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Abstract

Transformations that involve Fuchsian-type equation is used to obtain one-to-one corre-

spondence between the third, fourth, and fifth Pianlevé equations and certain second-order

fourth-degree Painlevé-type equations.
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I Introduction

Fokas and Ablowitz [1] developed an algorithmic method to investigating the transformation prop-

erties of the Pianlevé equations. However, certain second-order second-degree equations of Painlevé

type equations related to PIII and PVI were also discussed. They used the transformation

u =
v′ + av2 + bv + c

dv2 + ev + f
, (1.1)

where a, b, c, d, e, f are functions of z only. The transformation (1.1) is the only transformation that

is linear in v′ and preserves the Painlevé property. The method can be summarized as follows: Let

v be a solution of one of the Painlevé equations, which has the general form

v′′ = P2(v, z)(v
′)2 + P1(v, z)v′ + P0(v, z). (1.2)

Differentiating (1.1) and using (1.2) to replace v′′ and (1.1) to replace v′ one obtains a polynomial

in v,

An(u′, u, z)vn + An−1(u
′, u, z)vn−1 + · · ·+ A1(u

′, u, z)v + A0(u
′, u, z) = 0. (1.3)

In [1] two types of transformations are considered:

(I) Find a, b, c, d, e, f so that (1.3) reduces to a linear equation for v. Then substituting v into

(1.1) yields a second-order first-degree Painlevé type equations for u.

(II) Find a, b, c, d, e, f so that (1.3) reduces to a quadratic equation for v. Then substituting v

into (1.1) yields a second-order second-degree Painlevé type equations for u.

Gordoa and Pickering [2], introduced a new type. Namely, find a, b, c, d, e, f so that (1.3)

reduces to a polynomial of degree m > 2 for v

Bmv
m +Bm−1v

m−1 + . . .+B1v +B0 = 0. (1.4)

Then (1.1) and the derivative of (1.4) are used first to obtain the corresponding inverse transformation

for v as rational function of u, u′ and u′′, and second to obtain the corresponding second-order

differential equation for u of degree > 2.

A generalization of the algorithm of Fokas an Ablowitiz so that it can be applied to equations of

order > 2 is given in [3].

As an extension to the method of Fokas and Ablowitz, one may replace (1.1) by transformation

of the form

u =
(v′)2 + (a2v

2 + a1v + a0)v
′ + b4v

4 + b3v
3 + b2v

2 + b1v + b0
(c2v2 + c1v + c0)v′ + d4v4 + d3v3 + d2v2 + d1v + d0

, (1.5)
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where aj, bk, cj, dk, j = 0, 1, 2, k = 0, 1, 2, 3, 4 are functions of z. Let Aj := cju − aj, Bk := dku − bk,

j = 0, 1, 2, k = 0, 1, 2, 3, 4. Then the transformation (1.5) preserves the Painlevé property if the

equation

(v′)2 = (A2v
2 + A1v + A0)v

′ +B4v
4 +B3v

3 +B2v
2 +B1v +B0, (1.6)

is of Painlevé type. To be more specific, let

F (v) := −[f4v
4 + f3v

3 + f2v
2 + f1v + f0], (1.7)

where

f4 = 4B4 + A2
2, f3 = 2(2B3 + A1A2),

f2 = 4B2 + A2
1 + 2A0A2,

f1 = 2(2B1 + A0A1), f0 = 4B0 + A2
0.

(1.8)

It is known that when F (v) 6= 0, there are unique monic polynomials F1(v), F2(v) such that

F (v) = A(z)F1(v)[F2(v)]2, (1.9)

where A(z) is an analytic function and F1(v) has no multiple roots. Then equation (1.6) is of Painlevé

type if it satisfies the following conditions [4]

i) F1(v) divides G1(v) := −(A2v
2 + A1v + A0)

∂F1

∂v
− 2

∂F1

∂z
,

ii) f4 = 0 and f3 6= 0 imply A2 = 0,

iii) f4 = f3 = f2 = 0 and f1 6= 0 imply A2 = 0.

(1.10)

In particular, if

G(v) := −(A2v
2 + A1v + A0)

∂F

∂v
− 2

∂F

∂z
= 0, (1.11)

then (1.6) is of Painlevé type.

In [5], the transformation (1.5) is used to obtain one-to-one correspondence between solutions

v of PI-PVI equations and solutions u of certain second-order second-degree equations of Pianlevé

type.

In [6], the transformation (1.5), with the constraint G(v) = 0, is used to obtain one-to-one

correspondence between solutions v of PI-PIV equations and solutions u of certain second-order

fourth-degree equations of Pianlevé type. It turns out that PV and PVI does not have transformation

of this type.

In this article, we will use the transformation (1.5) subject to the condition F (v) has no multiple

root. This is a generalization of the condition G(v) = 0 which we used in [6]. To see this, assume that
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F (v) has no multiple root. Then, to write F (v) in the form of (1.9), we have to take F1(v) =
1

A(z)
F (v)

and F2(v) = 1. Thus the condition i) of (1.10) is satisfied if and only if F (v) divides G(v).

To obtain the second-order fourth-degree equation and the one-to-one correspondence, we proceed

as follows: Let v(z) be a solution of one of the Painlevé equations, which has the general form (1.2),

and let u(z) be given by the transformation (1.5). Differentiating the equation (1.6), one obtains

[2v′ − (A2v
2 + A1v + A0)][2v

′′ − (2A2v + A1)v
′ +

1

4

∂F

∂v
− (A′2v

2 + A′1v + A′0)] =
1

4
G(v). (1.12)

Since F (v) divides G(v), there exists a polynomial E(v) = e1v+ e0 such that G(v) = E(v)F (v). But

equation (1.6) implies that F (v) = −[2v′ − (A2v
2 + A1v + A0)]

2. Hence equation (1.12) becomes

2v′′ = [2A2v + A1 −
1

2
E(v)]v′ − 1

4

∂F

∂v
+

1

4
E(v)(A2v

2 + A1v + A0) + (A′2v
2 + A′1v + A′0). (1.13)

Now using (1.2) to replace v′′ and (1.6) to replace (v′)2 equation (1.13) gives

Φv′ + Ψ = 0, (1.14)

where

Φ = 2P1 − [2A2v + A1 − 1
2
E(v)] + 2P2(A2v

2 + A1v + A0),

Ψ = 2P2(B4v
4 +B3v

3 +B2v
2 +B1v +B0) +

1

4

∂F

∂v
+ 2P0

− (A′2v
2 + A′1v + A′0)− 1

4
E(v)(A2v

2 + A1v + A0).

(1.15)

Now the aim is to choose aj, bk, cj and dk so that Φ and Ψ are identically zero and the constrained

G(v) = E(v)F (v) is reduced to a quadratic equation for v,

A(u′, u, z)v2 +B(u′, u, z)v + C(u′, u, z) = 0. (1.16)

Then, it is up to solve the equation (1.16) for v and substituting into equation (1.6) one obtains

second-order fourth-degree Painlevé-type equations for u.

In this work, we will apply the procedure described above to the third, fourth, and fifth Painlevé

equations. It turns out that while the fifth Painlevé equations admits two transformations of this type,

the sixth Painlevé equation admits only one transformation. We will show that these transformations

breaks downs if and only if the Pianlevé equation has one-parameter family of solutions characterized

by first-order second-degree differential equations.

One can may look for transformations so that the constrained G(v) = E(v)F (v) reduces to a

polynomial of degree m > 2 for v and obtain one-to-one correspondence between a given Painlevé

equation and second-order Painlevé-type equations of degree > 4. Moreover one may applied the

method to higher order equations.
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Throughout this article ′ denotes the derivative with respect to z and ˙denotes the derivative with

respect to x.

II Painlevé III equation

In this section, we will apply the method to the third Painlevé equation, PIII,

v′′ =
1

v
(v′)2 − 1

z
v′ + γv3 +

1

z
(αv2 + β) +

δ

v
. (2.1)

For PIII, P2 = 1
v
, P1 = −1

z
, and P0 = γv3 + 1

z
(αv2 + β) + δ

v
. Thus using (1.15) we find

Φ =
1

2
e1v

2 + (A1 −
2

z
− 1

2
e0)v + 2A0. (2.2)

Setting Φ = 0, we obtain A0 = e1 = 0, e0 = 4
z
− 2A1. Now Ψ becomes

Ψ = 2(γ −B4)v
4 + (

2α

z
−B3)v

3 − (A′1 +
1

z
A1)v

2 + (B0 +
2β

z
)v + 2(B0 + δ). (2.3)

Setting Ψ = 0, we obtain

A1 =
k

z
, B4 = γ − 1

2
A2

2, B3 =
2α

z
− (k + 1)

z
− A′2, B1 = −2β

z
, B0 = −δ. (2.4)

If d2 = 0, then the transformation (1.7) becomes undefined. Thus we should take d2 6= 0 and hence

without loss of generality we may set B2 =
u

z2
.

The equation G(v) = E(v)F (v) is a fifth degree polynomial in v

sigma5v
5 + σ4v

4 + σ3v
3 + σ2v

2 + σ1v + σ0 = 0, (2.5)

where

σ5 = 4A2(4γ − A2
2), σ4 =

8

z
[(γ − A2

2)(k + 2) + 3αA2 − 2zA2A
′
2],

σ3 =
8

z2
[A2u− (k + 1)A2 + α(k + 2)− zA′2(k + 3)− z2A′′2],

σ2 =
8

z2
[u′ − βzA2], σ1 =

8β

z2
(k − 2), σ0 =

8δ

z
(k − 2).

(2.6)

III Painlevé V equation

In this section, we will consider the fifth Painlevé equation, PV,

v′′ =
3v − 1

2v(v − 1)
(v′)2 − 1

z
v′ +

α

z2
v(v − 1)2 +

β(v − 1)2

z2v
+
γ

z
v +

δv(v + 1)

v − 1
. (3.1)
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For PV, Φ reads

Φ = (e1 + 2A2)v
3 + (2A2 + 4A1 −

4

z
− e1 + e0)v

2 + (6A0 − e0 +
4

z
)v − 2A0. (3.2)

Setting Φ = 0, we obtain A0 = 0, A1 = −A2, e0 = 4
z

and e1 = −2A2. Now Ψ reads

Ψ = [2α
z2
−B4 − 1

2
A2

2]v
5 + [3B4 + 3

2
A2

2 − 6α
z2
− A′2 − 1

z
A2]v

4

+ [B2 + 2B3 + 2A′2 + 2
z
A2 − 3

2
A2

2 + 2
z2

(3α + β) + 2γ
z

+ 2δ]v3

+ [2B1 +B2 − A′2 − 2
z
A2 + 1

2
A2

2 − 2
z2

(α + 3β)− 2γ
z

+ 2δ]v2

+ 3[B0 + 2β
z2

]v − [B0 + 2β
z2

].

(3.3)

If we require Ψ = 0 identically, we obtain

A2 =
2k

z
, B4 =

2α

z2
− 1

2
A2

2, B0 = −2β

z2
,

B3 = −1

2
[B2 −

3

2
A2

2 +
(6α + 2β)

z2
+

2γ

z
+ 2δ],

B1 = −1

2
[B2 +

1

2
A2

2 −
(2α + 6β)

z2
− 2γ

z
+ 2δ],

(3.4)

where k is an arbitrary constant. It is clear that d2 6= 0 and hence with out loss of generality we take

B2 =
2u

z2
. Now the equation G(v) = E(v)F (v) is a fourth degree polynomial in v,

σ4v
4 + σ3v

3 + σ2v
2 + σ1v + σ0 = 0, (3.5)

where

σ4 = 2k(2α− k2), σ3 = −k[u+ δz2 + γz + β + 11α− 5k2],

σ2 = −[zu′ − 3ku− (3k − 2)δz2 − (3k − 1)γz − 3k(β + 3α− k2)],

σ1 = 2zu′ − 3ku+ k(δz2 − γz − 3β − α− k2),

σ0 = −z[zu′ − ku− (k − 2)δz2 + (k − 1)γz − k(β − α + k2)].

(3.6)

We should consider the two cases σ4 = 0 and σ4 6= 0.

Case(1) σ4 = 0:

If k 6= 0, then we have f4 = 0, f3 = −[4u + 1
z2

(12α + 4β + k2) + 4γ
z

+ 4δ] 6= 0 and hence k = 0 (see

the conditions (1.10)) which is a contradiction. Therefore, we must have k = 0. With this choice,

we have σ3 = 0 and (3.5) reduces to the following quadratic equation for v

(u′ + 2δz + γ)v2 − 2u′v + u′ + 2δz − γ = 0. (3.7)

The transformation (1.5) reads

z2(v′)2 = 2αv4 − (u+ δz2 + γz + 3α + β)v3 + 2uv2 − (u+ δz2 − γz − α− 3β)v − 2β. (3.8)
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Assume that δ 6= 0 and let u = −1
2
δ[y+x− (r− 1)2x lnx], z =

√
x, where r =

γ

2δ
√
x

+ 1. Then y(x)

satisfies the following second-order fourth-degree equation

[4x3ÿ2 + 2δxẏ3 −Q1(y)ẏ2 −Q2(y)ẏ]2 = ẏ[4x3(r − 1)ÿ +Q3(y)ẏ]2, (3.9)

where

Q1(y) = 1
2
δ[y − x lnx(r − 1)2 + x(6r2 − 17r + 12)] + 3(α− β),

Q2(y) = 1
8

{
δr[(r − 2)y − x lnx(r − 2)(r − 1)2 + x(r − 1)(3r2 − 9r + 8)]

− 8x(r − 1)2 + 2α(3r2 − 10r + 8)− 2βr(3r − 2)},

Q3(y) = 1
2
δ(r − 1)[y − (r − 1)2x lnx+ x(4r2 − 8r + 3)] + α(3r − 5)− β(3r − 1).

(3.10)

If δ = 0, then equation (3.7), after dividing it by v − 1, gives

(u′ + γ)v − (u′ − γ) = 0. (3.11)

Moreover, equation (3.8) becomes

z2(v′)2 = 2αv4 − (u+ γz + 3α + β)v3 + 2uv2 − (u− γz − α− 3β)v − 2β. (3.12)

If γ = 0, then one get the trivial solution v(z;α, β, 0, 0) = 1 of PV. If γ 6= 0, then solving equation

(3.11) for v and substituting in equation (3.12), we obtain the following second-order second-degree

equation for y = −1
4
(u− 3β + 3α)

z2(y′′)2 = −4(y′)2(zy′ − y) + λ1(zy
′ − y)1 + λ2(zy

′ − y) + λ3y
′ + λ4, (3.13)

where

λ1 = 0, λ2 =
1

4
γ2, λ3 = γ(α + β), λ4 =

1

4
γ2(α− β). (3.14)

The equation (3.13) was first obtained in [7] and labeled as SD-I.b and solved in terms of the third

Painlevé equation, PIII. Equation (3.13) and its solution in terms of PIII were rederived in [5].

Case(2) σ4 6= 0:

In this case, we write (3.5) as

(v2 + gv + h)(Av2 +Bv + C) = 0, (3.15)

where g and h are functions of z. To achieve this factorization, we should take k = h = 1 and

g = −2. The equation Av2 +Bv + C = 0 reads

2µv2 − [u+ δz2 + γz + β + 3α− 1]v − [zu′ − u+ δz2 − β + α− 1] = 0, (3.16)
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where µ = 2α− 1 and the transformation (1.6) becomes

[zv′−v(v−1)]2 = µv4−(u+δz2+γz+3α+β−1)v3+(2u+1)v2−(u+δz2−γz−α−3β+1)v−2β. (3.17)

Assume that µ 6= 0 and let y =
1

4µ
(u+ δz2 + γz + β + 3α− 1) and x = 1

2
ln z. Then y(x) satisfies

the following second-order fourth-degree equation{
[ÿ − 2(3y − 1)ẏ − 4(2y − 1)(y − 1)2]2

− 4[ẏ + (y − 1)2]
(
(4µ− 1)[ẏ + (y − 1)2]2 − 2Q1(y)[ẏ + (y − 1)2]−Q2(y)

)}2
=

16[ẏ + (y − 1)2]
{

[ẏ + 2(y − 1)(2y − 1)][ÿ − 2(3y − 1)ẏ − 4(2y − 1)(y − 1)2]

− 4[ẏ + (y − 1)2]Q3(y)
}2

(3.18)

where

p1 = 2(γz + 2β + µ),

p2 = 2β + 3µ+ 2γz + 2δz2,

Q1(y) = 3(4µ+ 1)y2 − 4(4µ+ 1)y + 2p2 + 1,

Q2(y) = 3(4µ+ 3)y4 − 8(4µ+ 3)y3 + 2(2p2 + 8µ+ 11)y2

− 4(p1 + 2)y + (8β + 1),

Q3(y) = 8µy3 − 16µy2 + 2(p2 + 2µ)y − p1.

(3.19)

When µ = 0, then equation (3.16) and (3.17) become

(u+ δz2 + γz + β +
1

2
)v + (zu′ − u+ δz2 − β − 1

2
) = 0 (3.20)

and

[zv′ − v(v − 1)]2 = −(u+ δz2 + γz + β +
1

2
)v3 + (2u+ 1)v2 − (u+ δz2 − γz − 3β +

1

2
)v − 2β (3.21)

respectively. Solving equation (3.20) for v and substituting in (3.21) we get the second-order second-

degree equation (3.13) for y = −1
8
(2u+ 2δz2 + 6β + 1) with

λ1 = −2δ, λ2 =
1

4
(γ2 + 8βδ), λ2 = βγ, λ4 = −1

4
β(γ2 + 2βδ). (3.22)

The transformation (3.20) breaks down if and only if u = −(δz2 + γz + β + 1
2
). In this case, the

transformation (3.21) reduce to the following first-order second-degree equation for v

[zv′ − v(v − 1)]2 = −2(δz2 + γz + β)v2 + 2(γz + 2β)v − 2β. (3.23)

Therefore, if α = 1
2
, then PV has a one-parameter family of solutions characterized by equation

(3.23).
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