

Performance Comparison of Simulated Annealing, GA and ACO Applied to

TSP

Hosam H. A. Mukhairez, Ashraf Y. A. Maghari

Faculty of Information Technology, Islamic University of Gaza

Gaza, Palestine

Abstract

The travelling salesman problem (TSP) is probably

one of the most famous problems in combinatorial

optimization. There are many techniques to solve the

TSP problem such as Ant Colony Optimization (ACO),

Genetic Algorithm (GA) and Simulated Annealing

(SA).In this paper, we conduct a comparison study to

evaluate the performance of these three algorithms in

terms of execution time and shortest distance. JAVA

programing is used to implement the algorithms using

three benchmarks on the same platform conditions.

Among the three algorithms, we found out that the

Simulated Annealing has the shortest time in

execution(<1s) but for the shortest distance, it comes

in the second order. Furthermore, in term of shortest

distance between the cities, ACO performs better than

GA and SA. However, ACO comes in the last order in

term of time execution.

1. Introduction

Optimization is one of the most important tasks of

engineers, which the engineer always asked to design

more efficient and less expensive systems as well as to

devise such plans and techniques to improve

operations of running systems in many fields

especially in industrial and the scientific world. The

travelling salesman problem (TSP) is a

nondeterministic polynomial hard problem in

combinatorial optimization studied in algorithms and

operations research ,also theoretical computer science

studies.[1]

The core problem mainly summarized as there are

cities and given costs, weights or distances between

them, a travelling salesman required to visit all cities,

but he want to save time on travelling, therefore we

need to find the suitable sequence of cities to minimize

the traveled costs, weights or distances. [1]

A salesman decided to travel to M different cities.

The most existing important question appears is: In

what advised continues list of cities should he visit to

minimize the total distance traveled or cost? Each city

is expressed as a letter (e.g. 'A' or 'B').

If we have M cities, and we want to compute all

paths between them, then the possible combinations or

sequences of cities are M factorial. For example, 30

cities produce 30! Combinations which equals

2.6525285981219105863630848e+32. This is a very

big number of probabilities and combinations. If we

tried every combination of sequences and could test

10,000 of those sequences per second it would take at

normal computers more than 8 million years to

randomly get and observe the minimum sequence.

In 1930 the problem was presented as a

mathematical problem and considered as one of the

most intensively studied problems in optimization. It is

used as a benchmark for many optimization

algorithms. Even though the problem is

computationally difficult, a large number of heuristics

and exact methods are known, so that some instances

with tens of thousands of cities can be solved.[1]

Alhanjouri and AlFarra presented the TSP in some real

world actions:

 Arranging school buses routes to pick up students.

 Delivering meals to people at homes.

 Scheduling stacker cranes in a warehouse,

 Planning truck routes to pick up parcel post and

others materials.

 Planning, logistics, and the manufacture of

microchips.

 A classic example of the TSP is the scheduling of a

machine to drill holes in a circuit board.

There are many approaches and algorithms for

solving TSP problem such as Dijkstra, Minimum

Spanning Tree, and Nearest Neighbor (NNH), Ant

colony optimization (ACO), Genetic Algorithm (GA),

and Simulated Annealing (SA). This study conducts a

comparison between ACO, GA, and SA. The

comparison between them is accomplished to state the

better one for solving travelling salesman problem.

International Journal of Intelligent Computing Research (IJICR), Volume 6, Issue 4, December 2015

Copyright © 2015, Infonomics Society 647

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Institutional Repository of the Islamic University of Gaza

https://core.ac.uk/display/287988035?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Ant colony optimization (ACO) is one of the old

and most popular meta-heuristics used for

combinatorial optimization (CO) in which an optimal

solution is sought over a discrete search space. The

well-known CO's issue is the traveling salesman

problem (TSP) where the search of suitable candidate

solutions grows up relatively to the increase size of the

problem, which leads to almost infeasible optimal

solution appears.

The first ACO algorithm –Ant System (AS) - has

been introduced by Marco Dorigo in the early 1990’s,

and several developments of the AS have been

suggested [2];[3]. The ACO algorithm is based on a

computational paradigm informed from real ant

colonies and the way they work. The idea was to use

several constructive computational agents (simulating

real ants).

Ant's behavior is dominated by the goal of colony

existence rather than being interested on the existence

of individuals. The behavior that provided the

inspiration for ACO is the ants’ seeking behavior (see

figure 1), and in particular, how ants can find shortest

paths between food places and their nested camp.

When searching for food, ants initially discover the

area around their nest in a random way. While moving

around, each ant leaves a chemical pheromone trail on

the ground. Other ants can smell pheromone.

Figure 1. Ants use pheromone as indirect

communication to build best tour [1]

When choosing their way, they look to choose, in

probability, paths scored by strong pheromone

concentrations. When any ant finds a food source, it

weighs up the quantity and the quality of the food and

carries some of it back to the nest. While returning trip,

the quantity of pheromone that an ant leaves on the

ground may depend on the quantity and quality of the

food. The pheromone marks will guide other ants to

the food source. It has been shown that the indirect

messages between the ants through pheromone enables

them to find shortest paths between their nested camps

and food sources.

Figure 2. Undirected graph show nodes and edges, the

figure show the four stages of ACO to reach shortest

path [1]

Genetic algorithms are a part of evolutionary

computing technique, which is a rapidly growing area

of artificial intelligence. Genetic algorithms are

inspired by Darwin’s theory about development and

evolution. Rechenberg said: “solution to a problem

solved by genetic algorithms is evolved”. [4] displayed

the idea of evolutionary computing in the 1960s in his

work “Evolution strategies” (Evolutions strategy in

original). After that researchers developed on his idea.

Genetic Algorithms (GA) were designed and planned

by John Holland and developed by him and his

students and colleagues. In 1992 Koza [5] has used GA

to advance programs to perform defined tasks. He

called his method “genetic programming” (GP), LISP

programs were used; because programs in this

language can be expressed in the form of a “parse

tree”, which is the object the GA works on.

Basic Explanation of GA

Genetic algorithm is started with a set of solutions

(denoted by chromosomes) called population.

Solutions from one population are booked and used to

form a new population. This is motivated by a hope,

that the new generation will be better than the old one

in its characteristics.

Solutions which are selected to form new solutions

(offspring) are selected according to their fitness

attributes; the more suitable they are the high

probability they have to replicate. This action is

repeated until certain conditions are satisfied.

Outline of the basic Genetic Algorithm

1. (Start) Generate random population of n

chromosomes (suitable solutions for the problem).

2. (Fitness) Evaluate the fitness f(x) of each

chromosome x in the population.

3. (New population) Create a new population by

repeating the following steps until the new population

is complete.

a. (Selection) Select two parent chromosomes from a

population according to their fitness (the better fitness,

the bigger chance to be selected).

b. (Crossover) with a crossover probability cross-over

the parents to form a new offspring (children). If no

International Journal of Intelligent Computing Research (IJICR), Volume 6, Issue 4, December 2015

Copyright © 2015, Infonomics Society 648

crossover was performed, offspring is an exact copy of

parents.

c. (Mutation) with a mutation probability mutate new

offspring at each locus (position in chromosome).

d. (Accepting) Place new offspring in a new

population.

4. (Replace) use new generated population for a further

run of algorithm.

5. (Test) if the end condition is satisfied, stops, and

returns the best solution in current population.

6. (Loop) Go to step 2.

The above outline of GA is very general. There are

many things that can be implemented differently in

various problems.

The simulated annealing (SA) algorithm was

originally encouraged from the process of

strengthening metal by heating. Strengthening involves

heating and cooling a material to modify its physical

properties due to the changes in its internal structure.

As the metal cools its new structure becomes fixed,

consequently causing the metal to retain its newly

obtained properties.

In simulated annealing we keep a temperature

variable to simulate this heating process. We initially

set it high and then allow it to slowly 'cool' as the

algorithm runs. While this temperature variable is high

the algorithm will be allowed, with more frequency, to

accept solutions that are worse than our current

solution. This gives the algorithm the ability to jump

out of any local optimums it finds itself in early on in

execution. As the temperature is reduced so is the

chance of accepting worse solutions, therefore

allowing the algorithm to gradually focus in an area of

the search space in which hopefully, a close to

optimum solution can be found. This gradual 'cooling'

process is what makes the simulated annealing

algorithm remarkably effective at finding a close to

optimum solution when dealing with large problems

which contain numerous local optimums. The nature of

the traveling salesman problem makes it a perfect

example.

For doing the comparisons, TSPLIB95 corpus
used, which includes hundreds of tsp maps that can be

used as benchmarks. We selected three benchmarks

which are (bier127.tsp, berlin52.tsp, ali535.tsp). Our

comparison study concentrates on time execution of

the algorithms, and the smallest shortest distance

between cities.

The rest of this paper is organized as follows:

Section 2 discusses state of the art and reviews some

related works. Section 3 shows experimental setup.

Section 4 presents results and discussion. Finally

Section 5 the conclusion.

2. Overview and Related work

2.1 . Ant Colony Optimization (ACO)

Dorigo and Gambardella described a qualified

simulated ant colony for solving the travelling

salesman problem (TSP). Ants of the simulated colony

are able to generate one after another shorter feasible

trips by using information gathered in the form of a

pheromone trail dropped on the edges of the TSP

graph. Computer simulations prove that the artificial

ant colony is talented of producing good solutions to

TSP. The method is an example, like simulated

annealing, neural networks and evolutionary

computation, of the successful use of a natural

metaphor to design an optimization algorithm.[6]

Thomas and Marco [7] presented experimental

solutions and results which have been obtained with

MAX-MIN Ant System, which is one of the improved

forms of Ant System.

2.2. Genetic Algorithms (GA)

The traveling salesman problem (TSP) is used as

an idea model for a wide-range class of problems

having complication due to the combinatorial

explosion. The TSP has become a target for the genetic

algorithm (GA) researchers, because it is probably the

significant problem in combinatorial optimization and

many new ideas in combinatorial optimization have

been tested on the TSP.

However, by using GA for solving TSPs, Tsujimura

and Gen, M obtained a local optimal solution rather

than a best estimated solution frequently. The goal of

their work is to solve (TSP) problem about local

optimal solutions by announcing a degree of diversity

of populations using the concept of information

entropy. Thus, they obtained a best approximate

solution of the TSP by using entropy-based GA. [8].

SENGOKU and YOSHIHARA developed a Java

GUI software depends on a hybrid algorithm using GA

and heuristics for quick solution of TSP[9], Also they

claim that their TSP solver is useful as a criterion for

assessing the performance of TSP solvers.

2.2. Hybrid approach of (GA) and (ACO)

Gong and Ruan proposed a hybrid method of

genetic algorithm (GA) and ant colony optimization

(ACO) for the TSP. In the proposed method, every

chromosome of GA is also at the same time an ant of

ACO. Whenever GA achieves the operation of

crossover and mutation, the method firstly computes

International Journal of Intelligent Computing Research (IJICR), Volume 6, Issue 4, December 2015

Copyright © 2015, Infonomics Society 649

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Tsujimura,%20Y..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Gen,%20M..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Daoxiong%20Gong.QT.&newsearch=true

the relationship strength between gene codes of

parental chromosome(s) according to the pheromone

matrix of ACO, and it then chooses the crossover or

mutation point(s) according to the relationship

strength. A threshold is produced to classify the gene

relationship as strong or weak, the strong relationship

segments of parents are reserved to offspring as far as

possible [10].

Chunxiang and Xiaoni integrated genetic algorithm

(GA) with ant colony optimization (ACO) for solving

Traveling Salesman Problems(TSP) to get better

optimization performance than each single algorithm

alone, and complement advantages each other and get

out of each other disadvantages. The hybrid algorithm

(HA) runs GA first and then ACO. [11]

A new approach called GSA was proposed

focusing at the key link in the hybrid algorithm (HA)

that translates genetic solution from GA into

information pheromone to distribute in ACO. GSA

takes new matrix which is formed by the combination

of the former 90% of individual from genetic solution

and 10% of individual by random generation as the

basis of transformation of pheromone value. They also

discussed the best combination of genetic operators in

GA. Many TSP samples were used as modelling tests

to test genetic operators matching and optimization

performance of HA. The results showed that PMX

crossover matched with IVM mutation in the GA is the

best combination of genetic operators which is able to

make GA improve the precision of optimal solution,

and HA using the best combination operators and GSA

approach is effective and available to search for finest

solution in high efficiency and has good convergence.

[11].

Also Shahla Nemat, Mohammad Ehsan Basiri and

others[12] interested in combining GA with ACO to

improve the performance of finding solution for TSP

problem. They suggested a new feature selection

algorithm that combines genetic algorithms (GA) and

ant colony optimization (ACO) for faster and better

search experience. Their hybrid algorithm makes use

of advantages of both ACO and GA methods.

Suggested algorithm is easily implemented and

because of use of a simple classifier in that, its

computational complexity is very low. The

performance of suggested algorithm is compared to the

performance of two prominent population-based

algorithms, ACO and GA.

Experimentation is carried out using two

challenging biological datasets, involving the
hierarchical functional classification of GPCRs and

enzymes.

2.2 . Comparing between GA and ACO

Some other authors interested in comparing

between GA and ACO in solving TSP problem,

Haroun et al. [13] presented a contribution to

comparing two nature inspired metaheuristics for

solving the TSP. They run ACO and GA on three

benchmark examples with changing size and

complexity; also they run GA and ACO one real world

application in the field of urban transportation and

logistics.

They observed that the GA is fast, easy to

implement and cost efficient in terms of computational

resources. The ACO is greedier but gives better results,

especially with large problems size.

Shuang et al. [14] proposed a hybrid PS-ACO

algorithm, ACO algorithm altered by particle swarm

optimization (PSO) algorithm. The pheromone

updating rules of ACO are merged with the local and

global search mechanisms of PSO, they claims that PS-

ACO algorithm has better convergence performance

than genetic algorithm (GA), ACO and MMAS under

the condition of limited evolution iterations.

Alhanjouri and Alfarra [1] tried to apply both

techniques to solve TSP by using the same dataset and

compare between them to determine which one is

better in solving travelling salesman problem. For Ant

Colony Optimization, they studied the effect of some

parameters on the generated results, these parameters

as: number of Ants, evaporation, and number of

iterations. On the other hand, they studied the mutation

probability, chromosome population, and crossover

probability parameters that effect on the Genetic

Algorithm results. Their comparison between GA and

ACO is achieved to form suitable algorithm for

travelling salesman problem. At the end they observed

that GA is still better than ACO for TSP.

2.3. Simulated Annealing (SA)

Yip and Pao[15] presented a new technique, which

integrates the idea of simulated annealing into the

practice of simulated evolution, in place of arbitrary

heuristics. The presented technique is called guided

evolutionary simulated annealing (GESA). Their

results show that the GESA technique can discover a

very good near finest solution after examining a very

small fraction of possible solutions.

After reading and viewing many papers talks about

GA, ACO and SA in solving TSP problem, we are

going run some implementations using JAVA code to
state which is better in the terms of (Best Distance,

Execution Time) when running the algorithms on the

same platform condition and datasets.

International Journal of Intelligent Computing Research (IJICR), Volume 6, Issue 4, December 2015

Copyright © 2015, Infonomics Society 650

http://www.sciencedirect.com/science/article/pii/S0957417409003637
http://www.sciencedirect.com/science/article/pii/S0957417409003637
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Yip,%20P.P.C..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Pao,%20Y.-H..QT.&newsearch=true

2.4. Comparing GA, ACO, and SA

Kumbharana and Pandey[16] compared between

ACO, GA and SA for TSPLIB samples (city10, city29,

city51, ulysses16, Oliver30, att48, eli51) in term of

shortest distance using matlab. Their results showed

best, worst and average distances of 15 executions for

ACO, GA and SA.

However, this work is different in the context of

assessing GA, ACO, and SA in terms of time

execution in addition to shortest distance between

cities. Furthermore, the algorithms have been ordered

according to these two terms and our experiments were

conducted using java programming.

3. Experimental results

All the simulations were completed on a Windows

10 64-bits laptop computer with an i7-4510U

processor clocked at 2.00GHz, and 6 GB of Ram. The

Genetic algorithm was developed in JAVA using

“GAlib” library. The Ant colony optimization

algorithm and Simulated Annealing was written in

native JAVA code.

Algorithms GA, ACO and SA will be run in

NetBeans8.1 and JDK1.8 using JAVA programming

on the same *.tsp dataset files download from

TSPLIB95 corpus.

3.1. The Ant Colony Optimization

Table 1. Basic ACO algorithm parameters values

Attribute value

ALPHA -0.2

BETA 9.6

PHEROMONE_PERSISTENCE 0.3

INITIAL_PHEROMONES 0.8

NUM_OF_ANTS 2048

3.1.1.Ali535.tsp. Ali535 consists of 535 city, ACO

took many time to calculate the result. It found a tour

of best shortest distance of 1510.637 in ~62 seconds.

Figure 3. Evolution of ACO results over time in ali535

3.1.2. Berlin52.tsp. Berlin52 consists of 52 city,

ACO quickly calculated the result. It found a tour of

best shortest distance of 7721.432 in ~4 seconds.

Figure 4. Evolution of ACO results over time in

berlin52

3.1.3. Bier127.tsp. Bier127 consists of 127 city,

ACO took some time to return the result. It found a

tour of best shortest distance of 124651.524 in ~27

seconds.

Figure 5: Evolution of ACO results over time in

bier127

Table 2. Summary of ACO results over time for the

three tsp maps

3.2. The Genetic Algorithm

Table 3. Basic GA algorithm parameters values

International Journal of Intelligent Computing Research (IJICR), Volume 6, Issue 4, December 2015

Copyright © 2015, Infonomics Society 651

3.2.1 ali535.tsp. The GA gets results faster than

ACO but doesn’t found the optimal solution. It found a

tour of best shortest distance of 9466 in ~5 second.

Figure 6. Evolution of GA results over time in ali535

3.2.2. Berlin52.tsp. Also in berlin52, the GA gets

results of best distance of 11551 in ~1 second.

Figure 7. Evolution of GA results over time in berlin52

3.2.3. Bier127.tsp. Also in bier127, the GA gets

results faster than ACO. It found a tour of best shortest

distance of 419224 in ~3 second.

Figure 8. Evolution of GA results over time in bier127

Table 4. Summary of GA results over time for the

three tsp maps

3.3 . Simulated Annealing (SA)

Table 5. Basic SA algorithm parameters values

3.3.1. Ali535.tsp. The SA returned the Final

solution distance of 6471 in ~0.3 seconds.

Figure 9. Evolution of SA results over time in ali535

3.3.2. Berlin52.tsp. The SA returned the Final

solution distance of 10586 in ~0.2 seconds.

Figure 10. Evolution of SA results over time in berlin52

3.3.3. Bier127.tsp. The SA returned the Final

solution distance of 265289 in ~0.3 seconds.

International Journal of Intelligent Computing Research (IJICR), Volume 6, Issue 4, December 2015

Copyright © 2015, Infonomics Society 652

Figure 11. Evolution of SA results over time in bier127

Table 6. Summary of SA results over time for the three

tsp maps

Table 7. Overview of simulation results

Figure 12. Evolution of GA, ACO and SA results over

best distance for bier127, berlin52, and ali535

Figure 13. Evolution of GA, ACO and SA results over

time(s) for bier127, berlin52 and ali535

4. Results and Discussion

Based on our simulation results we observed that:

 GA comes in the second order in both finding the

shortest path and execution time. So it couldn’t be

considered the optimal algorithm for solving TSP.

 ACO comes in the first order in finding the shortest

path, but it takes a long time in execution compared

to other algorithms. So it could be considered

suitable algorithm in finding optimal shortest

distance solution between cities.

 SA comes in the first order in time execution (< 1s)

and gives average shortest distance results between

GA and ACO.

 All these algorithms may give variable results if they

run on other platforms conditions or different

attribute values of each of the compared algorithms

such as (ALPHA, BETA, MUTATION RATE,

POPULATION SIZE, INITIAL TEMPRETUR,

COOLING RATE,…. etc.).

Result stated in point number 2 is consistent with

finding made in [1] and [13], and is conflicting with

finding made in [16].

5. Conclusion

This paper presented a comparative study view

between most widely used optimization algorithm

techniques Optimization (ACO, GA and SA) in terms

of shortest distance and execution time.

Our goal was to evaluate the performance of these

algorithms in terms of execution time and shortest

distance under the same platform conditions. JAVA

programing was used to implement the algorithms

using three benchmarks.

 We found out that the Simulated Annealing has

the shortest execution time (< 1s) but it was at the

second order for the shortest distance term among the

compared algorithms. Furthermore, in term of shortest

distance between the cities, ACO stated better than GA

and SA. However, ACO appeared in the last order in

term of execution time.

In the future – A combination between two of the

compared approaches (SA & ACO) is suggested.

Whereas ACO give the best shortest distance and SA

saves time in execution. So they complement each

other and cancel out their own limitations.

6. References

 [1] Alhanjouri, M. and B. Alfarra, Ant Colony versus

Genetic Algorithm based on Travelling Salesman Problem.

International Journal of Intelligent Computing Research (IJICR), Volume 6, Issue 4, December 2015

Copyright © 2015, Infonomics Society 653

International Journal of Computer Technology and

Applications, 2011. 2(3).

[2] Dorigo, M. and L. Gambardella. Ant-Q: A reinforcement

learning approach to the traveling salesman problem. in

Proceedings of ML-95, Twelfth Intern. Conf. on Machine

Learning. 2014.

[3] Stützle, T. and H. Hoos. MAX-MIN ant system and local

search for the traveling salesman problem. in Evolutionary

Computation, 1997., IEEE International Conference on.

1997. IEEE.

[4] Rechenberg, I., Evolution strategy. Computational

Intelligence: Imitating Life, 1994. 1.

[5] Koza, J.R., Genetic programming: on the programming of

computers by means of natural selection. Vol. 1. 1992: MIT

press.

[6] Dorigo, M. and L.M. Gambardella, Ant colonies for the

travelling salesman problem. Biosystems, 1997. 43(2): p. 73-

81.

[7] Stutzle, T. and M. Dorigo, ACO Algorithms for the

Travelling Salesman Problems, Evolutionary Algorithms in

Engineering and Computer Science, 1999, John-Wiley &

Sons.

[8] Tsujimura, Y. and M. Gen. Entropy-based genetic

algorithm for solving TSP. in Knowledge-Based Intelligent

Electronic Systems, 1998. Proceedings KES '98. 1998

Second International Conference on. 1998.

[9] Sengoku, H. and I. Yoshihara. A fast TSP solver using

GA on JAVA. in Third International Symposium on

Artificial Life, and Robotics (AROB III’98). 1998.

[10] Daoxiong, G. and R. Xiaogang. A hybrid approach of

GA and ACO for TSP. in Intelligent Control and

Automation, 2004. WCICA 2004. Fifth World Congress on.

2004.

[11] Chunxiang, W. and G. Xiaoni. A hybrid algorithm based

on genetic algorithm and ant colony optimization for

Traveling Salesman Problems. in Information Science and

Engineering (ICISE), 2010 2nd International Conference on.

2010.

[12] Nemati, S., et al., A novel ACO–GA hybrid algorithm

for feature selection in protein function prediction. Expert

Systems with Applications, 2009. 36(10): p. 12086-12094.

[13] Haroun, S.A., B. Jamal, and E.H. Hicham, A

Performance Comparison of GA and ACO Applied to TSP.

International Journal of Computer Applications, 2015.

117(20): p. 28-35.

[14] Shuang, B., J. Chen, and Z. Li, Study on hybrid PS-

ACO algorithm. Applied Intelligence, 2011. 34(1): p. 64-73.

[15] Yip, P.P. and Y.-H. Pao, Combinatorial optimization

with use of guided evolutionary simulated annealing. Neural

Networks, IEEE Transactions on, 1995. 6(2): p. 290-295.

[16] Kumbharana, N. and G.M. Pandey, A Comparative

Study of ACO, GA and SA for Solving Travelling Salesman

Problem. International Journal of Societal Applications of

Computer Science, 2013. 2(2): p. 224-228.

International Journal of Intelligent Computing Research (IJICR), Volume 6, Issue 4, December 2015

Copyright © 2015, Infonomics Society 654

