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  الملخص
  دراسة الانتقال الالكتروني في سلك كمي تحت تأثير مجال كهرومغناطيسي عالي التردد

اص الانتقال الالكتروني في سلك كمي تحت تأثير        في هذه الورقة سوف نتعرض لدراسة خو        

مجال كهرومغناطيسي عالي التردد على جزء محدد من السلك بتطبيق تقريب الكتلة الفاعلة للإلكترون 

الحر، وسوف نقوم باشتقاق مصفوفة التشتت من خلال تطبيق شروط الاستمرار ، وقد لوحظ علـى                

صادمات العرضية مع الفوتونات إلا أنـه وجـد عمليـة           الرغم من أن الالكترونات تعاني فقط من الت       

انعكاس لحركة الالكترونات في الاتجاه المضاد ، كذلك عندما يكون تردد المجال المطبق فـي حالـة          

رنين مع أول مستويين عرضيين للطاقة فإنه يحدث انتقال داخلي لحركة الإلكترون وبالتالي ازديـاد               

كدالة في طاقة الإلكترون الساقطة ، علاوة على ذلـك سـيتم            حالة الانتقال على شكل خطوة، وذلك       

  .دراسة تأثير طاقة التفاعل المتبادل

ABSTRACT 
In this paper, we investigate the electron transport properties in a semi-

conductor quantum wire, where a finite-rang high-frequency electromagnetic 
field in the ballistic limit is imposed. Within the effective mass free-electron 
approximation, the scattering matrix for the system has been formulated by 
means of a time dependent mode matching method. Some interesting properties 
of the electron transmission for the system have been shown. It is found that, 
although the electrons in a nanowire only suffer from lateral collisions with 
photons, the reflection of electrons also takes place. And when the frequency of 
the electromagnetic field is resonant with the two lateral energy levels, the field 
induced inter subband transition dominates the process, and there is a step-
arising on the transmission as a function of the incident electron energy. 
Moreover, the transmission dependence on the mode coupling is also discussed.   
Keywords: Quantum transport; Nanostructures; Electron waveguides; Time-
dependent field  
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INTRODUCTION: 

 The discovery of conductance quantization has motivated a great deal of 
research interests in the quantum transport phenomena in semi-conductor 
quantum wires [1]. In the ballistic regime and at low temperature quantum 
coherent effects will dominate the electron transport properties of a 
mesoscopic system. One of the most important features is that, when the 
lateral size of a quantum wire varies, the conductance shows an histogram 
structure and each step has an height of ( he22 ) or integer of it [2].  

 The electron transport properties of the quantum wire formed on a two-
dimensional electron gas (2DEG) can be affected by many factors. The 
presence of disorders in a quantum wire generally leads to a suppression of 
the conductance plateaus below integer values [3], and the coupling among 
wire and leads has also been accounted for [4]. However, there has been 
growing interest in the time-dependent transport for quantum wire systems 
in recent years, such as presence of a time-modulated potential [5] and 
quantum pumping [6]. Further, when a quantum wire is illuminated under 
an external electromagnetic (EM) field, due to the inelastic scattering of 
electrons by photons many new features have been observed experimentally 
[7] and predicted theoretically [8]. The technique of applying an external 
field is of particular interest, since no additional current and voltage probes 
have to be attached to the sample which may disturb the system properties. 
It is therefore of great interest in basic physics aspect to study the time-
dependent transport properties of quantum structures on semi-conductor 
2DEG systems, which will have to operate at very high frequencies, require 
detailed knowledge of their frequency and time-dependent transport 
behavior. 
 The values of the lateral energy level separation and the Fermi energy are 
of the order of 1 ~ 100 meV for typical semi-conductor quantum wires. This 
corresponds to frequencies of the range of 0.25 ~ 25 THz, which is available 
in experiments with the development of the ultra fast laser technology [9]. 
When the Fermi level is below the lowest lateral level of the neck part of a 
quantum wire, electrons can not go through without the assistance of an 
external EM field. However, under the field illumination, electrons in the 
wire can absorb energy of photons and go through this geometric barrier 
(the neck) [10]. Therefore, in the region of barrier the electron transmission 
is determined by the combined effect of the external EM and the wire lateral 
shape variation.  
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 In the present paper, we consider electron transport in a straight quantum 
wire illuminated by a transversely polarized THz EM field. Within the 
effective mass free-electron approximation, the scattering matrix for the 
system has been formulated through a time-dependent mode matching 
method [11]. Using two numerical examples we demonstrate some 
interesting electron transmission properties for this system. 

 The paper is organized as follows. In Sec. II we present the problem for a 
straight quantum wire in terms of a single-electron time-dependent 
Schrödinger equation, and calculate the electron transmission probability 
through the system in the framework of Landauer-Büttiker formalism [12]. 
In Sec. III, we illustrate the dependence of the electron transmission on the 
incident energy, and field parameters respectively. Finally, Sec. IV gives a 
conclusion of the paper. 

Formulation: 

 We consider the electron transmission through a straight 2D quantum wire, 
which is depicted in Fig. 1 schematically. The quantum wire is smoothly 
connected the two electron reservoirs (leads) at each end. The x-axis 
longitudinally is along the wire, and the y-axis describes the transverse 
direction. The range lx ≤≤0 in the quantum wire is illuminated under 
transversely polarized THz EM field. 

 
 
 
                                  Left lead                                                     Right lead                                           
 
  
 

 
 
 
 
FIG. 1. Schematic diagram of the quantum wire, which is illuminated under a 
transversely polarized EM field in the range lx ≤≤0 . The quantum wire is 

connecting to two leads (reservoirs). 
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 The field vector potential can be described as 
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with angular frequency ω and amplitude ε ( y) is the unit vector in the 
polarized direction). 
 Within an effective mass approximation, the single particle time-dependent 
Schrödinger equation in the field illuminated region is  
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where we have adopted the unit of 12 * == mh . In the Hamiltonian, V (y) 
presents a transverse confining potential in the form of a hard-wall which 
confines electrons to the wire and to the reservoirs. We attempt to find the 
electron wave function in the expansion form 
                             ∑ Φ=Ψ

n
nn ytaikxtyx )()()exp(),,(                                 (3) 

where k is the longitudinal momentum and )(tan presents the time-
dependent amplitudes. )(ynΦ  are the eigenfunctions of the transverse 
motion without an EM field, which is dependent on V(y). We only consider 
the transition between the two lowest transverse energy levels with the 
Fermi level between them. Using the method in Ref. [11] to solve the time-
dependent Schrödinger equation (2), and then considering the scattering of 
the two interfaces between the field illuminated region and the clean region 
separately [13].  
 When an electron with total incident energy E emits from the left 

reservoir to the left interface at x = 0, transmission and reflection will take 
place simultaneously. Because the electron has certain probability of 
absorbing photon after penetrating the interface, the transition from the 
lower mode to the upper mode happens. So there are two energy 
components of E and ωh+E  in the reflected wave in the region of x < 0. 
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where )(ynΦ (n =1,2) are transverse eigenfunctions with eigenvalues nε in 
the clean region (without illumination), 21,cc  are the reflection coefficients 
of the two modes respectively, and 
                                 2/1

22
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are their associated wave-vectors. Consequently, we can obtain the 

electronic wave function in the region of x > 0 as 
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where −+ cc ,  are the transmission coefficients of the two field-split modes, 
and the constants 
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where )( 12 εεωγ −−= is the detuning, and ξ is the two-mode coupling 
constant. The two electron wave-vector in the illuminated region are 
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The boundary conditions, the continuity of the wave function and the 
conservation of current density, should be imposed at the interface of x = 0. 
Continuously connecting the two above wave-functions and their 
differentials gives the following four equations for the coefficients 2,1c , and 
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 With the solution of these algebraic equations in Eq. 9 both the 
transmission and reflection matrix for the left interface can be expressed 
respectively as 
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  Now, we consider the electron transmission through the whole wire. This 
needs to derive the total scattering matrix, which can be expressed in the 
transmission matrix and reflection matrix on each interface. The total 
transmission matrix is just the anti-diagonal sub-matrix of the total 
scattering matrix in the symmetry system case. 
 Because of the similarity of the two interfaces one has not to match the 
wave functions at the right interface x = l, but we need to know the 
transmission and reflection matrix of electron emitting from right to left for 
the left interface. In this case the electronic wave-function in the 
illuminated region (0< x< l) is 
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where ec±  are the coefficients of the electron emitting from right to left, rc±  
are the associated reflection coefficients. Correspondingly, the transmitted 
electron wave-function in the region of x< 0 is 

)())((exp()())(exp(),,( 2211 ytExkicytExkictyx tt Φ++−+Φ+−=Ψ ω  (13) 
where tc1  and tc2  are the transmission coefficients. These two wave 

functions also satisfy the continuous condition at x = 0, from which we 
obtain the transmission and reflection matrix from right to left for this 
interface, r ′  and t, respectively. Consequently, the total transmission matrix 
through the two interfaces (the whole system) is [11] 
                                           ,)1( 1 tXrXrXtttot ′′′−= −                                (14) 
where X is the transfer matrix between the two interfaces of the system and 
is given by: 
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 Therefore, according to Landauer-Büttiker’s formulation the total electron 
transmission probability through the whole system is: 
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RESULTS AND DISCUSSION: 

 In this section, we compute the transmission probability from Eq. (16). The 
physical parameters are chosen to be a high-mobility GaAs-AlxGa1-xAs 
heterostructure [14] with electron effective mass emm 067.0* =  (where em  
is the free electron mass). We choose the hard-wall transverse confining 
potential and the unit of energy 92 *22

1
* === mkE Fhε meV, which 

corresponds to the unit of time 14* 1032.7 −×== FEt h s. correspondingly, 
the field frequency unit 66.131 ** == tω  THz and a length unit 

6.791* == Fka Å. In the following we systematically present some 

numerical examples, while restrict our attention to the energy range ( 21 ,εε ). 
 
      

FIG. 2. Transmission probability T versus the incident energy E (in units of 
1ε ) in the resonant case (γ =0, 12 εεω −= ) with ε = 0.8, ω = 1 and l =39. 

 Fig. 2 represents the calculated transmission probability versus the total 
energy E in the resonant case (γ = 0, 12 εεω −= ) with ε = 0.8 and ω = 1. 
We clearly see that a step raising of transmission occurs at energy 

=+= 21 ξεE 1.4. This interesting phenomenon can be explained by the 
field-induced inter-sub-band transition [11]. When an electron penetrate 
through the interface, the transverse levels of the electron in the field 
illuminated region are dressed and one electron mode is split into the two 
time-dependent modes with the longitudinal momentum +q  and −q , 
respectively. When 21 ξε +<E , +q  is imaginary and its corresponding 
mode is an evanescent mode which contributes nothing to the transmission 
so that the total transmission probability is suppressed to an half value. 
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Further, when 21 ξε +>E  the both modes become propagating and all 
contribute to the transmission. 
 We also note that there is some resonance oscillations on the transmission 
spectrum in Fig. 2. These oscillations are physically from the interference of 
the forward and backward going electron waves induced by the two 
interfaces of the illuminated region along the transport direction. 

FIG. 3. Transmission probability T versus the mode coupling ξ with E = 1.5 1ε , 
the system parameters are the same as in Fig. 2. 

 Next, we consider the calculated T as function of a mode coupling ξ for 
resonant frequency case and energy of E = 1.5 1ε . From Fig. 3, we see that 
the transmission probability T have a step dropping at point ξ = 1. However, 
it shows apparently coherence pattern. When ξ > 1 the mode corresponding 
to +q  becomes an evanescent one so that total transmission probability is 
suppressed to around 0.5. However, when ξ < 1 the both two modes are 
propagating and the total transmission is the coherence superposition of 
these two modes. 

In general for a fixed electron incident energy, a different combinations of 
the field parameters (i.e. ωεξ = ) results in a different transmission 
dependence.  

CONCLUSION: 

  We have theoretically investigated the electron transport properties for a 
straight semi-conductor quantum wire partially illuminated by an external 
THz EM field in the ballistic limit. Within the effective free-electron 
approximation, a single-particle time-dependent Schrödinger equation was 
established and the scattering matrix for the system was formulated. The 
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numerical examples predicate that a step arising on the transmission 
probability versus the electron incident energy and mode coupling occurs in 
the case of the field frequency resonant with the lateral energy spacing of 
the two lowest levels. The physical origin is mainly the coherent field-
induced inter-sub-band transition. 

 Therefore, from the results of this work we conclude that parameters E, ω, 
and ε can control the characteristics of electron transmission in a quantum 
wire. These effects may be useful for understanding basic physics of nano-
structures and for micro-electronic devices. 
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