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Abstract

In this paper, we show that the expansion of linear problems of Painlevé
equation in powers of the spectral variable can be used to derive hierarchies
of ordinary differential equations. We applied this approach to linear problems
of the first, second, third, and fourth Painlevé equations. We derived a new
hierarchy of the third Painlevé equation and rederived known hierarchies of the
other equations. Moreover some special solutions of the hierarchies of second,
third, and fourth Painlevé equations are also given.

1 Introduction

In the last three decades there has been much interest in searching for higher-order
analogues of Painlevé equations. There are several method to derive higher-order
analogues of Painlevé equations. Some of these methods are the α-method used by
Painlevé and his school, the Painlevé test, and the similarity reductions of higher-
order completely integrable partial differential equations. The last method leads to the
derivation of Painlevé hierarchies, that is, sequences of ordinary differential equations
whose first members are Painlevé equations.

One of the important properties of the six Painlevé equations ( PI-PVI) is that each
Painlevé equation can be written as a compatibility condition of a linear system

Φλ(x, λ) = A(x, λ)Φ(x, λ), Φx(x, λ) = B(x, λ)Φ(x, λ), (1)
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where

A(x, λ) =
N+n∑
j=0

Ajλ
N−j, B(x, λ) =

L+l∑
j=0

Bjλ
L−j, (2)

and Aj and Bj are matrices with entries depending on the solution u(x) of the Painlevé
equation [1, 2, 3, 4, 5]. These linear problems are not unique. For example the second
Painlevé equation has two different linear problems, one given by Flaschka and Newell
[2] and the other one given by Jimbo and Miwa [1].

Gordoa , Joshi, and Pickering [6] derive Jimbo-Miwa linear problems for second and
fourth Painlevé hierarchies. This leads to the observation that these hierarchies can be
obtained by expanding the Jimbo-Miwa linear problems of PII and PIV in powers of
the spectral variable λ. In this article, we will show that this approach can be applied
to many linear problems of Pianlevé equations. More precisely, given a linear problem
(1-2) for a Painlevé equation, we generalize it by replacing the fixed number N in (2) by
a parameter M ≥ N . While the compatibility condition gives the considered Painlevé
equation when M = N , it gives higher-order analogues of this equation when M > N .
We illustrate this by application to the linear problem for the first Painlevé equation
given by Jimbo and Miwa [1, 3], the linear problem for the second Painlevé equation
given by Flaschka and Newell [2], the linear problem for the third Painlevé equation
given by Joshi, Kitaev, and Treharne [7], and the linear problem for the fourth Painlevé
equation given by Kitaev [4] and Milne, Clarkson, Bassom [5]. It turns out that the
resulting hierarchies are the first and the second Painlevé hierarchies given in [8, 9],
the fourth Painlevé hierarchy given in [10], and a new third Painlevé hierarchy.

We will also give some special solutions of the second, third, and fourth Painlevé
hierarchies. The special solutions of the second Painlevé hierarchy are solved in terms
of the first Painlevé hierarchy and the special solutions of the fourth Painlevé hierarchy
are solved in terms of the second Painlevé hierarchy. Using the relation between the
fourth and the second Painlevé hierarchies, we will obtain a new linear problem for
the second Painlevé hierarchy and in particular a new linear problem for the second
Painlevé equation.

2 First Paninlevé hierarchy

As it is well known, the first Painlevé equation,

uxx = 6u2 + x, (3)
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can be obtained as the compatibility condition of the linear system (1), where A and
B are the following matrices [1, 3]

B = B0λ + B2λ
−1, A =

5∑
j=0

Ajλ
4−j,

B0 = −iσ3, B2 = iu(σ3 − iσ2), A0 = −4iσ3, A1 = 0,
A2 = 4uσ2, A3 = 2uxσ1, A4 = −i(2u2 + x)(σ3 − σ2), A5 = −1

2
σ1,

(4)

and σj, j = 1, 2, 3, denote the Pauli matrices

σ3 =

(
1 0
0 −1

)
, σ2 =

(
0 −i
i 0

)
, σ1 =

(
0 1
1 0

)
. (5)

As we mentioned in the introduction, we will use a generalization of the linear problem
(1, 4) to derive a hierarchy of ordinary differential equations. More precisely, we assume
that

B = B0λ + B2λ
−1, A =

2m+3∑
j=0

Ajλ
2m+2−j, (6)

where m is a positive integer. The compatibility condition Φxλ = Φλx of equation (1)
reads

Ax = Bλ + [B,A]. (7)

Substituting A and B from (6) into (7), we obtain

0 = [B0, A0], A0,x = [B0, A1],
Aj,x = [B0, Aj+1] + [B2, Aj−1], j = 1, 2, . . . , 2m + 1,
A2m+2,x = B0 + [B0, A2m+3] + [B2, A2m+1],
A2m+3,x = [B2, A2m+2], B2 = [B2, A2m+3].

(8)

Taking in account the linear problem (1) and (4), we assume that

B0 = σ3, B2 = u(σ3 + iσ2), A0 = 4σ3, A1 = 0, A2m+3 = 1
2
σ1,

Aj =

(
aj bj

(−1)j+1bj −aj

)
, j = 2, . . . , 2m + 2,

(9)

where a2j−1 = 0, j = 2, . . . , m + 1. Then equation (8) gives

a2j,x = 2ub2j−1, j = 1, 2, . . . , m,
a2m+2,x = 1 + 2ub2m+1,
bj,x = 2bj+1 + 2u(bj−1 − aj−1), j = 0, 1, . . . , 2m + 1,
b2m+2 − a2m+2 = 0.

(10)

For any positive integer m, any a0 6= 0, and a1 = b1 = 0, (10) determines
a2j, j = 1, 2, . . . , m+1, and bj, j = 2, 3, . . . , 2m+2, recursively. Moreover the condition
b2m+2 − a2m+2 = 0 gives an ordinary differential equation of order 2m for u.
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Let us be more specific. Define Uj = b2j − a2j, j = 0, 1, . . . , m, and
Um+1 = b2m+2 − a2m+2 + x. Then using equation (10), we obtain

DxUj = 2b2j+1, j = 1, 2, . . . , m + 1, (11)

where Dx = d
dx

. Using equation (10.c) to substitute b2j+1 into (11), we obtain

DxUj = Dxb2j − 2ub2j−1. (12)

Now substitute b2j from (10.c) and b2j−1 from (11) into (12), we get

DxUj =
1

4
(D3

x − 8uDx − 4ux)Uj−1, j = 1, . . . ,m + 1. (13)

Integrating (13), we obtain

Uj =
1

4
(D2

x − 8u + 4D−1
x ux)Uj−1 − 41−jK2j, j = 1, . . . , m + 1, (14)

where K2j are constants of integration and D−1
x is the inverse operator of Dx. Without

loss of generality we will take K2 = K2m+2 = 0.
Since U0 = −4, (14) yields U1 = 4u. Thus using induction, we can write Uj as

Uj = 42−j
[Rj−1

I u +

j−1∑
i=2

K2iRj−i−1
I u

]− 41−jK2j, j = 2, . . . , m + 1, (15)

where R
I

is the recursion operator

R
I

= D2
x − 8u + 4D−1

x ux. (16)

Now a2j, j = 1, 2, . . . , m + 1, and bj, j = 2, 3, . . . , 2m + 2, can be determined in
terms of Uj as follows

b2j+1 =
1

2
DxUj, j = 1, 2, . . . , m,

b2j =
1

4
(D2

x − 4u)Uj−1, j = 1, . . . ,m + 1,

a2j = (u−D−1
x ux)Uj−1 + 41−jK2j, j = 1, . . . ,m

a2m+2 = (u−D−1
x ux)Um + x.

(17)

The condition
b2m+2 − a2m+2 = 0 (18)

yields the equation Um+1 = x. Substituting Um+1 from (15) into Um+1 = x, we get the
following hierarchy of ordinary differential equation of order 2m for u

Rm
I u +

m∑
i=2

K2iRm−i
I u− 4m−1x = 0. (19)
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It is easy to show that when m = 1, (19) gives the first Painlevé equation (3). Thus
the hierarchy (19) is a first Painlevé hierarchy. Now we will consider the cases m = 2
and m = 3.

Example (1): m = 2
In this example, we consider the case m = 2. Equation (19) yields the following fourth
order ordinary differential equation

uxxxx = 20uuxx + 10u2
x − 40u3 −K4u + 4x. (20)

Equation (20) has a linear problem (1) with B = σ3λ+u(σ3+iσ2)λ
−1 and A =

7∑
j=0

Ajλ
6−j,

where A0 = 4σ3, A1 = 0, A7 = 1
2
σ1, and Aj =

(
aj bj

(−1)j+1bj −aj

)
, j = 2, 3, 4, 5, 6,

a2 = a3 = a5 = 0, a2j, j = 1, 2, 3, and bj, j = 2, 3, 4, 5, 6, are given as follows

b2 = 4u, b3 = 2ux, a4 = 2u2 +
1

4
K4, b4 = uxx − 4u2,

b5 =
1

2
[uxxx − 12uux], a6 = uuxx − 1

2
u2

x − 4u3 + x,

b6 =
1

4
[uxxxx − 16uuxx − 12u2

x + 24u3 + K4u].

(21)

The equation (20) was found previously by Cosgrove [11] and it is the second
member of the first Painlevé hierarchy [8, 9]. However the linear problem given here is
new.

Example (2): m = 3
As another example we consider the case m = 3. Thus (19) gives the following sixth
order ordinary differential equation

uxxxxxx = 28uuxxxx + 56uxuxxx + 42u2
xx − (280u2 + K4)uxx

− 280uu2
x + 280u4 + 6K4u

2 −K6u + 16x.
(22)

The linear problem for (22) has the form (1), with B = σ3λ + u(σ3 + iσ2)λ
−1 and

A =
9∑

j=0

Ajλ
8−j, where A0 = 4σ3, A1 = 0, A9 = 1

2
σ1, and Aj =

(
aj bj

(−1)j+1bj −aj

)
,

j = 2, 3, . . . , 8, a2 = a3 = a5 = a7 = 0, a2j, j = 2, 3, 4, and bj, j = 2, 3, . . . , 8, are given
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as follows

b2 = 4u, b3 = 2ux, a4 = 2u2 +
1

4
K4, b4 = uxx − 4u2,

b5 =
1

2
[uxxx − 12uux], a6 = uuxx − 1

2
u2

x − 4u3 +
1

16
K6,

b6 =
1

4
[uxxxx − 16uuxx − 12u2

x + 24u3 + K4u],

b7 =
1

8
[uxxxxx − 20uuxxx − 40uxuxx + (120u2 + K4)ux],

a8 =
1

8
[2uuxxxx − 2uxuxxx + u2

xx − 40u2uxx + 60u4 + K4u
2 + 8x],

b8 =
1

16

[
uxxxxxx − 24uuxxxx − 60uxuxxx − 40u2

xx

+ (200u2 + K4)uxx + 280uu2
x − 160u4 − 4K4u

2 + K6u
]
.

(23)

Equation (22) is the third member of the first Painlevé hierarchy [8, 9], but the
linear problem is new.

Therefor, we have rederived the first Painlevé hierarchy [8, 9]. It should be noted
that in [8, 9], the constants of integrations have been chosen to be zero.

3 Second Painlevé hierarchy

It is well known that the second Painlevé equation,

uxx = 2u3 + xu + α, (24)

can be obtained as the compatibility condition of (1) where A and B are given by [2]

B = B0λ + B1, A =
3∑

j=0

Ajλ
2−j,

B0 = −iσ3, B1 = uσ1, A0 = −4iσ3, A1 = 4uσ1,
A2 = −i(2u2 + x)σ2 − 2uxσ2, A3 = −ασ1.

(25)

In this case, we will use the following generalization of the linear problem (1, 25)

B = B0λ + B1, A =
2m+1∑
j=0

Ajλ
2m−j, (26)

where m is a positive integer and

B0 = σ3, B1 = uσ1, A0 = −4σ3, A2m+1 = −ασ1,

Aj =

(
aj bj

(−1)j+1bj −aj

)
, j = 1, 2, . . . , 2m,

(27)
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with a2j−1 = 0, j = 1, . . . , m. The compatibility condition of equation (1) gives

A2m+1,x = [B1, A2m+1], A2m,x = B0 + [B0, A2m+1] + [B1, A2m],
Aj,x = [B0, Aj+1] + [B1, Aj], j = 0, 1, 2, . . . , 2m− 1, 0 = [B0, A0].

(28)

Substituting Aj and Bj from (27) into equation (28) yields

a2j,x = −2ub2j, j = 0, 1, . . . , m− 1,
a2m,x = 1− 2ub2m,
bj,x = 2bj+1 − 2uaj, j = 1, 2, . . . , 2m.

(29)

The equations (29) determine a2j, j = 1, . . . , m, and bj, j = 1, 2, . . . , 2m + 1,
recursively. Imposing the condition b2m+1 = −α, one obtains an ordinary differential
equation of order 2m for u.

More precisely, let
Uj = b2j+1, j = 1, . . . , m− 1,
Um = b2m+1 − xu.

(30)

Then the equation b2m+1 = −α can be written as

Um + xu + α = 0. (31)

Now note that (29.a) and (29.b) implies

a2j = −2D−1
x ub2j + K2j, j = 1, . . . , m,

a2m = −2D−1
x ub2m + x + K2m,

(32)

where K2j are constants of integration. Substituting into equation (29.c), we obtain

b2j+1 = 1
2
(Dx − 4uD−1

x u)b2j + K2ju, j = 1, . . . , m− 1,
b2m+1 = 1

2
(Dx − 4uD−1

x u)b2m + xu + K2mu.
(33)

Now substituting b2j from (29.c) into (33), we get

b2j+1 = 1
4
(D2

x − 4u2 + 4uD−1
x ux)b2j−1 + K2ju j = 1, . . . ,m− 1,

b2m+1 = 1
4
(D2

x − 4u2 + 4uD−1
x ux)b2m−1 + xu + K2mu.

(34)

Thus we have

Uj =
1

4
(Dx − 4u2 + 4uD−1

x ux)Uj−1 + K2ju, j = 1, . . . ,m. (35)

Using (29) with a0 = −4, b0 = 0, we obtain U0 = b1 = −4u . Hence using induction
we can rewrite (35) in the form

Uj = −41−j(Rj
II

u−
j−1∑
i=1

K2iRj−i
II

u) + K2ju, j = 1, . . . , m, (36)
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where R
II

is the recursion operator

R
II

= D2
x − 4u2 + 4uD−1

x ux. (37)

Using (36) to calculate Uj, j = 1, . . . , m, we can determine a2j, j = 1, . . . ,m, and
bj, j = 1, 2, . . . , 2m, as follows

b2j+1 = Uj, j = 0, 1, . . . , m− 1,
b2j = 1

2
DxUj−1, j = 1, 2, . . . , m,

a2j = −(u−D−1
x ux)Uj−1 + K2j, j = 1, . . . , m− 1

a2m = −(u−D−1
x ux)Um−1 + x + K2m.

(38)

Without loss of generality we will take K2m = 0.
Lastly, the equation (31) yields the following hierarchy

Rm
II

u−
m−1∑
i=1

K2iRm−i
II

u− 4m−1(xu + α) = 0. (39)

In the case m = 1, equation (39) reduces to the second Painlevé equation (24).
Therefore the hierarchy (39) is a second Painlevé hierarchy. Now we will consider the
cases m = 2 and m = 3.

Example (1):
In this example, we consider the case m = 2. Hence equation (39) yields the following
fourth-order ordinary differential equation for u

uxxxx = 10u2uxx + K2uxx + 10uu2
x − 6u5 − 2K2u

3 + 4xu + 4α. (40)

Equation (40) has the linear problem (1) with B = σ3λ + uσ1 and A =
5∑

j=0

Ajλ
4−j,

where A0 = −4σ3, A5 = −ασ1, and Aj =

(
aj bj

(−1)j+1bj −aj

)
, j = 1, 2, 3, 4,

a1 = a3 = 0, a2j, j = 1, 2, and bj, j = 1, 2, 3, 4, are given by

b1 = −4u, b2 = −2ux, a2 = 2u2 + K2, b3 = −[uxx − 2u3 −K2u],

b4 = −1

2
[uxxx − 6u2ux −K2ux], a4 =

1

2
[2uuxx − u2

x − 3u4 −K2u
2 + 2x].

(41)

Equation (40) was found before [11, 12] and the special case K2 = 0 with its linear
problem was given in [9]. The linear problem for the full equation (40) is not given
before.

Example (2):
Let us take m = 3. In this case equation (39) yields the following sixth-order ordinary
differential equation for u

uxxxxxx = (14u2 + K2)uxxxx + 56uuxuxx

+ 42uu2
xx + 70u2

xuxx − 2(35u4 + 5K2u
2 − 2K4)uxx

− 10(14u2 + K2)uu2
x + 20u7 + 6K2u

5 − 12K4u
3 + 16xu + 16α.

(42)
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Equation (42) has the linear problem (1) with B = σ3λ + uσ1 and A =
7∑

j=0

Ajλ
6−j,

where A0 = −4σ3, A7 = −ασ1, and Aj =

(
aj bj

(−1)j+1bj −aj

)
, j = 1, . . . , 6,

a1 = a3 = a5 = 0, a2j, j = 1, 2, 3 and bj, j = 1, . . . , 6, are given by

b1 = −4u, b2 = −2ux, a2 = 2u2 + K2, b3 = −[uxx − 2u3 −K2u],

b4 = −1

2
[uxxx − 6u2ux −K2ux], a4 =

1

2
[2uuxx − u2

x − 3u4 −K2u
2 + 2K4],

b5 = −1
4
[uxxxx − 10u2uxx − 10uu2

x −K2uxx + 6u5 + 2K2u
3 − 4K4u]

b6 = −1

8

[
uxxxxx − (10u2 + K2)uxxx

− 40uuxuxx − 10u2
x + 2(15u4 + 3K2u

2 − 2K4)ux

]

a6 =
1

8

[
2uuxxxx − 2uxuxxx + u2

xx − 2(10u2 + K2)uuxx

− (10u2 −K2)u
2
x + 10u6 + 3K2u

4 − 6K4u
2 + 8x

]
.

(43)

Equation (42) is the third member of the second Painlevé hierarchy given in [9] but
here we do not take the integration constants to be zeros.

3.1 Special solutions

In this subsection, we will study special solutions of the second Painlevé hierarchy (39).
It is well known that the second Painlevé equation (24) admits a special solution in
terms of the Airy function when α = −1

2
. This fact can be generalized to the other

members of the second Painlevé hierarchy (39).
We note that R

II
= (Dx − 2u)(Dx + 2u− 2D−1

x ux). Thus (39) can be rewritten as

(Dx−2u)
{

2(Dx+2u−2D−1
x ux)

[
Rm−1

II
u−

m−1∑
i=1

K2iRm−1−i
II

u
]
+4m−1x

}
−4m−1(2α+1) = 0.

(44)
Therefore, if 2α+1 = 0, then the second Painlevé hierarchy (39) admit special solutions
satisfying

2(Dx + 2u− 2D−1
x ux)

[
Rm−1

II
u−

m−1∑
i=1

K2iRm−1−i
II

u
]

+ 4m−1x = 0. (45)

We will show that for any m ≥ 2, (45) is solvable in terms of the first Painlevé
hierarchy (19). Let

R = (Dx + 2u− 2D−1
x ux)(Dx − 2u), y =

1

2
(ux + u2). (46)
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Then we have
R = D2

x − 8y + 4D−1
x yx. (47)

Since R
II

= (Dx − 2u)(Dx + 2u− 2D−1
x ux), we have

Rj
II

= (Dx − 2u)Rj−1(Dx + 2u− 2D−1
x ux). (48)

Thus equation (45) can be written as

2Rm−1(Dx+2u−2D−1
x ux)u−2

m−1∑
i=1

K2iRm−1−i(Dx+2u−2D−1
x ux)u+4m−1x = 0. (49)

But (Dx + 2u− 2D−1
x ux)u = ux + u2 = 2y. Hence equation (49) becomes

Rm−1y −
m−1∑
i=1

K2iRm−1−iy + 4m−2x = 0, (50)

which is equivalent to the first Painlevé hierarchy (19).
Therefore, we have shown that the solution of (45) is given by ux + u2 = 2y, where

y solves the first Painlevé hierarchy (50). This relation between the first and second
Painlevé hierarchies was given before [13]. Using this relation, we can rederive the
linear problem for the first Painlevé hierarchy (50) given in [9] from the linear problem
(1) and (26) of the second Painlevé hierarchy (39). Thus one can derive the first
Painlevé hierarchy (19) starting from the linear problem of the first Painlevé equation
given by Fokas, U. Muğan and Zhou [3].

When m = 2, equation (45) reads

uxxx + 2uuxx − u2
x − 6u2ux − 3u4 −K2(ux + u2) + 2x = 0. (51)

That is, if 2α + 1 = 0, then (40) has special solutions satisfying (51). Equation (51)
is a special case of Chazy-XI equation (with N = 3) [14] and its solution is given by
ux + u2 = 2y, where y solves the first Painlevé equation

yxx = 6y2 + K2y − x. (52)

Similarly, if 2α + 1 = 0, then (42) has special solutions satisfying

uxxxxx + 2uuxxxx − 2(ux + 5u2)uxxx + u2
xx − 20u(2ux + u2)uxx

−10u3
x − 10u2u2

x + 30u4ux + 10u6 −K2[uxxx + 2uuxx − u2
x − 6u2ux − 3u4]

−K4(ux + u2) + 8x = 0.
(53)

The solution of (53) is given by ux + u2 = 2y, where y solves the second member of
first Painlevé hierarchy (50)

yxxxx − 20yyxx − 10y2
x + 40y3 −K2(yxx − 6y2)−K4y + 4x = 0. (54)
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4 Third Painlevé Hierarchy

In [7], the third Painlevé equation,

uxx =
u2

x

u
− 1

x
ux +

1

x
(αu2 + β) + γu3 +

δ

u
, (55)

has been written as the compatibility condition of the linear system (1) where

B = B0λ + B1, A =
2∑

j=0

Ajλ
−j,

B0 = 1
2
σ3, B1 = 1

x

(
0 −w̃3

w3 0

)
, A0 = x

2
σ3,

A1 =

( −θ∞/2 −w̃3

w3 θ∞

)
, A2 = −

(
w2w̃2 w1w2

w̃1w̃2 w1w̃1

)
,

(56)

and u =
w̃3

xw1w2

.

In this section, we will use the linear problem (1, 56) to obtain a hierarchy of
ordinary differential equation, namely a third Painlevé hierarchy. We assume that

B = B0λ + B1, A =
m+1∑
j=0

Ajλ
m−j−1, (57)

where m is a positive integer. Moreover we set

B0 = 1
2
σ3, B1 =

(
0 p
q 0

)
, Aj =

(
aj bj

cj −aj

)
, j = 0, 1, . . . , m + 1. (58)

The compatibility condition of equation (1) gives

0 = [B0, A0], Am+1,x = [B1, Am+1], Am,x = [B0, Am+1] + [B1, Am],
Am−1,x = B0 + [B0, An] + [B1, An−1],
Aj,x = [B0, Aj+1] + [B1, Aj], j = 0, 1, . . . , m− 2.

(59)

Substituting Aj and Bj from (58) into equation (59), we obtain A0 = a0σ3

aj,x = pcj − qbj, j = 0, 1, . . . ,m− 2, m,
am−1,x = 1

2
+ pcm−1 − qbm−1,

bj,x = bj+1 − 2paj, j = 0, 1, . . . ,m,
cj,x = −cj+1 + 2qaj, j = 0, 1, . . . ,m,

(60)

and
am+1,x = pcm+1 − qbm+1, bm+1,x = −2pam+1, cm+1,x = 2qam+1. (61)
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For any positive integer m, the formulas (60) determine aj, j = 0, 1, . . . ,m,
bj, j = 1, 2, . . . ,m + 1, and cj, j = 1, 2, . . . , m, recursively. Moreover (61) has the
following two first integrals

cmbm+1 + bmcm+1 + 2amam+1 = γ2, (62)

bm+1cm+1 + a2
m+1 = γ3, (63)

where γ2 and γ3 are constants of integrations. Using the parametrization
am+1 = v, bm+1 = w, and p = uw, we obtain from (63)

cm+1 =
−1

w
(v2 − γ3), (64)

and hence (62) gives

cm =
1

w

[ 1

w
(v2 − γ3)bm − 2vam + γ2

]
. (65)

The system (61) yields

wx = −2uvw, q =
−1

w
[vx + u(v2 − γ3)]. (66)

As a last step we impose the conditions

bm+1 = w, cm =
1

w

[ 1

w
(v2 − γ3)bm − 2vam + γ2

]
(67)

to obtain an m−th order system for u and v. Eliminating one of the two dependent
variables u and v between the two equations in the system, one obtains a differential
equation of order 2m for the other variable.

Let us consider the case m = 1 in brief. As we explained above, we set
a2 = v, b2 = w, p = uw. Then (64) becomes c2 = −1

w
(v2 − γ3) and the formulas (60)

give

a0 = 1
2
x, a1 =

1

2
γ1, b1 = xuw, c1 =

−x

w
[vx + u(v2 − γ3)],

b2 = w[xux − 2xu2v + (γ1 + 1)u].
(68)

Equation (67) gives

xux = 2xu2v − (γ1 + 1)u + 1, xvx = −2xu(v2 − γ3) + γ1v − γ2. (69)

The function tu(t), where x = t2 satisfies the third Painlevé equation (55) with
α = −8γ2, β = 4(γ1 + 1), γ = 16γ3, and δ = −4.
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Now we will give explicit forms for the hierarchy (67) when m ≥ 2. In this case
equation (60) gives a0,x = 0. Without loss of generality we take a0 = 1

2
. Introduce the

notations

Uj =
bj+1

w
, j = 0, 1, . . . , m− 2,

Um−1 =
bm

w
− xu,

Um =
bm+1

w
− u− x(ux − 2u2v),

Vj = wcj − (v2 − γ3)
bj

w
+ 2vaj, j = 0, 1, . . . , m− 2,

Vm−1 = wcm−1 − (v2 − γ3)
bm−1

w
+ v(2am−1 − x),

Vm = wcm − (v2 − γ3)
bm

w
+ 2vam + x[vx + 2u(v2 − γ3)].

(70)

Then using (60), we have
(

Uj

Vj

)
= R

III

(
Uj−1

Vj−1

)
+ 2Kj

(
u
v

)
, j = 1, 2, . . . , m, (71)

where Kj are constants of integration and R
III

is the recursion operator

R
III

=

(
Dx − 2uv + 2uD−1

x vx −2u2 + 2uD−1
x ux

−2(v2 − γ3) + 2vD−1
x vx −Dx − 2uv + 2vD−1

x ux

)
. (72)

Without loss of generality, we set Km = 1
2
γ1, and Km−1 = 0.

Since U0 = u, V0 = v, (71) implies that Uj, Vj, j = 1, . . . , m, are given by

(
Uj

Vj

)
= Rj

III

(
u
v

)
+ 2

j−2∑
i=1

KiRj−i
III

(
u
v

)
+ 2Kj

(
u
v

)
, j = 1, 2, . . . , m. (73)

The equations (67) and (70) imply

Um = −x(ux − 2u2v) + 1− u, Vm = x[vx + 2u(v2 − γ3)] + γ2. (74)

Therefore the hierarchy reads

Rm
III

(
u
v

)
+ 2

m−2∑
i=1

KiRm−i
III

(
u
v

)

+ x

(
ux − 2u2v

−vx − 2u(v2 − γ3)

)
+ γ1

(
u
v

)
=

(
1− u

γ2

)
, m ≥ 2.

(75)

The hierarchy (75) has a linear problem given by (1) and (57) where

B0 = 1
2
σ3, B1 =

(
0 uw

−1
w

[vx + u(v2 − γ3)] 0

)
, A0 = 1

2
σ3,

Am+1 =

(
v w

−1
w

(v2 − γ3) −v

)
, Aj =

(
aj bj

cj −aj

)
, j = 1, . . . , m,

(76)

13



and aj, bj, and cj, j = 1, 2, . . . , m, are given by the following formulas

bj = wUj−1, j = 1, . . . , m− 1,
bm = w(Um−1 + xu),

cj =
1

w

[
Vj + (v2 − γ3)Uj−1 − 2vaj

]
, j = 1, . . . ,m− 2,

cm−1 =
1

w

[
Vm−1 + (v2 − γ3)Um−2 − v(2am−1 − x)

]
,

cm =
1

w

[
(v2 − γ3)(Um−1 + xu)− 2vam + γ2

]
,

a1 =

{ x

2
+ K1, m = 2,

K1, m 6= 2,

a2 =

{
−b1c1 +

x

2
+ K2, m = 3,

−b1c1 + K2, m 6= 3,

aj = −
j−1∑

k=1

(bkcj−k + akaj−k) + Kj, j = 3, 4, . . . , m− 2,

am−1 = −
m−2∑

k=1

(bkcm−k−1 + akam−k−1) +
x

2
,

am = −
m−1∑

k=1

(bkcm−k + akam−k) + K1x +
1

2
γ1.

(77)

In the following examples we will consider the cases m = 2 and m = 3.
Example (1):

As a first example of higher order analogue of the third Painlevé equation let us consider
the case m = 2. In this case, (75) gives the following system for u and v

uxx = (6uv − x)ux − 6u3v2 + 2xu2v + 2γ3u
3 − (γ1 + 1)u + 1,

vxx = −(6uv − x)vx − 2u(3uv − x)(v2 − γ3)− γ1v + γ2.
(78)

Eliminating v, equation (78) gives a fourth-order equation for u.

Equation (78) has the linear problem (1) with B = B0λ + B1 and A =
3∑

j=0

Ajλ
2−j,

where B0, B1, and A0 are given by (76), A3 =

(
v w

−1
w

(v2 − γ3) −v

)
,

and Aj =

(
aj bj

cj −aj

)
, j = 1, 2, where aj, bj, cj are given as follows

a1 = 1
2
x, b1 = uw, c1 =

−1

w
[vx + u(v2 − γ3)],

a2 = u[vx + u(v2 − γ3)] + 1
2
γ1, b2 = w[ux − 2u2v + xu],

c2 =
1

w
[(ux − 4u2v + xu)(v2 − γ3)− 2uvvx − γ1v + γ2].

(79)
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Therefore we have derived a new fourth-order equation together with its linear
problem.

Example (2):
As another example, we will consider the case m = 3. In this case the equation (75)
yields the following system for u and v

uxxx = 2(4uv −K1)uxx + 6vu2
x + (4uvx − 30u2v2 + 6γ3u

2 + 12K1uv − x)ux

+ 2u2vxx + 20u4v3 − 12K1u
3v2

− 12γ3u
4v + 4K1γ3u

3 + 2xu2v − (γ1 + 1)u + 1,
vxxx = −2(4uv −K1)vxx − 6uv2

x + (4vux + 30u2v2 − 6γ3u
2 − 8K1uv + x)vx

+ 2(v2 − γ3)(uxx + 10u3v2 − 6K1u
2v − 2γ3u

3 + xu) + γ1v − γ2.

(80)

Eliminating v, equation (80) gives a sixth-order equation for u.

The linear problem for (80) is given by (1) with B = B0λ+B1 and A =
4∑

j=0

Ajλ
2−j,

where B0, B1, and A0 are given by (76), A4 =

(
v w

−1
w

(v2 − γ3) −v

)
,

Aj =

(
aj bj

cj −aj

)
, j = 1, 2, 3, and aj, bj, cj are given as follows

a1 = K1, b1 = uw, c1 =
−1

w
[vx + u(v2 − γ3)],

a2 = u[vx + u(v2 − γ3)] + 1
2
x, b2 = w[ux − 2u2v + 2K1u],

c2 =
1

w
[vxx + 2(2uv −K1)vx + (ux + 2u2v − 2K1u)(v2 − γ3)],

a3 = −[uvxx − (ux − 6u2v + 2K1u)vx + 2u2(2uv −K1)(v
2 − γ3)] + 1

2
γ1,

b3 = w[uxx − 2(3uv −K1)ux + 6u3v2 − 4K1u
2v − 2γ3u

3 + xu],

c3 =
1

w

[
2uvvxx − 2v(ux − 6u2v + 2K1u)vx − γ1v + γ2

+ {uxx − 2(3uv −K1)ux + 14u3v2 − 8K1u
2v − 2γ3u

3 + xu)}(v2 − γ3)
]
.

(81)

The above two examples shows that we can derive a new hierarchy of differential
equations (75). Since the first member of this hierarchy is the third Painlevé equation,
this hierarchy is a third Painlevé hierarchy.

4.1 Special solutions

Let us study some special solutions of the third Painlevé hierarchy (75). Assume γ1 6= 0,

v =
γ2

γ1

, and γ2
2 = γ3γ

2
1 . Then (71) gives Vj = 2Kj

γ2

γ1

, j = 1, 2, . . . , m, and

Uj =
(
Dx − 2

γ2

γ1

u
)j

u + 2

j−2∑
i=1

Ki

(
Dx − 2

γ2

γ1

u
)j−i

u + 2Kju. (82)
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The hierarchy (75) becomes

(
Dx − 2

γ2

γ1

u
)m

u + 2
m−2∑
i=1

Ki

(
Dx − 2

γ2

γ1

u
)m−i

u + (γ1 + 1)u + x(ux − 2
γ2

γ1

u) = 1. (83)

Therefore if γ1 6= 0, v =
γ2

γ1

, and γ2
2 = γ3γ

2
1 , then the third Painlevé hierarchy (75)

admits special solutions given by (83).

If γ2 = 0, then equation (83) is linear. If γ2 6= 0, then the transformation u = −γ1yx

2γ2y
transforms equation (83) into the linear equation

Dm+1
x y + 2

m−2∑
i=1

KiD
m−i+1
x y + xyxx + (γ1 + 1)yx + 2

γ2

γ1

y = 0. (84)

Let us give the explicit form of (83) when m = 2, 3; that is, the special solutions of
(78) and (80).

Equation (78) has a special solution γ2
2 = γ3γ

2
1 , v =

γ2

γ1

, and u satisfies

uxx = 6
γ2

γ1

uux − 4
γ2

2

γ2
1

u3 − x(ux − 2
γ2

γ1

u2)− (γ1 + 1)u + 1. (85)

If γ2 6= 0, then equation (85) is equivalent to equation PVI in the complete list of

second-order Painlevé equations (see [15] page 334). The transformation u = −γ1yx

2γ2y
transforms (85) into the linear equation

yxxx = −xyxx − (γ1 + 1)yx − 2
γ2

γ1

y. (86)

Equation (80) has a special solution γ2
2 = γ3γ

2
1 , v =

γ2

γ1

, and u satisfies

uxxx = 2
γ2

γ1

(4uuxx + 3u2
x)− 24

γ2
2

γ2
1

u2ux + 8
γ3

2

γ3
1

u4

− 2K1(uxx − 6
γ2

γ1

uux + 4
γ2

2

γ2
1

u3)− x(ux − 2
γ2

γ1

u2)− (γ1 + 1)u + 1.
(87)

If γ2 6= 0, then the transformation u = −γ1yx

2γ2y
transforms (87) into the linear equation

yxxxx = −2K1yxxx − xyxx − (γ1 + 1)yx − 2
γ2

γ1

y. (88)
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5 Fourth Painlevé Hierarchy

The fourth Painlevé equation,

uxx =
u2

x

2u
+

3

2
u3 + 4xu2 + 2(x2 − α)u +

β

u
, (89)

can be obtained as the compatibility condition of the linear system (1) with the fol-
lowing matrices A and B [4, 5]

B = B0λ
2 + B1λ + B2, A =

4∑
j=0

Ajλ
3−j,

B0 = 1
2
σ3, B1 =

(
0 iw
iv 0

)
, B2 =

(
u 0
0 −u

)
,

A0 = 1
2
σ3, A1 = B1, A2 =

(
x + u 0

0 −x− u

)
,

A3 =

(
0 i(wx + 2xw)

i(2xv − vx) 0

)
, A4 = γ0σ3, u = vw.

(90)

Following the same method as in the previous sections, we take A and B in the following
form

A =
2m+2∑
j=0

Ajλ
2m+1−j, B = B0λ

2 + B1λ + B2, (91)

where m is a positive integer. Further more, we set

B0 = 1
2
σ3, B1 =

(
0 p
q 0

)
, B2 =

( −pq 0
0 pq

)
,

A0 = 1
2
σ3, A2j = a2jσ3, j = 1, . . . , m,

A2j+1 =

(
0 bj

cj 0

)
, j = 0, 1, . . . , m, A2m+2 = γ0σ3.

(92)

The compatibility condition of equation (1) gives

A2m+2,x = [B2, A2m+2], A2m+1,x = B1 + [B1, A2m+2] + [B2, A2m+1],
A2m,x = 2B0 + [B0, A2m+2] + [B1, A2m+1] + [B2, A2m],
Aj,x = [B0, Aj+2] + [B1, Aj+1] + [B2, Aj], j = 0, 1, 2, . . . , 2m− 1,
0 = [B0, A1] + [B1, A0], 0 = [B0, A0].

(93)

Substituting Aj and Bj from (92) into (93), we find that A1 = B1 and Aj, j =
2, 3, . . . , 2m + 1, can be determined by the following formulas

a2j,x = pc2j+1 − qb2j+1, j = 1, 2, . . . , m− 1,
b2j−1,x = b2j+1 − 2pa2j − 2pqb2j−1, j = 1, 2, . . . , m,
c2j−1,x = −c2j+1 + 2qa2j + 2pqc2j−1, j = 1, 2, . . . , m,
a2m,x = 1 + pc2m+1 − qb2m+1,

(94)
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c2m+1,x − q(2pc2m+1 + 2γ0 + 1) = 0, (95)

and
b2m+1,x + p(2qb2m+1 + 2γ0 − 1) = 0. (96)

The system (95-96) has the following first integral

m+1∑
j=1

b2j−1c2m+3−2j +
m∑

j=1

a2ja2m−2j+2 = 2x(a2 + pq) + γ1, (97)

where γ1 is a constant of integration.
In order to derive a hierarchy of ordinary differential equation, we prossed as follows.

Define u = −pq, v =
px

p
, and introduce the notation Uj, Vj, j = 0, 1, . . . , m, as follows

Uj = a2j+2 −K2j+2, j = 0, 1, . . . , m− 2,
Um−1 = a2m − x,

Um = 2x(a2 − 2u)−
m+1∑
j=1

b2j−1c2m+3−2j −
m∑

j=1

a2ja2m−2j+2,

Vj =
1

p
b2j+3 − 2K2j+2, j = 0, 1, . . . , m− 2,

Vm−1 =
1

p
b2m+1 − 2x,

Vm =
1

p
b2m+1,x + 2qb2m+1 + 2Um + 2x(2u− v)− 2,

(98)

where Kj are constants. Then equations (96) and (97) can be written in the form

Um + 2xu + γ1 = 0, Vm + 2xv + 2γ0 + 2γ1 + 1 = 0. (99)

Equation (94) implies that Uj, Vj, j = 0, 1, . . . , m, satisfy

(
Uj

Vj

)
= R

IV

(
Uj−1

Vj−1

)
+ 2K2j

(
u
v

)
, (100)

where R
IV

is the recursion operator

R
IV

=

( −Dx − 2u + v + D−1
x (2ux − vx) 2u−D−1

x ux

−2Dx − 4u + 2v + 2D−1
x (2ux − vx) Dx + 2u + v − 2D−1

x ux

)
. (101)

Using (94), we find

a2 =

{
u + x, m = 1,
u + K2, m 6= 1,

b3 = p(v + 2a2 − 2u),
(102)
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and hence we have U0 = u and V0 = v. Thus (100) implies that

(
Uj

Vj

)
= Rj

IV

(
u
v

)
+ 2

j−1∑
i=1

K2iRj−i
IV

(
u
v

)
+ 2K2j

(
u
v

)
. (103)

Therefore equation (99) can be written as

Rm
IV

(
u
v

)
+ 2

m−1∑
i=1

K2iRm−i
IV

(
u
v

)
+ 2x

(
u
v

)
+

(
γ1

γ0 + γ1 + 1

)
=

(
0
0

)
. (104)

The coefficients A and B in the linear problem (1) of the hierarchy (104) has the
form (91), where

B0 = 1
2
σ3, B1 =

(
0 p
−u

p
0

)
, B2 =

(
u 0
0 −u

)
,

A0 = 1
2
σ3, A1 = B1, A2j = a2jσ3, j = 1, . . . , m,

A2j+1 =

(
0 bj

cj 0

)
, j = 1, . . . , m, A2m+2 = γ0σ3,

(105)

p satisfies px = pv, a2j, b2j+1, and c2j+1, j = 1, 2, . . . , m, are given by

a2j = Uj−1 + K2j, j = 1, . . . , m− 1,
a2m = Um−1 + x,
b2j+1 = p(Vj−1 + 2K2j), j = 1, . . . , m− 1,
b2m+1 = p(Vm−1 + 2x),

c2j+1 =
1

p
[DxUj−1 − u(Vj−1 + 2K2j)], j = 1, . . . , m− 1,

c2m+1 =
1

p
[DxUm−1 − u(Vm−1 + 2x)].

(106)

As usual, when m = 1, u satisfies the fourth Painlevé equation (89). Next we study
the case m = 2.

Example (1):
When m = 2, (104) gives the following system for u and v

uxx = (3v + 2K2)ux − 3uv2 − 4K2uv + 2u3 + 2K2u
2 − 2xu− γ1,

vxx = −(3v + 2K2)vx + 2(3v + 2K2)ux − v3 − 6uv2 − 2K2v
2 − 2xv

+ 6u2v − 4K2uv + 4K2u
2 − (2γ0 + 2γ1 + 1).

(107)

The elimination of v between (107.a) and (107.b) gives a fourth order equation for u.
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The linear system for (107) is given by (1) with B = B0λ
2 + B1λ + B2,

A =
6∑

j=0

Ajλ
5−j, where Bj, j = 0, 1, 2, and Aj, j = 0, 1, are given by (105) and

A2 = (u + K2)σ3, A3 =




0 p(v + 2K2)
1

p
(ux − uv − 2K2u) 0


 ,

A4 = −(ux + u2 − 2uv − 2K2u− x)σ3, A5 =

(
0 b5

c5 0

)
, A6 = γ0σ3,

b5 = p(vx − 2ux + 2uv − 2u2 + 2K2v + 2x),

c5 =
−1

p
[uxx − 2(v + K2)ux − uvx − 2u3 + 2u2v + uv2 + 2K2uv + 2xu].

(108)

Once again we can derive a hierarchy of differential equations, a fourth Painlevé
hierarchy. This hierarchy was given before [10]. In deed the transformation
y = −ux + uv − u2, w = −v transforms the system (107) into the system

yxx =
[yx + 2y(w − k2)− γ1 − γ0 + 1

2
]2 − (γ0 − 1

2
)2

[2y − wx + w2 − 2K2w + 2x]
− 2(yw)x + 2K2yx − y[2y − wx + w2 − 2K2w + 2x],

wxx = (3w − 2K2)wx − 2y(3w − 2K2)
− w3 + 2K2w

2 − 2xw + (2γ0 + 2γ1 + 1).

(109)

The system (109) is the second member of the fourth Painlevé hierarchy given in [6].
Therefore we have another linear problem for the fourth Pianlevé hierarchy given in
[6].

5.1 Special solutions

In this subsection, we will show that the fourth Painlevé hierarchy ( 104) admit special
solutions in terms of the second Painlevé hierarchy (39).

Suppose that m = 2n, p = 1, 2γ1 + 2γ0 + 1 = 0, K4j−2 = 0, j = 1, 2, . . . , n. Then
u = −q, v = 0, and the hierarchy (99) reduces to the following hierarchy

U2n + 2xu + γ1 = 0, V2n = 0. (110)

The operator (101) becomes

R =

( −Dx − 2u + 2D−1
x ux 2u−D−1

x ux

−2Dx − 4u + 4D−1
x ux Dx + 2u− 2D−1

x ux

)
. (111)

Now we will use induction to prove that

U2j = (Dx − 2u)(Dx + 2u− 2D−1
x ux)U2j−2 + 2K4ju, j = 1, 2, . . . , n,

V2j = 0, j = 1, 2, . . . , n,
U2j+1 = −(Dx + 2u− 2D−1

x ux)U2j, j = 1, 2, . . . , n− 1,
V2j+1 = 2U2j+1, j = 1, 2, . . . , n− 1.

(112)
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Firstly, we note that U0 = u, V0 = 0. Thus (100) gives U1 = −(Dx + 2u− 2D−1
x ux)U0,

V1 = 2U1, V2 = (Dx + 2u− 2D−1
x ux)(V1 − 2U1) = 0, and

U2 = −(Dx − 2u)U1 + 2K4u
= (Dx − 2u)(Dx + 2u− 2D−1

x ux)U0 + 2K4u.
(113)

Hence the formulas (112) are true when j = 1.
Assume that (112) is true for j = k, 1 ≤ k ≤ n − 1. Then substituting V2k = 0

into (100) implies that U2k+1 = −(Dx + 2u− 2D−1
x ux)U2k and

V2k+1 = −2(Dx + 2u− 2D−1
x ux)U2k = 2U2k+1. Since

V2k+2 = (Dx + 2u− 2D−1
x ux)(V2k+1 − 2U2k+1), we get V2k+2 = 0. Using (100),

V2k+1 = 2U2k+1, and U2k+1 = −(Dx + 2u− 2D−1
x ux)U2k, we get

U2k+2 = −(Dx + 2u− 2D−1
x ux)U2k+1 + (2u−D−1

x ux)V2k+1 + 2K4k+4u
= −(Dx − 2u)U2k+1 + 2K4k+4u
= (Dx − 2u)(Dx + 2u− 2D−1

x ux)U2k + 2K4k+4u.
(114)

This ends the proof.
Now using (Dx − 2u)(Dx + 2u − 2D−1

x ux) = D2
x − 4u2 + 4uD−1

x ux = R
II

, U0 = u,
we obtain

U2j = RIIU2j−2 + 2K4ju, (115)

and hence

U2j = Rj
II

u + 2

j−1∑
i=1

K4iRj−i
II

u + 2K4ju. (116)

Thus equation (110) yields

Rn
II

u + 2
n−1∑
i=1

K4iRn−i
II

u + 2xu + γ1 = 0. (117)

The hierarchy (117) is equivalent to the second Painlevé hierarchy (39). Therefore, if
u is a solution of the 2n-th member of the fourth Painlevé hierarchy (104) with v = 0,
2γ1 + 2γ0 + 1 = 0, K4j−2 = 0, j = 1, 2, . . . , n, then u satisfies the n-th member of the
second Painlevé hierarchy (117).

The linear problem for the second Painlevé hierarchy (117) is given by

B = B0λ
2 + B1λ + B2, A =

4n+2∑
j=0

Ajλ
4n+1−j,

B0 = 1
2
σ3, B1 =

(
0 1
−u 0

)
, B2 = uσ3, A0 = 1

2
σ3, A1 = B1

A2j = a2jσ3, j = 1, . . . , 2n,

A2j+1 =

(
0 bj

cj 0

)
, j = 1, . . . , 2n, A4n+2 = γ0σ3,

(118)
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where aj, b, and cj are given by

a4j = −(Dx + 2u− 2D−1
x ux)U2j−2 + K4j, j = 1, . . . , n− 1,

a4j−2 = U2j−2, j = 1, . . . , n,
a4n = −(Dx + 2u− 2D−1

x ux)U2n−2 + x,
c4j−1 = DxU2j−2, j = 1, . . . , n,
c4j+1 = −[R

II
U2j−2 + 2K4ju], j = 1, 2, . . . , n− 1,

c4n+1 = −[R
II

U2n−2 + 2xu], j = 1, 2, . . . , n,
b4j−1 = 0, b4j+1 = 2a4j, j = 1, 2, . . . , n.

(119)

Therefor the above relation between the fourth Painlevé hierarchy (104) and second
Painlevé hierarchy (117) gives rise to the new linear problem (118) for the second
Painlevé hierarchy.

For example, the second member of the fourth Painlevé hierarchy (104), that is
equation (107), has the special solution K2 = 0, 2γ0 + 2γ1 + 1 = 0, v = 0, and u
satisfies the second Painlevé equation

uxx = 2u3 − 2xu + γ0 +
1

2
. (120)

The second Painlevé equation (120) has the following new linear problem

B = B0λ
2 + B1λ + B2, A =

6∑
j=0

Ajλ
5−j,

B0 = 1
2
σ3, B1 =

(
0 1
−u 0

)
, B2 = uσ3, A0 = 1

2
σ3,

A1 = B1, A2 = uσ3, A3 =

(
0 0
ux 0

)
, A4 = −(ux + u2 − x)σ3,

A5 =

(
0 −2(ux + u2 − x)

−uxx + 2u3 − 2xu 0

)
, A6 = γ0σ3.

(121)
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