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Abstract

In this paper, we show that the expansion of linear problems of Painlevé
equation in powers of the spectral variable can be used to derive hierarchies
of ordinary differential equations. We applied this approach to linear problems
of the first, second, third, and fourth Painlevé equations. We derived a new
hierarchy of the third Painlevé equation and rederived known hierarchies of the
other equations. Moreover some special solutions of the hierarchies of second,
third, and fourth Painlevé equations are also given.

1 Introduction

In the last three decades there has been much interest in searching for higher-order
analogues of Painlevé equations. There are several method to derive higher-order
analogues of Painlevé equations. Some of these methods are the a-method used by
Painlevé and his school, the Painlevé test, and the similarity reductions of higher-
order completely integrable partial differential equations. The last method leads to the
derivation of Painlevé hierarchies, that is, sequences of ordinary differential equations
whose first members are Painlevé equations.

One of the important properties of the six Painlevé equations ( PI-PVI) is that each
Painlevé equation can be written as a compatibility condition of a linear system

Dy (z,A) = A(z, \)P(x,N),  P.(x,\) = Bz, \)P(x, \), (1)
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where

N+n L+l
A, ) = D AN Ba ) =Y B, (2)
j=0 J=0

and A; and B; are matrices with entries depending on the solution u(x) of the Painlevé
equation [1, 2, 3, 4, 5]. These linear problems are not unique. For example the second
Painlevé equation has two different linear problems, one given by Flaschka and Newell
2] and the other one given by Jimbo and Miwa [1].

Gordoa , Joshi, and Pickering [6] derive Jimbo-Miwa linear problems for second and
fourth Painlevé hierarchies. This leads to the observation that these hierarchies can be
obtained by expanding the Jimbo-Miwa linear problems of PII and PIV in powers of
the spectral variable A. In this article, we will show that this approach can be applied
to many linear problems of Pianlevé equations. More precisely, given a linear problem
(1-2) for a Painlevé equation, we generalize it by replacing the fixed number N in (2) by
a parameter M > N. While the compatibility condition gives the considered Painlevé
equation when M = N, it gives higher-order analogues of this equation when M > N.
We illustrate this by application to the linear problem for the first Painlevé equation
given by Jimbo and Miwa [1, 3], the linear problem for the second Painlevé equation
given by Flaschka and Newell [2], the linear problem for the third Painlevé equation
given by Joshi, Kitaev, and Treharne [7], and the linear problem for the fourth Painlevé
equation given by Kitaev [4] and Milne, Clarkson, Bassom [5]. It turns out that the
resulting hierarchies are the first and the second Painlevé hierarchies given in [8; 9],
the fourth Painlevé hierarchy given in [10], and a new third Painlevé hierarchy.

We will also give some special solutions of the second, third, and fourth Painlevé
hierarchies. The special solutions of the second Painlevé hierarchy are solved in terms
of the first Painlevé hierarchy and the special solutions of the fourth Painlevé hierarchy
are solved in terms of the second Painlevé hierarchy. Using the relation between the
fourth and the second Painlevé hierarchies, we will obtain a new linear problem for
the second Painlevé hierarchy and in particular a new linear problem for the second
Painlevé equation.

2  First Paninlevé hierarchy
As it is well known, the first Painlevé equation,

Upy = 6> + 7, (3)



can be obtained as the compatibility condition of the linear system (1), where A and
B are the following matrices [1, 3]

5
B=DBoA+BA, A=) AN,
j=0

Bo = —iJg, BQ = zu(03 — iUg), AO = —4i0’3, Al = 0,
A2 = 4u02, A3 = 27,%0'1, A4 = —2(2u2 + l’)(O’g — 0'2), A5 = —10'1,

and oj, j =1,2,3, denote the Pauli matrices

S G B () NS S R

As we mentioned in the introduction, we will use a generalization of the linear problem
(1, 4) to derive a hierarchy of ordinary differential equations. More precisely, we assume

that
2m~+3

B=DBoA+ B\, A=) AN (6)
=0
where m is a positive integer. The compatibility condition @, = ®,, of equation (1)
reads

A, = By + [B, Al (7)
Substituting A and B from (6) into (7), we obtain

O == [307 AO]; AO,x == [BOa Al]v

Aj@« = [Bo,AjJrl] + [BQ,Ajfl], j = 1,2,...,2m+1, (8)
Aagmiaa = Bo + [Bo, Aams] + [Ba, Aapa],

A2m+3,z = [327 A2m+2]7 B2 = [327 A2m+3]'

Taking in account the linear problem (1) and (4), we assume that
BO = 03, Bg = U(O'g + iO’Q), Ag = 40’3, Al = 0, A2m+3 = %O’l,
a; b; : 9)
A = j J ) —2 ... 2m+2
: ( (-1 —a; ) 7
where ag;_1 =0, j =2,...,m+ 1. Then equation (8) gives

Agjx = 2ubyj_1, j=12...,m,
om+t22 = 1+ 2ubgpmt1,

bj,:c = 2bj+1 —|—2u(bj_1 —aj_l), ] = 0,1,...,2m+1,
bam+2 — Gami2 = 0.

(10)

For any positive integer m, any ag # 0, and a; = b; = 0, (10) determines
azj,j=1,2,....m+1,and b;, j = 2,3,...,2m+2, recursively. Moreover the condition
bomio — Aomi2 = 0 gives an ordinary differential equation of order 2m for w.

3



Let us be more specific. Define U; = by; — ag;, 7 =0,1,...,m, and
Um+1 = bamyia — aamy2 + x. Then using equation (10), we obtain

DxUj:2b2j+1, j:1,2,...,m+1, (11)
where D, = <. Using equation (10.c) to substitute by;41 into (11), we obtain
DQJU]' == Dxbgj - 2Ub2j_1. (12)
Now substitute by; from (10.c) and by;_; from (11) into (12), we get

1
D,U; = Z(D§—8uD$—4u$)Uj_1, j=1,...,m+1. (13)

Integrating (13), we obtain

1 .
Uj = Z(Dg —8u+4D; ' )U; oy — 4" Ky, j=1,..,m+ 1, (14)

where Ky; are constants of integration and D !'is the inverse operator of D,. Without
loss of generality we will take Ky = Ky10 = 0.

Since Uy = —4, (14) yields U; = 4u. Thus using induction, we can write U; as
j—1
Uy =27 R u+ Y KoRy ) 4Ky, j=2,....m+1,  (15)
=2

where R, is the recursion operator
R, = D? — 8u+ 4D, 'u,. (16)
Now agj, j = 1,2,...,m+ 1, and b;, 7 = 2,3,...,2m + 2, can be determined in
terms of U; as follows
1 .
§DIU], ]:1,2,...,771,

1 :
b2j:Z(D2—4U)Uj—17 J=1...,m+1, (17)
azj:(u—D;lux)Uj,I—f—lll_jKQj, jzl,...,m
Aoms2 = (u— D u, ) U, + .
The condition
b2m+2 — Aoam+42 = 0 (18)

yields the equation U,, 1 = x. Substituting U,,,; from (15) into U,,+1 = x, we get the
following hierarchy of ordinary differential equation of order 2m for u

RPu+ Y KoRP ™ u—4m""z =0, (19)
=2
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It is easy to show that when m = 1, (19) gives the first Painlevé equation (3). Thus
the hierarchy (19) is a first Painlevé hierarchy. Now we will consider the cases m = 2
and m = 3.

Example (1): m =2
In this example, we consider the case m = 2. Equation (19) yields the following fourth
order ordinary differential equation

Ungzs = 20Ullzg 4 10u? — 400 — Kyu + 4z (20)

7

Equation (20) has a linear problem (1) with B = o3 A+u(o3+ioy) A"t and A = Z AN
=0

where Ay = 403, Ay =0, A; = %01, and A; = ( a;ﬂ i ) , ] =2,3,4,5,6,

(=170 —a;

as =az =as =0, ay;, j =1,2,3, and b;, j = 2,3,4,5,6, are given as follows

1
by =4u, by =2u,, as=2>~+-Ky, by=uy — 4’

4
b5 - %[uxxx o 12uu9€]7 g = Ulgy — 5“3; - 4U3 + Z, (2].)

4

The equation (20) was found previously by Cosgrove [11] and it is the second
member of the first Painlevé hierarchy [8, 9]. However the linear problem given here is
new.

Example (2): m =3
As another example we consider the case m = 3. Thus (19) gives the following sixth
order ordinary differential equation

Upprrsr = 28Ulgzze + HO0ULULee + 4202, — (280u? + Ky)Uyy

980w + 280u* + 6K,u® — Kgu + 16 (22)

The linear problem for (22) has the form (1), with B = o3\ + u(o3 + i02)A~" and
9

A= ZOA]')\S J, where AO = 403, Al = 0, Ag = %0’1, and Aj = ( (—1);+1bj _le ) s
J:

Jj=2,3,....8,aa=a3=as =a; =0, ay, j =2,3,4, and b;, 7 =2,3,...,8, are given



as follows

1
b2 = 4u, b3 = Zux, ay = 2U2 + ZK4’ b4 = Ugy — 4u2,

bs = - xzx_12 T = a:x__2_43 — K,
5 [u ul,], ag = uu 5la u+16 6,

be = _{umm — 16uuy, — 12165 + 2403 + K4u],

f

by = = [Upezze — 20Ulgey — 40U UL, + (1200 4+ Ky)u,), (23)

i

as = g[Quumm — Qe + U2, — 40Uy, + 60u* + Kyu? + 81,
- 1
16

2
TT

+ (2000 + Ky)ugy + 280uu? — 160u* — 4K 4u? + Kgu|.

Equation (22) is the third member of the first Painlevé hierarchy [8, 9], but the
linear problem is new.

Therefor, we have rederived the first Painlevé hierarchy [8, 9]. It should be noted
that in [8, 9], the constants of integrations have been chosen to be zero.

3 Second Painlevé hierarchy
It is well known that the second Painlevé equation,
Upy = 2u° + TU + @, (24)

can be obtained as the compatibility condition of (1) where A and B are given by [2]

3
B - Bo)\ + Bl, A - ZAj)\Q_j7

7=0 (25)
BO = —iUg, Bl = uou, Ao = —42‘0'3, Al = 4’LL0'1,
A2 = —z(2u2 + iL’)O'Q — QU:UO'Q, Ag = —Q01.

In this case, we will use the following generalization of the linear problem (1, 25)

2m+1
B=DBoA+ B, A=) AN"T, (26)
j=0
where m is a positive integer and
By =03, By=wuo, A= —403, Ayni1 = —aoy,
o aj bj - (27)
A= ( (—1)*1b; —a, ) , 7=1,2,...,2m,



with ag;_1 =0, j=1,...,m. The compatibility condition of equation (1) gives

AQm—i—l,a: - [Bly A2m+1]7 AZm,x - BO + [B(), A2m+1] + [Bh AQm]a

. 28
Ajs=[Bo,Aj) + [Bi,A4j], 7=0,1,2,....2m—1, 0=[B,, A (28)
Substituting A; and B; from (27) into equation (28) yields
agjyx:—Qusz, j:(),l,...,m—l,
Aom,z = 1— 2Ub2m7 (29)

bjx = 2bjy1 — 2uay, j=1,2,...,2m.

The equations (29) determine ay;, 7 = 1,...,m, and b;, j = 1,2,...,2m + 1,
recursively. Imposing the condition by, ; = —a, one obtains an ordinary differential
equation of order 2m for wu.

More precisely, let

Uj:b2j+1, jzl,...,m—l,

Uy = boymi1 — zu. (30)
Then the equation by, 11 = —« can be written as
Un + 2u+ a = 0. (31)
Now note that (29.a) and (29.b) implies
a; = —2D;1ub2j + Ky, g=1,....m, (32)

a9y — —2D;1ub2m + x4+ Kgm,
where Ky; are constants of integration. Substituting into equation (29.c), we obtain

b2j+1 = %(Dx—éluD;lu)bgj—i—ngu, j=1,...,m—1,

bomi1 = %(Dx — duD )by, + xu + Kopu. (33)
Now substituting by; from (29.c) into (33), we get
boji1 = ‘lﬁ(D?” — 4qu? + 4uD;_1ux)ij,1 + Koyju j=1,...,m—1, (34)
boms1 = 3(D2 — 4u? + 4uD  uy)bom—1 + xu + Kopu.
Thus we have
U; = E(Dm — 4 + 4uD ) Uiy + Koju, j=1,...,m. (35)

4

Using (29) with ag = —4, by = 0, we obtain Uy = b; = —4u . Hence using induction
we can rewrite (35) in the form

7—1

U= —4"7(Rj,u— Y KoRIu) + Koju, j=1,....m, (36)
i=1

7



where R, is the recursion operator
R,, = D2 — 4u® + 4uD; 'u,. (37)

Using (36) to calculate U;, j=1,...,m, we can determine ay;, j = 1,...,m, and
bj, 7=1,2,...,2m, as follows

bgj_HZUj j:(),l,...,m—l,
boyj =iD, Uy, j=1,2,....m,

agj:—(u—Dglux)Uj,l—i—ng, 17=1,....m—1 (38)
aom = —(u — D7 u)Upy + 2 + Koy,
Without loss of generality we will take Ks,, = 0.
Lastly, the equation (31) yields the following hierarchy
m—1
Rlu— Y KoRIu— 4" (wu+ o) = 0. (39)
i=1

In the case m = 1, equation (39) reduces to the second Painlevé equation (24).
Therefore the hierarchy (39) is a second Painlevé hierarchy. Now we will consider the
cases m = 2 and m = 3.

Example (1):

In this example, we consider the case m = 2. Hence equation (39) yields the following
fourth-order ordinary differential equation for u

Uppze = 10U Ugy + Koty + 10uu? — 6u° — 2Kou® + 4au + 4a. (40)

5
Equation (40) has the linear problem (1) with B = o3\ + uo; and A = ZAj)\4_j,
=0
where Ay = —403, A5 = —aoy, and A; = _ aj+1 ' _bj ) 7=1,2,3,4,
(=1)7b; —ay
ap = a3z =0, ay;, j=1,2,and b;, j =1,2,3,4, are given by

by = —du, by=—2u,, ay=2u’+ Ky, b3=—[uz —2u®— Kyul,
1 1 41
by = —é[uwm — 6uuy — Koug], a4 = 5[2uuw — ui —3u* — Kyu? + 2. (41)
Equation (40) was found before [11, 12] and the special case Ky = 0 with its linear
problem was given in [9]. The linear problem for the full equation (40) is not given
before.
Example (2):
Let us take m = 3. In this case equation (39) yields the following sixth-order ordinary
differential equation for u

+ 42unu?, + T0u2uy, — 2(35u + 5Kou? — 2K )y, (42)
— 10(14u? + Ky)uu? + 20u” + 6 Kou® — 12K,u® + 16zu + 16

8



7
Equation (42) has the linear problem (1) with B = 03\ + uo; and A = Z AN
§=0
here Ay = —403, Ay = dA; = U bi i=1,...,6
where Ag = —=03, Ay = —Q0q, all j (_1)]—}—1()] —a; y J =450
a]p = a3 = Qs :0, a2;, ]: 1,2,3 and bj> j = 1,...,6, are given by
by = —du, by=—2u,, a=2u*+ Ky, bz=—|um, —2u®— Ky,
1 1
by = —E[umw — 6uu, — Koug], a4 = 5[2uum —u? — 3ut — Kyu® + 2Ky,
by = —%[umm — 10Uy — 10uu? — Koy, + 6u® + 2Kou® — 4K 4u)
b6 = -3 |:u:crxmc - (10U2 + KQ)umcx

8 (43)
— A0uUy gy — 1002 + 2(15u* + 3Kou? — 2K4)u4

1
ag = S [2uuwm — Qg Uy + 12, — 2(10U* + Ky)utiy,
— (1002 — Ko)u? + 10u® + 3Kou' — 6K,u? + 8x] .

Equation (42) is the third member of the second Painlevé hierarchy given in [9] but
here we do not take the integration constants to be zeros.

3.1 Special solutions

In this subsection, we will study special solutions of the second Painlevé hierarchy (39).
It is well known that the second Painlevé equation (24) admits a special solution in
terms of the Airy function when o = ’71 This fact can be generalized to the other
members of the second Painlevé hierarchy (39).

We note that R,, = (D, — 2u)(D, + 2u — 2D u,). Thus (39) can be rewritten as

(Dx—2u){2(Dx—|—2u—2D;1ux [Rm Ly ZKQZR?;*%] +4m*1x}—4m*1(2a+1) ~0.
(44)

Therefore, if 2a+1 = 0, then the second Painlevé hierarchy (39) admit special solutions
satisfying

2D, + 2u — 2D u,) [Rm Ly — Z Ko R | 4™ 1p = 0. (45)

We will show that for any m > 2, (45) is solvable in terms of the first Painlevé
hierarchy (19). Let

1
R = (D, +2u—2D,'u,)(D, —2u), y= 5(% + u?). (46)



Then we have
R = D2 —8y+4D,'y,. (47)

Since R,, = (D, — 2u)(D, + 2u — 2D u,), we have
j i—1 -1
R = (Dy — 2u)R'™(Dy + 2u — 2D, uy). (48)
Thus equation (45) can be written as
m—1

2R™ N (Dy+2u—2D; uy)u—2  KoR™ 7 (Dy+2u—2D,  uy Ju+4""" = 0. (49)

i=1
But (D, + 2u — 2D 'u, )u = u, + u® = 2y. Hence equation (49) becomes

m—1

R™ My =Y Ky R™ Ty + 4" =0, (50)

i=1

which is equivalent to the first Painlevé hierarchy (19).

Therefore, we have shown that the solution of (45) is given by u, + u® = 2y, where
y solves the first Painlevé hierarchy (50). This relation between the first and second
Painlevé hierarchies was given before [13]. Using this relation, we can rederive the
linear problem for the first Painlevé hierarchy (50) given in [9] from the linear problem
(1) and (26) of the second Painlevé hierarchy (39). Thus one can derive the first
Painlevé hierarchy (19) starting from the linear problem of the first Painlevé equation
given by Fokas, U. Mugan and Zhou [3].

When m = 2, equation (45) reads

Upgr + 2Ullye — U2 — 6uPu, — 3u* — Ky(uy +u?) + 22 = 0. (51)

That is, if 2a + 1 = 0, then (40) has special solutions satisfying (51). Equation (51)
is a special case of Chazy-XI equation (with N = 3) [14] and its solution is given by
Uy + u? = 2y, where y solves the first Painlevé equation

Yo = 6?;2 + Kgy — X. (52)
Similarly, if 2o+ 1 = 0, then (42) has special solutions satisfying

Uppres T 2Ulgzzr — 2(Ug + DU Upge + 2, — 20u(2uy + U )Uyy
—10u? — 10u?u2 + 30utty, + 10U’ — Ko[tpey + 2uttyy — u2 — 6uu, — 3u?]  (53)
—Ky(u, +u?) + 8z = 0.

The solution of (53) is given by u, + u? = 2y, where y solves the second member of
first Painlevé hierarchy (50)

10



4  Third Painlevé Hierarchy

In [7], the third Painlevé equation,

2
u; 1

1 1)
Upe = = — ~Uy + —(ou® + ) +yu? + =, (55)
X X u

u

has been written as the compatibility condition of the linear system (1) where

2
B=B\+B, A=Y A\,

7=0

= 303, By = % 0 s ) , Ao= 303, (56)
A _ —900/2 —U73 A _ U)QU?Q w1 W2
! ws O |’ 2 wWe wiwWy )

TWWe
In this section, we will use the linear problem (1, 56) to obtain a hierarchy of
ordinary differential equation, namely a third Painlevé hierarchy. We assume that

and u =

m—+1
B=DBpA+ B, A=) A" (57)

J=0

where m is a positive integer. Moreover we set

By = Lo, 31:(2]5)’ Aj:<aj b; >, j=0,1,....m+1. (58)

C; —aj
The compatibility condition of equation (1) gives

0= [BOa Ao], Am—‘rl,x - [Bla Am+1]7 Am,a} = [BO7 Am-l—l} + [Bla Am]7
Am—l,:c = BO + [BOa An] + [Bla An—1]7 (59)
Aj,x:[BO7Aj+l]+[BlaAj]a ij,l,,m—Z

Substituting A; and B; from (58) into equation (59), we obtain Ay = ayo;

ajz = pcj — qbj, j=0,1,...,m—2,m,
Am—10 = % + pCm—1 — qu_l,

) 60
bjﬂf = j+1_2pa’j7 J 20’17 , M, ( )
Cjae = —Cjt1 + 2qaj7 ] - 07 17 , M,
and
Um+1,2 = PCm+1 — qu+17 bm-‘,—l,x = _2pa'm+1a Cm+lax = 2qa'm+1' (61)

11



For any positive integer m, the formulas (60) determine a;, j =0,1,...,m,
bj, j =1,2,...,m+1, and ¢;, j = 1,2,...,m, recursively. Moreover (61) has the
following two first integrals

Cmberl + bmcm+1 + 2aJmaerl = Y2, (62)

bm+1cm+1 + agnﬂ =73 (63)

where 7, and 73 are constants of integrations. Using the parametrization
Umi1 =V, by = w, and p = vw, we obtain from (63)

-1, ,
1 = — (V2 = 3), 64
Cm+1 w (v" = 3) (64)
and hence (62) gives
[ (02— 33)bn — 2+ ) (65)
Cm = —|—(v° — m — 200y, .
w Lw 73 72
The system (61) yields
—1 9
Wy = —QUUU), q= _[UIE + U<U - 73)] (66)
w
As a last step we impose the conditions
1r1,,
b1 =W, Cp=—|—=(V" = 73)bp — 20ap, + 72 (67)
w lw

to obtain an m—th order system for v and v. Eliminating one of the two dependent
variables u and v between the two equations in the system, one obtains a differential
equation of order 2m for the other variable.
Let us consider the case m = 1 in brief. As we explained above, we set
az = v, by = w, p =wuw. Then (64) becomes ¢; = = (v? — 73) and the formulas (60)
give
1 1 - 2
ap = 3%, a1 = 57, by = zuw, ¢ = ?[% +u(v® —93)], (68)
by = wzu, — 2zu*v + (71 + 1)u).

Equation (67) gives
Tu, = 20u'v — (1 + Du+1, av, = —2zu(v® — 33) + 110 — Y. (69)

The function tu(t), where x = ¢* satisfies the third Painlevé equation (55) with
o = _8,}/27 ﬁ = 4(71 + ]‘)’ Y= 1673a and 0 = —4.

12



Now we will give explicit forms for the hierarchy (67) when m > 2. In this case
equation (60) gives ag, = 0. Without loss of generality we take ap = % Introduce the

notations b
= =01, m—2,
“
Umfl == — Tru,
p W
Up = = — 4 — 2(uy — 20%0),
w

b
V;-:wcj—(v2—’y3)j+2vaj, j=0,1,....,m—2,

m—1

Vin-1 = wep—1 — (UQ - ')/3) + U(2am—1 — I‘),

bm
Vin = Wep — (V2 — 73) == + 20ap, + x[v, + 2u(v® —73)].
w
Then using (60), we have

Ui\ _ Uj—1 o u L
(‘/j)—RH[(V}_I)‘i‘QKJ(v), ]—1,2,...,771,

where K are constants of integration and R,,, is the recursion operator

IIr

R D, — 2uv + 2uD; v, —2u? + 2uD u,
nr T\ =2(v? —3) + 20D v, =Dy — 2uv + 2vD; tu,

Without loss of generality, we set K, = %fyl, and K,,_; =0.
Since Uy = u, Vy = v, (71) implies that U;, V;, j =1,...,m, are given by

j—2
U, ; U d i u U .
(1) (2o m (2 (1), v

The equations (67) and (70) imply
Un = —2(uy —2u*v) + 1 —u, Vi, = v, + 2u(v? — v3)] + 7.
Therefore the hierarchy reads

m—2
m u m—i u
RIII < v > + 221{17?’111 < v )

. Uy — 2u%v N w) [ l1—u > 2
—v, — 2u(v? — y3) N\ )= Vs ’ ==

The hierarchy (75) has a linear problem given by (1) and (57) where

O uw
_1 _ L
BO - 20'37 Bl ( _71[% + U(UQ _ 73)] 0 ) s AO 20'37
_ (Y w o CLj b] -
Am+1_<El<fU2_73) —v )’ A;—(Cj —aj)’ Jj=1,...,m,

(70)

(71)

(72)

(73)

(74)



and a;, bj, and ¢;, 7 =1,2,...,m, are given by the following formulas

bj:ij_17 jzl,...,m—l,
by, = w(Upp—1 + zu),
1 .
CJ:E[V}JF(UQ— 3)Uj-1 — 2va;], g=L...,m=2,
1
Cm—1 = E [Vm—l + (UQ - '73)Um—2 - U(Qam—l - I)},
1
Cm = — [(U2 —73)(Up—1 + zu) — 2va,, + 72},
SiK, m=2
ay = 2
Kh m # 2,
—b101 -+ E -+ Kz, m = 3, (77)
a9 = 2
—bicr + Ky, m# 3,
j—1
a; = —Z(bij_k—i-akaj_k)—{—Kj, j:3,4,...,m—2,
kZIm—Q z
Am—1 = — Z(bkcm—k—l + A1) + 5
k=1
m—1 1
am = — (brCr—te + Apm—i) + K2 + 571-

o

—1

In the following examples we will consider the cases m = 2 and m = 3.

Example (1):
As a first example of higher order analogue of the third Painlevé equation let us consider
the case m = 2. In this case, (75) gives the following system for u and v

Uz = (6uv — )y — 6uS0? + 2000 + 2y3u® — (11 + Du+ 1,

Vpz = —(6uv — 2)v, — 2u(3uv — 2) (V2 — y3) — MU + Ye. (78)

Eliminating v, equation (78) gives a fourth-order equation for w.

3
Equation (78) has the linear problem (1) with B = ByA + By and A = Z AN

§=0
v w
where By, By, and Ag are given by (76), A3 = | _ ,
0, D1 0 g Y( ) 3 (31(”2_73) —v)
and A; = ( Céj bgb ) , J = 1,2, where a;, b;, c; are given as follows
J %
1 —1 2
a; = 57, bl =uw, €1 = ?[Ux + U(U - 73)]7
as = ulvy +u(v® — )] + 37,  be = wlu, — 2u*v + au, (79)

[(up — 4u*v + 2u) (v — 43) — 2uvv, — Y10 + Yol

14



Therefore we have derived a new fourth-order equation together with its linear
problem.

Example (2):
As another example, we will consider the case m = 3. In this case the equation (75)
yields the following system for u and v

Upee = 2(4uv — K1)y + 6vu2 + (4uv, — 30u?v? + 6y3u? + 12K uv — x)u,

+ 2ulv,, + 20ut0d — 12K ud0?

— 12ysutv + 4K y3u® 4 220’ — (1 + Du+ 1, (80)
= —2(4uv — K1)vge — 6uv? + (4vu, + 30u*v? — 6y3u? — 8K uv + )v,

+ 202 = ¥3) (Uge + 10u30? — 6 K u?v — 293u® + 2u) + Y10 — Yo.

U{B.Tl‘

Eliminating v, equation (80) gives a sixth-order equation for w.

4
The linear problem for (80) is given by (1) with B = BoA+ By and A =Y ~ A\,
=0

v w
where By, B, and Ag are given by (76), Ay = | _ ,
0, D1 0 g y (76), Ay (31(1)2_73) —U)
A= ( a b ) , J=1,2,3, and a;, b, c; are given as follows
¢ —ay
1 )
ar =K1, b =uw, c=—[v;+uv’—13)],
az = ulvy + u(v® — )] + 1, by = wluy — 2uv + 2K, u],

1
Co = —[Vge + 2(2uv — K1)v, + (u, + 200 — 2K u) (v — 43)],
w

a3 = —[uvge — (uy — 6uv + 2K1u)vm + 2u? (2uv — K1) (v? — 93)] + 371, (81)
by = Wtz — 2(3uv — Ky)u, + 6uv? — 4K u?v — 2y3u® + xul,

1
cy = — | 2V — 20(uy — 6uPv + 2K u)v, — Y10 + s
w
+ {tze — 2(3uv — Ky)u, + 14uP0? — 8K u?v — 2y3u® + zu) }(v? — 33) |
The above two examples shows that we can derive a new hierarchy of differential

equations (75). Since the first member of this hierarchy is the third Painlevé equation,
this hierarchy is a third Painlevé hierarchy.

4.1 Special solutions

Let us study some special solutions of the third Painlevé hierarchy (75). Assume 7, # 0,

V= E) and ’yg g ’)/3’}/12 Then (71) giVeS V7 - 2K]ﬁ, ] - 1;27 ... 7m7 a‘nd
Y

é! 1

v = (D. - 2—u>]u + 22 K, (D, - z—u)Hu + 2K u. (82)
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The hierarchy (75) becomes

m m—i 72
D, —2—u) w42 K( _ o2 u) U (v + D+ z(u, —220) =1. (83
(P -2 Z - O+ Dt e = 270) = 1. (89)

Therefore if v4 # 0, v = ﬁ, and 72 = 37, then the third Painlevé hierarchy (75)

1
admits special solutions given by (83).

If 5 = 0, then equation (83) is linear. If 5 # 0, then the transformation v = —glyx
72y
transforms equation (83) into the linear equation
m—2
Dy tly +2) KD Y 4wy + (1 + Dys + 2§2y = 0. (84)

i=1

Let us give the explicit form of (83) when m = 2, 3; that is, the special solutions of
(78) and (80).

Equation (78) has a special solution 2 = 373, v = E, and u satisfies

T
Upy = GEuux - 47—2u3 — x(u, — QEUQ) — (1 + Du+ 1. (85)
M Vi M
If 75 # 0, then equation (85) is equivalent to equation PVI in the complete list of
second-order Painlevé equations (see [15] page 334). The transformation u = —glyz
72y
transforms (85) into the linear equation
2
Yzzx = —TYzx — (’Yl + 1)ym - 2_y (86)
g
Equation (80) has a special solution 73 = y37%, v = P2 and u satisfies
g
Ugge = 222 (duttyy + 3u2) — 247—2u2uz + 872 4
T ol 7 (87)
V2 V3. 3 T2 2
— 2K (Ugy — 6=ty +4-5u”) — 2(uy — 2—u”) — (1 + Du + 1.
N 7 ’Yl

If 75 # 0, then the transformation v = _;13/35 transforms (87) into the linear equation
72Y
72

71

16



5 Fourth Painlevé Hierarchy

The fourth Painlevé equation,

up 34 2 2 s
Usy = 5+ U+ dru” + 2(x° — a)u + o (89)

can be obtained as the compatibility condition of the linear system (1) with the fol-
lowing matrices A and B [4, 5]

4
B=DBo\+BA+ By, A=Y AN,

=0
0 w u 0
= l = =
By = 303, By (iv 0 ); By <0 _u>7 (90)
+ 0
Ay = 303, Ay =By, A2=(x0u —x—u)’
B 0 i(wy + 2zw) B B
A3 - < 2(21'@ _ /Ux) 0 > ’ A4 - 700-37 u = vw.

Following the same method as in the previous sections, we take A and B in the following

form
2m—+2

A= Z Aj)\2m+1_j, B = BO>\2 + Bl>\ + BQa (91)
=0

where m is a positive integer. Further more, we set

0 — 0
BOI%U& Blz<q g), 322( g)?q pq)’

Ag = 303, Ayj=ago3, j=1,....m, (92)

0 b :
A2j+1:<cl d),J:071,~-,m, Agmia = Y003

J

The compatibility condition of equation (1) gives

Aopmioy = [Ba, Aoy,  Aomire = Bi+ By, Aomio] + [B2, Ao,
Aogme = 2By + [Bo, Aama] + [Br, Aami1] + [Ba, Ao,
Aj,m = [BQ, Aj+2] + [Bl, Aj+1] -+ [B27 Aj], j == 0, 1, 2, e ,2m — 1,

Substituting A; and B; from (92) into (93), we find that A; = B; and A;, j =
2,3,...,2m + 1, can be determined by the following formulas

(93)

Agjz = PC2j+1 — qbaji1, J=12...,m—1
ij—l,a: - b2j+1 - 2pa2j - 2qu2j—17 j = 17 27 cee, My (94)
Coj—1,0 = —C2541 + 2qa2j + 2pq02j—l> j = 17 2,... , T,

A2mz = 1 + DCami1 — qbam1,

17



Comt1,2 — 4(2PCom41 + 270 + 1) =0, (95)

and
bom+1,2 + P(2¢bomi1 + 27 — 1) = 0. (96)

The system (95-96) has the following first integral

m+1
Z baj—1Com+3—2j + Z U2jQ2m—2j+2 = 22(az + pq) + 11, (97)
7j=1 7j=1

where v is a constant of integration.
In order to derive a hierarchy of ordinary differential equation, we prossed as follows.

Define u = —pq, v = &, and introduce the notation U;, V;, j =0,1,...,m, as follows
p

Uj:a2j+2—K2j+2, ‘7':(],1,...,7’)7,—27
Un-1= aom — z,

m+1
Up, = 2x(ay — 2u) Zb2g 1C2m43-2j — Za2]a2m 2j+25
1 ) 98
‘/}:—sz+3—2K2j+2, j:O,l,...,m—Q, ( )
1
Vm—l - _b2m+1 - 21‘,

Vin = —bomi1.2 + 2¢bami1 + 22Uy, + 22(2u — v) — 2,
p

where K; are constants. Then equations (96) and (97) can be written in the form
Un+2xu+v =0, V,+2x0+27%+271+1=0. (99)

Equation (94) implies that U;, V;, j =0,1,...,m, satisfy

Uj . Uj_l ' u
(Vj)_n,v<vj_l)+2f(2j(v), (100)

where R, is the recursion operator

r —D, —2u+v+ D (2u, — vy) 2u— Dyl (101)
v T\ —2D, —4u + 20+ 2D (2uy — vy) Dy 2u4v—2D  u, )

Using (94), we find

0 — u+x, m=1,
2Tl ut Ky, m#1, (102)

bs = p(v + 2as — 2u),
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and hence we have Uy = v and V) = v. Thus (100) implies that
U —
. T - u u
(1) () s (1) om (1)
i=1
Therefore equation (99) can be written as

m—1
m u Tom—i u u g1 _ 0
IV(U)—FQZIKQZRIV (v)+2x(v)+(%+%+l>_(o>. (104)

The coefficients A and B in the linear problem (1) of the hierarchy (104) has the
form (91), where

0 u 0
302%03, B1:<_gg), B2=(O —u)’
p

Ao = 5037 Ay = By, Agj=agjos, j=1,...,m, (105)
0 b; .
A2j+1:( , 0])7]2 yoey My Agmyo = Y003,
€
p satisfies p, = pv, agj, baji1, and coj41, 7 =1,2,...,m, are given by

agj =Uj 1+ Ky, j=1,....m—1,

Qom = Up—1 + 2,

b2j+1:p(‘/}—1+2K2j)7 j:17"'7m_17

b2m+1 :f(vm—l + 2.1’), (106)
Coj+1 = E[DxUj_l —u(Vj_l—i—Qng)], ] = 1,...,m— ]_,

1
Com+1 = ];[DzUmfl — w(Vino1 + 22)).

As usual, when m = 1, u satisfies the fourth Painlevé equation (89). Next we study
the case m = 2.

Example (1):
When m = 2, (104) gives the following system for v and v

Uge = (30 4 2K5)uy — 3uv? — 4Kouv + 2u3 + 2K,u? — 2zu — 1,
Uge = —(30 + 2K5) vy 4 2(30 + 2K )uy — 08 — 6uv? — 2Ko0? — 220 (107)
+ 6U2’U — 4K2U’U + 4K2U2 — (2")/0 + 2*‘)/1 + 1)

The elimination of v between (107.a) and (107.b) gives a fourth order equation for .
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The linear system for (107) is given by (1) with B = BoA? + Bi\ + B,

6
A= ZAj)\‘:”j, where B;, j =0,1,2, and A;, j = 0,1, are given by (105) and

=0
0 p(v +2K5)
Ay = (u+ Ky)os, Az = l(ux —uv — 2Ku) 0 )
p
Ay = —(up +u? — 2uv — 2Kyu — x)o3,  As = 0 %r’ ) . Ag =03, (108)

bs = p(vy — 2uy + 2uv — 2u® + 2Kov + 2x),
—1

s = —[Uge — 2(v + Koty — uv, — 2u® + 20?0 4+ uv? + 2Kouv + 2zu).
p

Once again we can derive a hierarchy of differential equations, a fourth Painlevé
hierarchy. This hierarchy was given before [10]. In deed the transformation
Y = —u, +uv — u?, w = —v transforms the system (107) into the system

[ye 4+ 2y(w — ko) =1 — 0 + 312 — (0 — 3)?
2y — w, + w? — 2Kw + 21
- Q(yw)x + 2K2yx - y[2y — Wy + w2 - 2K2w + 23:]? (109)
Wee = (Bw — 2K2)w, — 2y(3w — 2K5)
—w? + 2Kw? — 27w + (299 + 271 + 1).

xrx

The system (109) is the second member of the fourth Painlevé hierarchy given in [6].
Therefore we have another linear problem for the fourth Pianlevé hierarchy given in
[6].

5.1 Special solutions

In this subsection, we will show that the fourth Painlevé hierarchy ( 104) admit special
solutions in terms of the second Painlevé hierarchy (39).

Suppose that m =2n, p =1, 2y + 2% +1 =0, K452 =0, 7 =1,2,...,n. Then
u= —¢q, v =0, and the hierarchy (99) reduces to the following hierarchy

Usp + 22u+v =0, Va, =0. (110)
The operator (101) becomes

—D, —2u+ 2D u, 2u — D>y,
R= ( —2D, — 41;4—r 4D, D, +2u— 2D, ', ) (111)
Now we will use induction to prove that
Ugj = (Dw — 2u)(D$ + 2u — 2D;1U$)Ugj_2 -+ 2K4ju, ] = 17 2, cea,n,
Vs =0, j:1,2,.. M, (112)
Usjr1 = —(Dy + 2u — 2D u, ) Uy, ji=12,....,n—1,
Vojr1 = 2Usj 41, Jj=12,...,n—-1
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Firstly, we note that Uy = u, Vi = 0. Thus (100) gives U; = —(D, + 2u — 2D u,)Uy,
Vi =2Uy, Vo = (D, + 2u — 2D u,) (V) — 2U;) = 0, and

U2 = —(Dx - 2u)U1 + 2K4u

— (Ds — 20)(Ds + 2u — 2D uy)Up + 2K yu. (113)

Hence the formulas (112) are true when j = 1.
Assume that (112) is true for j = k, 1 < k < n — 1. Then substituting Vo = 0
into (100) implies that Uy = — (D, + 2u — 2D u, ) Uy, and
Vare1 = —2(Dy + 2u — 2D uy, ) Usy, = 2Us 1. Since
Vargo = (D + 2u — 2D u, ) (Vo y1 — 2Uspy1), we get Vopyo = 0. Using (100),
‘/2]@4_1 = 2U2k+1, and U2k+1 = —(Dm + 2u — 2D;1U$)U2k, we get

Usiyz = —(Dy 4 2u — 2D g )Uspeyr + (20 — D Mg ) Varyr + 2Ky au
= —(1)aj — 2U)U2k+1 + 2K4k+4u (114)

This ends the proof.
Now using (D, — 2u)(D, + 2u — 2D 'u,) = D? — 4u* + 4uD;'u, = R,,, Uy = u,
we obtain

Ugj = R[IUzj,Q + 2K4ju, (115)
and hence
j-1
Upj = R, u+2) KR u+ 2K, u. (116)
i=1
Thus equation (110) yields
n—1
R u+ 22 Ky R? "+ 2xu + 7 = 0. (117)

i=1

The hierarchy (117) is equivalent to the second Painlevé hierarchy (39). Therefore, if
u is a solution of the 2n-th member of the fourth Painlevé hierarchy (104) with v = 0,
21 2% +1=0, K4j_0 =0, 7 =1,2,...,n, then u satisfies the n-th member of the
second Painlevé hierarchy (117).

The linear problem for the second Painlevé hierarchy (117) is given by

An+2
B=DByN +BA+B,, A=Y AN
j=0
0 1 .
By = 503, B = w0 | By =uos, Ag=3503, A =D (118)

=1
0 b, .
A2j+1 = ( C ! ) y J = 1,...,2n, A4n+2 = 7003,
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where a;, b, and ¢; are given by

a,4]-:—(Dm+2u—2D;1u$)U2j72+K4j, j:l,...,n—l,

Qqj—2 = U2j—27 Jj=1...,n,
aan = —(Dy + 2u — 2D u, ) Usy o + ,
Cqj—1 = D$U2j—27 ] = 1a sy Ny (119)

Caj4+1 = —[RHUQJ',Q—F2K4J'U], j = 1,2,...,71— 1,
Con+1 = —[RHUQH,Q—FZSCU], j = 1,2,...,7’1,,
b4j_1 = 0, b4j+1 = 2a4j, j = 1, 27 ey n.

Therefor the above relation between the fourth Painlevé hierarchy (104) and second
Painlevé hierarchy (117) gives rise to the new linear problem (118) for the second
Painlevé hierarchy.

For example, the second member of the fourth Painlevé hierarchy (104), that is
equation (107), has the special solution Ky = 0, 279 +2v +1 = 0, v = 0, and u
satisfies the second Painlevé equation

1
Ugy = 2u® — 220 + Yo + 3 (120)

The second Painlevé equation (120) has the following new linear problem

6
B=DB\N+BA+ DB, A=Y AN,

=0
0 1
BO = %(73, Bl = ( —u 0 5 BQ = Uuos, AO = %(737 (121)
Ay =Dy, Ay =wuo3, Az= 5 8 ) A4:—(ux+u2—x)03,
B 0 —2(uy +u® — ) B
As = ( — Uy + 2u3 — 22u 0 A =703
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