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Abstract 

Quantum nanostructures (QNSs), due to their widespread and attractive physical, optical, and electronic properties, have been at 
the center of attention of many nanoscience and nanotechnology researches. In order to predict the electro-mechanical behavior 
of QNSs, accurate determination of the electro-elastic fields induced by quantum wells (QWs), quantum wires (QWRs), and 
quantum dots (QDs) in such nanostructures would be of great importance and particular interest. In this study, by utilization of 
the electro-mechanical eigenfield concept in conjunction with the Fourier series technique, an analytical solution is presented 
which gives the electro-elastic fields induced by one-, two-, and three-dimensional periodic distribution of QWs, QWRs, and 
QDs, respectively. This methodology takes into account the electro-mechanical couplings of elastic and electric fields within the 
piezoelectric barrier as well as the interaction between periodically grown QWRs and QDs. The latter would be so important 
since the density of the periodically grown QNSs will have significant effects on the induced electro-elastic fields within both the 
QNSs and the surrounding barrier; this issue is addressed precisely in the present study by measuring the induced electro-elastic 
fields due to different periodicities of pyramidal QDs. Furthermore, the current formulation is capable of treating arbitrary 
geometries of QWRs and QDs which makes the solution more interesting and powerful. 
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1. Introduction 

As the applications of quantum nanostructures (QNSs) have been considerably increased in recent decades due to 
their interesting optical and physical specifications, these nanostructures have attracted the attention of lots of 
scientific and technological researches in various fields. QNSs including quantum wells (QWs), quantum wires 
(QWRs), and quantum dots (QDs) have been widely utilized in microelectronic devices especially in light emitting 
diodes (LEDs), laser diodes, solar cells, and memory capacitors. Furthermore, interesting properties of QNSs have 
made them so valuable for bioengineering and biomedical applications especially in labeling and tracking cells and 
genes for cancer diagnosis among many different applications. In studying and utilization of QNSs for many of the 
mentioned applications, determination of their electro-mechanical behavior as well as their internal electro-elastic 
fields is of particular interest, rundmann et al. (1995); Bimberg et al. (1999). The internal electro-elastic fields within 
QNSs arises from the initial lattice mismatch between QWs/QWR/QDs and their surrounding barrier, Singh (1993). 
This initial lattice mismatch induces elastic fields as well as electric fields within both the QNSs and the 
piezoelectric barrier.  

The electro-elastic fields of QNSs have been investigated by many researchers in recent years. For instance, the 
analytic forms for the elastic fields of a single spherical QD within a purely elastic and isotropic medium have been 
proposed by Grundmann et al. (1995); they have also studied the more complicated case of a single pyramidal QD 
by employing finite element analysis. Faux and Pearson (2000) based on an expansion of the strain Green’s tensor, 
provided an analysis for QDs within anisotropic elastic media. Shodja and Rashidinejad (2014) presented analytical 
formulations for accurate determination of the electro-elastic fields of interacting functionally graded QNSs with 
arbitrary shapes and general anisotropy within piezoelectric media. The interaction between QWs/QWRs/QDs is an 
important issue in determination of the induced electro-elastic fields since QNSs are usually grown with high 
densities and periodic distributions to enhance their performance. Periodically grown QNSs have been observed by 
many researchers via transmission electron microscopy (TEM) images, Bimberg et al. (1999); Xu et al. (2007). 

The interaction effects of periodically grown QNSs and especially QD structures with different periodicities 
within a piezoelectric barrier have not been studied yet. In this paper, an analytical methodology pertinent to 
determination of the induced electro-elastic fields of periodically grown QNSs is given and subsequently, effects of 
the distance of QNSs and their periodicities on the induced piezoelectric fields are studied and explained. For this 
reason, periodically grown pyramidal QDs which are the most common geometry between many possible shapes of 
QDs, have been considered and the effects of their distribution periodicity on the induced strain field have been 
accurately determined and illustrated. The results show that the induced fields may be remarkably affected when the 
period of the distribution become shorter and the adjacent QDs become closer to each other. 

2. Periodic distribution of quantum nanostructures 

Quantum nanostructures (QNSs) with one-, two-, and three-dimensional confinements known, respectively, as 
quantum wells (QWs), quantum wires (QWRs), and quantum dots (QDs) induce both elastic and electric fields 
within themselves and the surrounding piezoelectric barrier. These electro elastic fields arise due to the lattice 
mismatch between the QNSs and the piezoelectric barrier. The lattice mismatch of QNSs grown within a 
piezoelectric barrier is usually modeled as an initial strain field within the QNSs as described by Bimberg et al. 
(1999) and Shodja and Rashidinejad (2014). Initial misfit strains within some sub-domains of an elastic or a 
piezoelectric medium can be considered as eigenfields which induce purely elastic or piezoelectric fields within the 
entire medium, Mura (1987), Shodja and Rashidinejad, (2014). The constitutive relations pertinent to a piezoelectric 
medium with arbitrary distribution of initial eigenstrain field, *ε  and eigenelectric field, *E  are given by 

* ,   , , , 1,2,3,ij ijkl kl kl kij kC e E i j k l  (1) 

*( ) ,   , , 1,2,3,j kj k k jkl klD E E e j k l  (2) 
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where σ , ε , D, and E are the stress, strain, electric displacement, and electric fields, respectively, and C, e, and 
κ  are, respectively, the elastic moduli, piezoelectric, and dielectric tensors. In addition, the equilibrium equations 
and charge equation of electrostatics in the absence of external body forces and charges are 

, 0,ij j   (3) 

, 0.j jD   (4) 

The strain and electric fields in (1) and (2) are written in terms of the derivatives of the elastic displacement field, 
u and electric potential field, , respectively, as 

, ,

1
,

2kl k l l ku u   (5) 

, .k kE   (6) 

Therefore, by virtue of Eqs. (1)-(6), the governing partial differential equations pertinent to a piezoelectric 
medium including some QNSs can be expressed in terms of the elastic displacement and electric potential fields and 
initial eigenstrain and eigenelectric fields as:  

*
, , , ,   , , , 1,2,3,ijkl k lj kij kj ijkl kl jC u e C i j k l  (7) 

 

*
, , , ,   , , 1,2,3.jkl k lj kj kj kj k je u E j k l  (8) 

By utilization of the electro-mechanical eigenfield concept as described by Shodja and Rashidinejad (2014), 
periodically distributed QNSs may be modeled as periodic distribution of eigenfields expressed in terms of Fourier 
series with periods 2L1, 2L2, and 2L3 in the x1-, x2-, and x3-directions, respectively, as 

* * exp . ,kl ij i
ξ

x ξ ξ x   (9) 

* * exp . ,k kE E i
ξ

x ξ ξ x   (10) 

where  

* *

1 2 3

1
exp . ,

8kl kl i d
L L L

ξ x ξ x x  (11) 

* *

1 2 3

1
exp . ,

8k kE E i d
L L L

ξ x ξ x x  (12) 
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1i , ξ  is the wave vector for given periods in different directions, and Ω  is the volume of the QNS in a 

single period. Hence, due to the periodic nature of the problem, the elastic displacement and electric potential fields 

take on the series form  

exp . ,k ku u i
ξ

x ξ ξ x   (13) 

exp . .i
ξ

x ξ ξ x   (14) 

Substituting (9), (10), (13), and (14) into the governing partial differential equations (7) and (8) results in 
deriving the following governing equations in the Fourier space as 

* ,ijkl l j k kij k j ijkl j klC u e iCξ ξ ξ  (15) 

* ,jkl l j k kj k j kj j ke u i Eξ ξ ξ  (16) 

for the Fourier coefficients of the elastic displacement and electric potential fields. Subsequently, the components 
of the coefficients matrix corresponding to the linear system of algebraic equations (15) and (16) are defined as: 

,ik ki ijkl l jK K C   (17) 

4 4 ,i i kij k jK K e   (18) 

44 kj k jK   (19) 

Now by simultaneous solution of the equations (15) and (16), the elastic displacement and electric potential fields 
can be obtained in the series form as 

* * 1
4[ ] exp . ,i jklm k lm ij kj j k iu i C N E N D i

ξ

x ξ ξ ξ ξ ξ ξ x  (20) 

* * 1
4 44[ ] exp . ,jklm k lm j kj j ki C N E N D i

ξ

x ξ ξ ξ ξ ξ ξ x  (21) 

in which Nij
ξ

, i,j=1,2,3,4  and D ξ  are the cofactors and determinant of the 4×4 matrix 
K ξ

. Eqs. (20) 

and (21) provide the coupled electro-mechanical induced fields within a piezoelectric barrier in which the QNSs are 

periodically grown. After obtaining the mechanical displacement and electric potential fields via Eqs. (20) and (21), 

the strain and electric fields will be calculated from (5) and (6) and subsequently, Eqs. (1) and (2) can be utilized to 

obtain the stress and electric displacement fields. In the next section, by employment of the presented formulations, 
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the induced electro-elastic fields due to periodically grown pyramidal QDs with different periodicities will be 

calculated and discussed. 

3. Periodically grown pyramidal QDs: studying the effects of periodicity of the distribution 

QDs with pyramidal geometries grown periodically via Stranski-Krastanov growth mode or molecular beam 
epitaxy (MBE) have been observed and studied by many investigators such as Bimberg et al. (1999) and Xu et al. 
(2007). Due to the lattice mismatch of the QDs and surrounding barrier, periodic distribution of QDs will induce 
electro-elastic fields within the QDs as well as the surrounding piezoelectric barrier. Since accurate determination of 
the electro-elastic fields in QNSs is a substantial issue for employment of these structures in optoelectronic and 
microelectronic devices, the present section is devoted to studying the induced electro-elastic fields in QNSs 
consisting of periodic distribution of pyramidal QDs with various periodicities. Short periodicities correspond to 
high-density QD structures while long periods refer to low-density ones. In order to study the effects of the density 
of QD structures, periodic distribution of square-based pyramidal QDs with base length of 20 nm and height of 5 nm 
is assumed (see Bimberg et al. (1999)). The QDs and the piezoelectric barrier are assumed, respectively, as indium 
nitride and aluminium nitride for which the material constants are given by Shodja and Rashidinejad (2014). The 
square-bases of pyramidal QDs are considered to be within or parallel to x1-x2 plane while their altitudes coincide 
with the axis of rotational symmetry and polarization of the piezoelectric barrier. The x1-x2 coordinates are located 
at the center of the square-base of one of the pyramids such that x1 and x2 axes are parallel or perpendicular to the 
edges of the QDs passing through the centers of other square-bases of pyramids in x1 and x2 QD arrays. Three 
different periods of 100 nm, 50 nm, and 30 nm in all the three directions are considered for periodic distribution of 
pyramidal QDs. It should be noted that the present formulation is capable of treating the problems in which periods 
in different directions are not equal. The initial misfit strain components distributed within the QDs are given by 
Jogai (2001) as 

* 0.14 .ij ijx   (22) 

Associated to the described distributions of pyramidal QDs, the Fourier coefficients of the initial misfit strains 
within QDs can be obtained as 

3

*
3

1 2

1 2 1 2 1 2 3

2 2
1 2 3

1 2 1 2 1 2 3

2 2
1 2 3

5i
1 2 3

22 2 2 2 2 4
1 2 1 2 3 3

0.14 
 
4  ξ ξ

2Sin 10 iCos 10

4

2Sin 10 +iCos 10

4

16ie

16 8

(

)

ij
ij L

ξ

 (23) 

in which 2L indicates the period corresponding to each of the considered three different periodicities. By 
substituting Eq. (23) into Eqs. (20) and (21) and then using Eqs. (1), (2), (5) and (6), the coupled electro-elastic 
fields due to periodic distribution of pyramidal QDs with different periodicities can be determined. For 
demonstration, the variations of the strain component ε11 along x1-axis is shown in Fig. 1 for three different periods 
of 2L=100 nm, 2L=50 nm, and 2L=30 nm. It should be noticed that due to the symmetry in geometry and electro-
mechanical properties of the problem, variations of the strain component ε22 along x2 would be the same as those of 
ε11 along x1. These variations interestingly reflect that periodic distribution of QDs may highly affect the electro-
elastic fields within the QDs as well as the surrounding barrier. Effects of the periodically distributed QDs on the 
induced electro-elastic fields will be more significant for shorter periodicities; this occurs as a result of interactions 
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between the quantum structures. Moreover, it can be observed that as the period of the distribution becomes shorter, 
the strain component ε11 within the QD regions will decrease while the absolute value of the strain component ε11 
increases at the point within the surrounding barrier. It is clearly seen that in contrast to the periods of 100 nm and 
50 nm, for the period of 2L=30 nm the strain component within the surrounding barrier never experiences small 
values. Interestingly, increasing the density of the quantum structures by decreasing the periodicity of their 
distribution leads to more considerable influence on the electro-elastic fields within the surrounding barrier in 
comparison with the quantum structures. A maximum change of 53 percent in the strain component ε11 occurs 
within the pyramidal quantum dots near the boundaries when the period of the distribution decreases from 100 nm to 
30 nm. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Variations of the total strain component ε11 along x1-axis for three different periods of 100 nm, 50 nm, and 30 nm. 

 

4. Conclusions 

An analytical formulation for accurate determination of the electro-elastic fields induced in QNSs is given and 
effects of periodicity of the pyramidal QDs on the induced fields are studied and discussed. The interactions of 
QNSs as well as the electro-mechanical couplings of the piezoelectric barrier are exhibited. The strain field of 
periodically distributed pyramidal QDs and the effects of their periodicity are studied which is of great value in 
design of QNSs. A maximum relative difference of approximately 53 percent in the stain component ε11 near the 
boundaries of periodically grown pyramidal QDs with periods of 30 nm and 100 nm is captured. It has been shown 
that for pyramidal QDs with base length of 20 nm, when the period of distribution is 50-100 nm the strain field 
component within the surrounding barrier experiences small values while the absolute value of the strain field 
component within the surrounding barrier does not decrease considerably for the period of 30 nm. As demonstrated, 
periodicity of distribution of the periodically grown pyramidal QDs affects the induced electro-elastic fields 
significantly and therefore, knowledge of the density of periodically grown QNSs would be of great importance in 
design and application of such structures. 
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