𝑎2 − 𝑎0 − 1) = 𝑎0 − 𝛼 − 𝛽 + 𝛾 + 𝛿. To set 𝜓𝑗 = 0, 𝑗 = 2, ..., 6, 𝜆 and 𝜇 should satisfy
(𝜆+ 𝑎2 − 1)[(𝜆+ 𝑎0)

2 − 2𝛾] = 0, and (𝜇+ 𝑎2)[(𝜇+ 𝑎2)
2 − 2𝛾] = 0. The above five conditions on 𝜆, and

𝜇 are satisfied if
(2𝛼)1/2 − (−2𝛽)1/2 − (2𝛾)1/2 − (1− 2𝛿)1/2 = 1. (86)
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Therefore, if 𝛼, 𝛽, 𝛾, and 𝛿 satisfy the condition (86), then 𝑣 satisfies the following Riccati equation:

𝑧(𝑧 − 1)𝑣′ = (2𝛼)1/2𝑣2 − [((−2𝛽)1/2 + (2𝛾)1/2)𝑧 + (2𝛼)1/2 − (2𝛾)1/2]𝑣 + (−2𝛽)1/2𝑧. (87)

This is the well known one parameter family of solutions of PVI [10, 17, 18].
Case 2. 𝐴0 = 𝐴2 = 0: In order to set 𝜙𝑗 = 0, 𝑗 = 0, ..., 6, one should choose

𝐵4 =
2𝛼

𝑧2(𝑧−1)2
, 𝐵0 = − 2𝛽

(𝑧−1)2
, 𝐴1 =

𝑎1
𝑧 ,

𝐵2 = −(𝑧 + 1)𝐵3 − 1
2𝐴

2
1 +𝐴′

1 +
(2𝑧−1)
𝑧(𝑧−1)𝐴1 − 2

𝑧2(𝑧−1)2
[𝛼(𝑧2 + 𝑧 + 1) + 𝛽𝑧 + 𝛾(𝑧 − 1) + 𝛿𝑧(𝑧 − 1)],

𝐵1 = 𝑧𝐵3 − 1
2(𝑧 + 1)𝐴′

1 − (𝑧2+2𝑧−1)
2𝑧(𝑧−1) 𝐴1 +

2
𝑧(𝑧−1)2

[(𝛼+ 𝛽)(𝑧 + 1) + (𝛾 + 𝛿)(𝑧 − 1)],

(88)
where 𝑎1 is a constant. with these choices 𝜓1 = 𝜓7 = 0 identically, and 𝜓6 = 0, if𝐵3 satisfies the following
equation:

𝑑

𝑑𝑧
[𝑧2(𝑧 − 1)2𝐵3]− 1

2
𝑎1𝑧(𝑧 − 1)2𝐵3 − 2𝛼

𝑧
[𝑎1(𝑧 + 1)− 2𝑧] = 0. (89)

Therefore, there are three distinct subcases: i. 𝑎1(𝑎1 − 2) ∕= 0; ii. 𝑎1 = 0, and iii. 𝑎1 = 2 . If
𝑎1(𝑎1 − 2) ∕= 0 , then one can not choose 𝐵3 and 𝑎1 so that 𝜓𝑗 = 0, 𝑗 = 2, 3, 4, 5.

If 𝑎1 = 0, then equation (89) gives 𝐵3 =
−4𝛼𝑧+𝑏3
𝑧2(𝑧−1)2

, where 𝑏3 is a constant, and 𝜓𝑗 = 0, 𝑗 = 2, 3, 4, 5

only if 𝑏3 = 2(𝛾 + 𝛽), and 𝛼 = 𝛿 = 0. Therefore, if 𝛼 = 𝛿 = 0, one-parameter family of solutions of PVI
are given by

𝑧2(𝑧 − 1)2(𝑣′)2 = 2(𝑣 − 𝑧)2[(𝛾 + 𝛽)𝑣 − 𝛽]. (90)

If 𝛾 + 𝛽 = 0, then equation (90) reduces to the linear equation

𝑧(𝑧 − 1)𝑣′ = −(−2𝛽)1/2(𝑣 − 𝑧), (91)

which is a special case, 𝛼 = 𝛿 = 0 and 𝛾 + 𝛽 = 0, of the equation (87).
If 𝛾 + 𝛽 ∕= 0, then the transformation

𝑣 =
1

(𝛾 + 𝛽)
{2[𝑧(𝑧 − 1)

𝑢′

𝑢
+ 𝑛(𝑧 − 1) +𝑚𝑧]2 + 𝛽}, (92)

where 2𝑚(𝑚− 1) = 𝛾 and 2𝑛(𝑛− 1) = −𝛽, transform equation (90) to the hypergeometric equation

𝑧(𝑧 − 1)𝑢′′ + [2(𝑛+𝑚+ 1)𝑧 − (2𝑛+ 1)]𝑢′ + (𝑛+𝑚)(𝑛+𝑚− 1)𝑢 = 0. (93)

If 𝑎1 = 2, then equation (89) gives 𝐵3 =
𝑏3𝑧−4𝛼
𝑧2(𝑧−1)2

, where 𝑏3 is a constant, and 𝜓𝑗 = 0, 𝑗 = 2, 3, 4, 5

only if 𝑏3 = 2 and 𝛼 = 𝛽 = 0, 𝛾 = −𝛿 = 1
2 . Therefore, with these values of the parameters, PVI has

one-parameter family of solutions given by

(𝑧 − 1)2(𝑧𝑣′ − 𝑣)2 = 2𝑧𝑣(𝑣 − 1)2. (94)

The transformation 𝑣 = 2𝑧[(𝑧 − 1)𝑢
′
𝑢 + 1√

2
]2 transforms equation (94) into the hypergeometric equation

𝑧(𝑧 − 1)𝑢′′ + (1 +
√
2)𝑧𝑢′ +

1

2
𝑢 = 0. (95)

Case 3. 𝐴0 ∕= 0, 𝐴2 = 0: (84), and 𝜙0 = 𝜙6 = 0 give 𝐵0 = 2𝛽
(𝑧−1)2

, 𝐴2
0 = −8𝛽

(𝑧−1)2
, and 𝐵4 = 2𝛼

𝑧2(𝑧−1)2

respectively. Then, one can obtain 𝐵1 = −1
2𝐴0𝐴1, and

𝐵2 =
1
𝑧2
𝐴0 − (𝑧+1)

2𝑧 𝐴0𝐴1 −𝐴′
1 − 1

𝑧−1𝐴1 − 1
2𝐴

2
1 +

2
𝑧2(𝑧−1)2

[𝛼𝑧 + 𝛽(𝑧2 + 𝑧 + 1)

+ 𝛾𝑧(𝑧 − 1) + 𝛿(𝑧 − 1)],

𝐵3 =
1
2𝑧𝐴0𝐴1 − 1

2𝑧2
𝐴0 +

(𝑧+1)
2𝑧 𝐴′

1 +
(𝑧2+2𝑧−1)
2𝑧2(𝑧−1)

𝐴1 − 2
𝑧2(𝑧−1)2

[(𝛼+ 𝛽)(𝑧 + 1) + (𝛾 + 𝛿)(𝑧 − 1)],

(96)
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by solving 𝜓1 = 0, 𝜙𝑗 = 0, 𝑗 = 2, 3 respectively. Then, 𝜙1 = 𝜙2 = 𝜓5 = 𝜓7 = 𝜓8 = 0 identically and
𝜙4 = 0 gives

𝑧(𝑧 − 1)𝐴′
1 + (𝑧 − 1)𝐴1 −𝐴0 = 0. (97)

If one lets 𝐴0 =
𝑎0

(𝑧−1) , where 𝑎20 = −8𝛽. Then equation (97) implies that 𝐴1 =
𝑎1
𝑧 − 𝑎0

𝑧(𝑧−1) , where 𝑎1
is a constant. The equation 𝜓6 = 0 now gives

(𝑎1 − 2)[𝑎20+2𝑎0𝑎1 +4𝑎1 − 8(𝛾+ 𝛿−𝛼)] = 0, (𝑎0 + 𝑎1)[𝑎
2
0 +2𝑎0𝑎1 +4𝑎1− 8(𝛾+ 𝛿+𝛼)] = 0. (98)

So, there are four distinct cases: i. 𝑎1 = 2, 𝑎0 + 𝑎1 ∕= 0, ii. 𝑎1 ∕= 2, 𝑎0 + 𝑎1 = 0, iii. 𝑎1 ∕=
2, 𝑎0 + 𝑎1 ∕= 0, and iv. 𝑎1 = 2, 𝑎0 + 𝑎1 = 0. If 𝑎1 = 2, 𝑎0 + 𝑎1 ∕= 0 and 𝑎1 ∕= 2, 𝑎0 + 𝑎1 = 0 ,
then one can not choose 𝐵𝑘, 𝑘 = 0, ..., 4 such that 𝜓𝑗 = 0, 𝑗 = 2, 3, 4, 5. When 𝑎1 ∕= 2, 𝑎0 + 𝑎1 ∕= 0,
𝜓𝑗 = 0, 𝑗 = 2, ..., 5 only if 𝛼 = 𝛿 = 0, 𝛾 + 𝛽 = 0, and then 𝑣 satisfies (91).

If 𝑎1 = 2, 𝑎0 = −2, then 𝛽 = −1
2 , 𝐵0 =

−1
(𝑧−1)2

, 𝐵1 =
2

(𝑧−1)2
and

𝐵2 =
1

𝑧2(𝑧−1)2
[2𝛼𝑧 + 2𝛾𝑧(𝑧 − 1) + 2𝛿(𝑧 − 1)− 𝑧2 − 𝑧 + 1],

𝐵3 =
1

𝑧2(𝑧−1)2
[(1− 2𝛾 − 2𝛿)(𝑧 − 1)− 2𝛼(𝑧 + 1)].

(99)

Then 𝜓𝑗 = 0, 𝑗 = 2, ..., 5 identically. Hence, we have the following theorem

Theorem 2 The Painlevé VI equation admits a one-parameter family of solution characterized by

𝑧2[(𝑧− 1)𝑣′− (𝑣− 1)]2 = 𝑣2{2𝛼𝑣2− [(2𝛼+𝜆)𝑧+2𝛼−𝜆]𝑣+2𝛾𝑧2+(2𝛼+𝜆− 4𝛾)𝑧+2𝛾−𝜆}, (100)

where 𝜆 = 2𝛾 + 2𝛿 − 1, if and only if 𝛽 = −1
2 .

Equation (100) can be linearized as follows: If 𝛼 = 𝜆 = 0, then equation (100) can be reduced to the
following linear equation:

𝑧(𝑧 − 1)𝑣′ = −[(2𝛾)1/2(𝑧 − 1)− 𝑧]𝑣 − 𝑧. (101)

This is a special case, 𝛼 = 0, and 𝛽 = −1
2 , of equation (87). If 𝛼 = 0 and 𝜆 ∕= 0, then the solution of

equation (100) is given by

𝑣 = − 1

𝜆
[(𝑧 − 1)𝑤2 − 2𝛾(𝑧 − 1)− 𝜆], (102)

where 𝑤 satisfies the following Riccati equation

2𝑧(𝑧 − 1)𝑤′ = −𝜖[(𝑧 − 1)𝑤2 − 2𝛾(𝑧 − 1)− 𝜆], 𝜖 = ±1. (103)

The transformation 𝑤 = 2𝜖(𝑧𝑦′+𝑛𝑦)
𝑦 , where 4𝑛2 = 1 − 2𝛿, transform equation (103) into the hypergeo-

metric equation:

𝑧(𝑧 − 1)𝑦′′ + (2𝑛+ 1)(𝑧 − 1)𝑦′ − 1

4
𝜆𝑦 = 0 (104)

If 𝛼 ∕= 0, then equation (100) can be written as

𝑧2[(𝑧 − 1)𝑣′ − (𝑣 − 1)]2 = 𝑣2(𝑎𝑣 − 𝑓)(𝑎𝑣 − 𝑔), (105)

where 𝑓(𝑧) = 𝑏(𝑧 − 1) + 𝑎, 𝑔(𝑧) = 𝑐(𝑧 − 1) + 𝑎, 𝑎2 = 2𝛼, 𝑏𝑐 = 2𝛾, 𝑎(𝑏+ 𝑐) = 2𝛼+ 𝜆. If 𝑏 = 𝑐, that
is, if 2(2𝛼)1/2(2𝛾)1/2 = 2𝛼+ 2𝛾 + 2𝛿 − 1, then equation (105) is reduced to following Riccati equation

𝑧(𝑧 − 1)𝑣′ = (2𝛼)1/2𝑣2 − [(2𝛾)1/2(𝑧 − 1)− 𝑧 + (2𝛼)1/2]𝑣 − 𝑧. (106)

(106) is the special case, 𝛽 = −1
2 , of equation (87).

If (2𝛼)1/2(2𝛾)1/2 ∕= 2𝛼+ 2𝛾 + 2𝛿 − 1, then the solution of equation (100) is given by

𝑣 =
𝑓𝑤2 − 𝑔

𝑎(𝑤2 − 1)
, (107)
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where 𝑤 solves the following Riccati equation

2𝑧(𝑧 − 1)𝑤′ = 𝜖(𝑓𝑤2 − 𝑔), 𝜖 = ±1. (108)

The transformation

𝑤 = −2𝜖

𝑓
[
𝑧(𝑧 − 1)𝑦′

𝑦
+ 𝑛(𝑧 − 1) +𝑚𝑧], (109)

where 4𝑛2 = (𝑏− 𝑎)(𝑐− 𝑎), 4𝑚2 = 𝑎2, transforms equation (108) into the following linear equation

𝑦′′ = −[2𝑛+1
𝑧 + 2𝑚+1

𝑧−1 − 𝑏
𝑏𝑧−𝑏+𝑎 ]𝑦

′

− 1
4𝑧(𝑧−1)(𝑏𝑧−𝑏+𝑎) [𝑏(2𝑎

2 + 8𝑛𝑚− 𝑎𝑏− 𝑎𝑐)𝑧 − (𝑏− 𝑎)(2𝑎2 + 8𝑛𝑚− 𝑎𝑏− 𝑎𝑐)− 4𝑚(𝑏− 𝑎) + 4𝑎𝑛]𝑦.

(110)
Equation (110) is known as Huen’s equation [19].

Case 4. 𝐴0 = 0, 𝐴2 ∕= 0: In this case, equation (84), and 𝜙6 = 𝜙0 = 0 give 𝐵4 = − 2𝛼
𝑧2(𝑧−1)2

, 𝐴2
2 =

8𝛼
𝑧2(𝑧−1)2

, 𝐵0 = − 2𝛽
(𝑧−1)2

respectively. Solving the equations 𝜓7 = 0, and 𝜙𝑗 = 0, 𝑗 = 3, 4 give 𝐵3 =

−1
2𝐴2𝐴1, and

𝐵2 = −{1
4𝐴2(𝑧

2 + 𝑧 + 1) + 1
2(𝑧 + 1)𝐴2𝐴1 −𝐴′

1 − (2𝑧−1)
𝑧(𝑧−1)𝐴1 +

1
2𝐴

2
1 −𝐴2

+ 2
𝑧2(𝑧−1)2

[𝛽𝑧 + 𝛾(𝑧 − 1) + 𝛿𝑧(𝑧 − 1)]},
𝐵1 = −1

2{(𝑧 + 1)𝐴′
1 +

(𝑧2+2𝑧−1)
𝑧(𝑧−1) 𝐴1 − 𝑧𝐴1𝐴2 +𝐴2 − 1

2𝑧(𝑧 + 1)𝐴2
2

− 4
𝑧(𝑧−1)2

[𝛽(𝑧 + 1) + (𝛾 + 𝛿)(𝑧 − 1)].

(111)

Then, 𝜙2 = 0, yields
𝑧(𝑧 − 1)𝐴′

1 + (𝑧 − 1)𝐴1 − 𝑧𝐴2 = 0. (112)

and 𝜙5 = 𝜙1 = 𝜓2 = 𝜓8 = 𝜓7 = 0 identically. Let 𝐴2 = 𝑎2
(𝑧−1) , where 𝑎22 = 8𝛼, then equation (112)

implies that 𝐴1 =
𝑎1
𝑧 − 𝑎2

𝑧(𝑧−1) , where 𝑎1 is a constant. The equation 𝜓2 = 0 now gives

𝑎1[𝑎
2
2+2𝑎2𝑎1−4𝑎1−4𝑎2+8(𝛾+𝛿−𝛽)] = 0, (𝑎2+𝑎1−2)[𝑎22+2𝑎2𝑎1−4𝑎1−4𝑎2+8(𝛾+𝛿+𝛽)] = 0. (113)

So, there are four subcases to be considered: i. 𝑎1 ∕= 0, 𝑎2 + 𝑎1 ∕= 2; ii. 𝑎1 = 0, 𝑎2 ∕= 2; iii. 𝑎1 ∕=
0, 𝑎1 = 2− 𝑎2; and iv. 𝑎1 = 0, 𝑎2 = 2. If 𝑎1 = 2− 𝑎2, 𝑎1 ∕= 0, then one can not choose 𝐵𝑘, 𝑘 = 0, ..., 4
so that 𝜓𝑗 = 0, 𝑗 = 2, ..., 5. When 𝑎1 = 0, 𝑎2 ∕= 2, 𝜓𝑗 = 0, 𝑗 = 2, ..., 5 only if 𝛼+𝛿 = (2𝛼)1/2, 𝛾 = 𝛽 = 0.
In this case, 𝑣 satisfies the following Riccati equation

𝑧(𝑧 − 1)𝑣′ = (2𝛼)1/2𝑣(𝑣 − 1), (114)

which is the special case, 𝛾 = 𝛽 = 0, of the equation (87).
When 𝑎1 ∕= 0, 𝑎2 + 𝑎1 − 2 ∕= 0, then 𝜓𝑗 = 0, 𝑗 = 2, ..., 5 only if 𝛽 = 0 and

(2𝛼)1/2 − (2𝛾)1/2 − (1− 2𝛿)1/2 − 1 = 0. Then 𝑣 satisfies the following Riccati equation:

𝑧(𝑧 − 1)𝑣′ = (2𝛼)1/2𝑣2 − [(2𝛾)1/2(𝑧 − 1) + (2𝛼)1/2]𝑣. (115)

Equation (115) is the special case, 𝛽 = 0, of (87).
If 𝑎1 = 0, 𝑎2 = 2, then one has 𝛼 = 1

2 , 𝐵4 =
−1

𝑧2(𝑧−1)2
, 𝐵3 =

2
𝑧2(𝑧−1)2

,

𝐵2 =
−1

𝑧2(𝑧 − 1)2
[2𝛽𝑧 + 2𝛾(𝑧 − 1) + 2𝛿𝑧(𝑧 − 1)− 𝑧2 + 𝑧 + 1], (116)

𝐵1 =
1

𝑧(𝑧 − 1)2
[(2𝛾 + 2𝛿 − 1)(𝑧 − 1) + 2𝛽(𝑧 + 1)].

Now, the equations 𝜓𝑗 = 0, 𝑗 = 3, 4, 5, 6 are satisfied identically. Thus, PVI admits a one-parameter
family of solution characterized by

[𝑧(𝑧−1)𝑣′−𝑣(𝑣−1)]2+2[𝜆𝑧2+(𝛾+𝛽−𝜆)𝑧−𝛾]𝑣2−2𝑧[(𝜆+𝛾+𝛽)𝑧+𝛽−𝛾−𝜆]𝑣+2𝛽𝑧2 = 0, (117)

where 𝜆 = 𝛿 − 1
2 , if and only if 𝛼 = 1

2 . The Lie point-discrete symmetry 𝑣 = 1
𝑣 , 𝛼̄ = −𝛽, 𝛽 =

−𝛼, 𝛾 = 𝛾, 𝛿 = 𝛿, 𝑧 = 1
𝑧 of PVI [20] transforms solutions 𝑣(𝑧; 12 , 𝛽, 𝛾, 𝛿) of equation (117) into solutions

𝑣(𝑧; 𝛼̄,−1
2 , 𝛾, 𝛿) of equation (100).
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7 Conclusion

It is well known that for certain choice of parameters the Painlevé equations, PII-PVI, admit one parameter
family of solutions, rational, algebraic and expressible in terms of the classical transcendental functions
such as Airy, Bessel, Weber-Hermite, Whitteker, hypergeometric functions respectively. All these known
one parameter family of solutions satisfy the Riccati equations. In this article, we investigated the first-order
second-degree equations satisfying the Fuchs theorem concerning the absence of movable singular points
except the poles, related with the Painlevé equations PII-PVI. By using these first-order second-degree
equations, one parameter family of solutions of PII-PVI are also obtained. For the sake of completeness, we
examine all possible cases, and hence some of the well known results as well as the new ones are obtained.
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32(45), 7933-7952 (1999)
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[15] Valerii I. Gromak: Solutions of Painlevé’s fifth problem, Diff. Urav., 12(4), 740-742 (1976)
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