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Abstract

The Segal-Bargmann transform is a unitary map between the Schrödinger and the Fock space,
which is e.g. used to show the integrability of quantum Rabi models. Slice monogenic functions
provide the framework in which functional calculus for quaternionic quantum mechanics can be de-
veloped. In this paper, a generalisation of the Segal-Bargmann transform to the context of slice
monogenic functions is constructed and studied in detail. It is shown to interact appropriately with
the recently constructed slice Fourier transform. This leads furthermore to a construction of a slice
Fock space, which is shown to be a reproducing kernel space.
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1 Introduction

In quantum mechanics, the Segal-Bargmann transform [4, 5, 23] is a well-known unitary map between
the Schrödinger space and the Fock space. The Schrödinger space (the space of wavefunctions) is denoted
mathematically as the space L2(R) of square integrable functions. The Fock space, see e.g. [25], is a
suitable closure of the space of holomorphic polynomials (where one can identify the monomial zk with
the ket |k〉). Recently the Segal-Bargmann transform gained renewed interest as it allowed for showing
the integrability of quantum Rabi models, see the celebrated paper [6] as well as [22, 24]. It is moreover
interesting to note that the Segal-Bargmann transform interacts nicely with the Fourier transform, see
[15] or the subsequent Proposition 4.

In recent years, there has equally been a lot of interest in the theory of slice monogenic functions
([16, 12, 13]). The main object of study in this theory is a new class of functions, called slice monogenic
or hyperholomorphic functions, which are Clifford algebra valued null-solutions of a generalised Cauchy-
Riemann [9] or Dirac [8] operator. They are especially promising for the study of quaternionic quantum
mechanics (see the book [1]). Indeed, a crucial problem in the study of quaternionic versions of quantum
mechanics is to find a suitable definition for the spectrum of an operator on a quaternionic Hilbert space
and to establish a mathematically sound framework of functional calculus. This was recently solved in
an extended series of papers on functional calculus for slice functions (without claiming completeness, we
refer to e.g. [10, 11, 13, 17, 3]).

Although several papers have recently dealt with Clifford algebra valued extensions of the Segal-
Bargmann transform or of Fock spaces, see [19, 20, 21, 2, 14], such extensions have not yet been considered
in full generality in the context of slice monogenic functions. Given the fact that a suitable slice Fourier
transform was constructed in [7], a natural question is whether it has an accompanying Segal-Bargmann
transform.
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The aim of our paper is therefore to introduce and study a slice Segal-Bargmann transform. It
yields a generalisation of the Segal-Bargmann transform to the context of the slice Dirac operator of
[8], that interacts appropriately with the slice Fourier transform of [7]. It turns out that this is possible
because of the appearance of the osp(1|2) Lie superalgebra, realised by the already mentioned slice Dirac
operator. We expect that the slice Segal-Bargmann transform might play a role to study the integrability
of quaternionic versions of certain quantum systems such as Rabi models.

The paper is organised as follows. Section 2 of this paper lists some preliminary results on the classical
Segal-Bargmann transform and Fock space, as well as on the theory of slice monogenic functions in order
to make this paper self-contained. Section 3 shows how these results can be used to construct a slice
Fock space. Based on this reasoning, the slice Segal-Bargmann transform is defined in Section 4. Also its
explicit expression is used to study the properties of the basis elements of the slice Fock space. In Section
5 this space is endowed with an inner product and an orthonormal basis is constructed. Section 6 further
examines the slice Segal-Bargmann transform by constructing its inverse and studying its action on the
slice Fourier transform. Finally, it is shown that the slice Fock space is a reproducing kernel space.

2 Preliminaries

This preliminary section contains some general background on the classical Segal-Bargmann transform
and the slice approach in Rm+1. Also it briefly summarises the definitions and properties of the Clifford-
Hermite functions as defined and proved in [8].

2.1 Classical Segal-Bargmann transform and Fock space

This section gives an introduction to both the classical Segal-Bargmann transform and the corresponding
Fock space (see [4, 5, 23, 25]).

Definition 1. The Fock space F is the Hilbert space of entire functions f on C for which∫
C
f(z)f(z) exp(−zz)dz < +∞,

where dz = dxdy with z = x+ iy. It is endowed with the inner product

〈f, g〉F =

∫
C
f(z)g(z) exp(−zz)dz ∀f, g ∈ F.

Proposition 1. An orthonormal basis for the Fock space is given by the monomials{
em(z) =

zm√
m!

}
.

Moreover we have the following proposition

Proposition 2. The Fock space F is a reproducing kernel space of which the reproducing kernel is given
by KF = exp (zw).

Now the classical Fock space has been introduced, we can address the Segal-Bargmann transform,
which will be shown to map the L2(R)-space onto it.

Definition 2. The Segal-Bargmann transform B : L2(R)→ F of a function f is given by

B[f ](z) =
1
4
√
π

∫
R
f(x) exp

(
−z

2 + x2 − 2
√

2zx

2

)
dx.

The Segal-Bargmann transform has the following properties:
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Proposition 3. One has (
z +

d

dz

)
B[f ](z) =

√
2 B[xf(x)](z)

√
2z B[f ](z) = B

[(
x− d

dx

)
f(x)

]
(z)

Corollary 1. The Segal-Bargmann transform B maps the dimensionless raising and lowering operators

a† =

(
x− d

dx

)
and a =

(
x+

d

dx

)
on L2(R) onto the respective raising and lowering operators

b† =
√

2 z and b =
√

2
d

dz

on the Fock space.

Therefore the Segal-Bargmann transform of the normalised Hermite functions

ψn(x) =
1√

2nn!
√
π

(
x− d

dx

)n
exp

(
−x

2

2

)
is given by

B

[
1√

2nn!
√
π

(
x− d

dx

)n
exp

(
−x

2

2

)]
(z) =

zn√
n!
√
π
B

[
exp

(
−x

2

2

)]
=

zn√
n!

because B[exp(−x2/2)] = π1/4. These are exactly the normalised basis functions en of the Fock space.
Given that the Segal-Bargmann transform maps the basis of L2(R) on the basis of F , it is a natural
question to ask whether also an inverse transform exists.

Definition 3. The inverse Segal-Bargmann transform B−1 : F → L2(R) of a function g is given by

B−1[g](z) =
1

π 4
√
π

∫
C
g(z) exp

(
−z

2 + x2 − 2
√

2zx

2

)
exp (−zz) dz,

where dz = dxdy and . denotes the complex conjugation.

We end this section on the Segal-Bargmann transform B by addressing its behaviour with respect to
the Fourier transform F .

Definition 4. The Fourier transform F of a function f ∈ L1(R) is defined as

F(f)(y) =
1√
2π

∫
R
e−ixyf(x)dx.

It is well known that the Fourier transform can be extended to L2(R) and that it maps the Hermite
functions ψn onto complex multiples of themselves, as to

Fψn = (−i)nψn.

Performing the Segal-Bargmann transform on both sides of this equation, we obtain the following propo-
sition.

Proposition 4. The operator on the Fock space F corresponding to the Fourier transform on L2(R) is
given by

G : F → F : g(z) 7→ g(−iz).
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We thus have the following commutative diagram:

L2(R) L2(R)

F F

B

F

G

B−1

2.2 Slice approach in Rm+1

The (m + 1)-dimensional real Clifford algebra Clm+1 has m + 1 basis vectors ei, i = 0, . . . ,m, which
satisfy the anti-commutation relations

eiej + ejei = −2δij , i, j = 0, . . . ,m.

A k-vector (where k ≤ m+ 1) is an element eA of Clm+1 such that eA = ei1 . . . eik where ij ∈ {0, . . . ,m}
for all j ∈ {1, . . . , k} and with i1 < . . . < ik. The variable x ∈ Clm+1 is defined as the 1-vector which
corresponds to the (m+ 1)-tuple (x0, . . . , xm) ∈ Rm+1 by

x = x0e0 + x1e1 + . . .+ xmem.

Using spherical coordinates to describe the Clm-part x of x, one can also write

x = x0e0 + x

= x0e0 + rω,

where r =
√
x2

1 + . . .+ x2
m and ω = x/r. A general element x is thus defined by the triplet (x0, r, ω) ∈

R × R+ × Sm−1, where Sm−1 denotes the (m − 1)-dimensional sphere in Rm. The variable x therefore
lives in the subspace spanned by the fixed basis vector e0 and the unit 1-vector ω. This subspace is called
a slice, referring to the slice concept used in literature (see e.g. [12] and the book [13]).
As a consequence, a general function f of x will depend on x0, r and ω. Throughout this article such
functions f will be written both as f(x) and as f(x0, r, ω) because the former is more compact and
the latter shows its dependencies explicitly. Based on considerations in [9], the following definition was
proposed in [8].

Definition 5. The slice Dirac operator D0 is the partial differential operator defined as

D0 = e0∂x0 + ω∂r.

Given that −e0D0 corresponds to the slice Cauchy-Riemann operator, null-solutions of D0 correspond
to slice monogenic functions as studied in e.g. [12, 16, 18]. Together with the multiplication operator
x and the slice Dirac operator D0, the Euler operator E =

∑m
i=0 xi∂xi

establishes a realisation of the
osp(1|2)-superalgebra, see [8].

Definition 6. The (complex) Clifford conjugation . is defined as

λ = λ∗ λ ∈ C
ei = −ei i = 0, . . . ,m.

ab = b a a, b ∈ Clm+1.

where ∗ denotes the standard complex conjugation.

Definition 7. The vector space L2 is defined as

L2 = L2(Rm+1, r1−mdx) ⊗ Clm+1

=

{
f : Rm+1 → Clm+1

[∫
Rm+1

f(x)f(x) r1−m dx

]
0

< +∞
}

where [ . ]0 denotes the scalar part of the expression between the brackets.

4



On L2 an inner product was defined.

Proposition 5. The vector space L2 is given the structure of a right Hilbert module by defining the inner
product of two functions f, g : Rm+1 → Clm+1 as

〈f, g〉 =
Γ
(
m
2

)
2πm/2

∫
Rm+1

f(x)g(x) r1−m dx =
Γ
(
m
2

)
2πm/2

∫
Rm+1

f(x)g(x) dx0drdσx

where dσx denotes the measure on the unit sphere Sm−1 corresponding to the x-part of x. This inner
product obeys the relations

〈D0f, g〉 = 〈f,D0g〉,
〈xf, g〉 = −〈f,xg〉

on a dense subset of L2.

2.3 The Clifford-Hermite functions

Based on the classical definitions, the Clifford-Hermite polynomials and functions are defined using the
kernel of the differential operator D0 and the osp(1|2)-relations.
In [8] it was shown that the polynomial kernel of D0 is a right Clm+1-module which is spanned by the
homogeneous polynomials mk(x) = (e0 − 1) (x0 + x)k of degree k ∈ N.

Definition 8. The Clifford-Hermite polynomials hj,k of degree j and order k are defined as

hj,k(x)mk(x) = (x− cD0)jmk(x)

where c ∈ R+
0 and j ∈ N.

The parameter c adds some freedom to the definition. In order not to overload notation, however, its
presence will not be denoted explicitly. We briefly summarise the most important properties of these
polynomials (see [8]).

Theorem 1. The polynomials Hj(mk)(x) = hj,k(x)mk(x) are solutions of the differential equation

cD2
0Hj(mk)(x)− xD0Hj(mk)(x) + C(j, k)Hj(mk)(x) = 0

with C(j, k) = −2t if j = 2t and C(j, k) = −2(k + t+ 1) if j = 2t+ 1.

Based on explicit expressions of the Clifford-Hermite polynomials hj,k in terms of Laguerre polynomials,
Clifford-Hermite functions ψj,k are defined and their main properties are summarised as well.

Definition 9. The Clifford-Hermite functions ψj,k are defined as

ψ2t,k(x) = (2c)tt! Lkt

(
|x|2

2c

)
mk(x) exp

(
−|x|2/4c

)
ψ2t+1,k(x) = (2c)tt! x Lk+1

t

(
|x|2

2c

)
mk(x) exp

(
−|x|2/4c

)
where c ∈ R+

0 is the same parameter as in Definition 8 and Lkt are the generalised Laguerre polynomials
of degree t and order k on the real line.

Proposition 6. The Clifford-Hermite functions ψj,k satisfy the relations{
ψj,k = D̃cψj−1,k

D̃c
†
ψj,k = −c C(j, k)ψj−1,k

(1)

with D̃c = x
2 − cD0, C(j, k) as in Theorem 1 and where .† denotes the adjoint with respect to the inner

product of Proposition 5.
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Theorem 2. The Clifford-Hermite functions ψj,k are solutions of the scalar differential equation(
cD2

0 +
|x|2

4c

)
ψj,k(x) = (j + k + 1) ψj,k(x). (2)

Definition 10. The set of right finite linear combinations of Clifford-Hermite functions over Clm+1 will
be denoted as V, so V = spanCl{ψj,k} and V ⊂ L2.

In [7] the slice Fourier transform is defined as follows:

Definition 11. The slice Fourier transform of a function f ∈ V is given by

FS(f)(y) =
−iΓ

(
m
2

)
8cπm/2+1

∫
Rm+1

[
(1 + ηω)e−

i
2c (x0y0−rg) + (1− ηω)e−

i
2c (x0y0+rg)

]
f(x) dx0drdσx

with x = x0e0 + rω and y = y0e0 + gη.

3 Towards a slice Fock space

The classical one-dimensional Segal-Bargmann transform B maps square integrable functions f ∈ L2(R)
into the classical Fock space F(C) (see [4, 5]). Requiring the slice Segal-Bargmann transform to exhibit
analogous behaviour with respect to the Clifford-Hermite functions and a slice analogue of the Fock space,
we should first obtain an appropriate basis for the latter. To do so, we will write the Clifford-Hermite
functions in terms of raising operators and assume the slice Segal-Bargmann transform to treat these
operators as in the classical case.

The purpose of this section is thus to express the Clifford-Hermite functions ψj,k in terms of raising

operators only. According to Proposition 6 the operator D̃c = x
2 − cD

x
0 is a raising operator for the first

index j of the Clifford-Hermite functions ψj,k: its action raises the first index by one. Therefore, only
two issues remain to be solved in order to build an appropriate basis for the slice Fock space:

• first, we lack a raising operator for k, the second index of ψj,k,

• second, the operator D̃c depends on both x0 and r whereas the behaviour of the transform as
described above is one-dimensional.

The first problem asks for which operator D̃c,k the equality ψ0,k+1 = D̃c,kψ0,k with k = 0, 1, 2 . . . is
fulfilled and will be addressed in the section at hand. To solve the second problem, we will introduce
an alternative basis {φn1,n2

} for the L2-space which will allow us to construct a basis for the slice Fock
space in Section 5.

Lemma 1. One has
ψ0,k+1 = D̃c,kψ0,k

with
D̃c,k = −e0D̃c.

Consequently, D̃c,k does not depend on the integer k.

Proof. Given that

ψ0,k = (e0 − 1)(x0 + rω)k exp

(
−|x|

2

4c

)
the raising operator D̃c,k for the index k of ψ0,k has to be such that

ψ0,k+1 = D̃c,kψ0,k = −1

2
(e0 − 1)(x0 + rω)(e0 + 1)ψ0,k = −e0xψ0,k.
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With respect to the raising operator for j we have

D̃c

[
mk(x) exp

(
−|x|

2

4c

)]
=

(
x

2
ψ0,k(x)− cDx

0 [mk(x)] exp

(
|x|2

4c

)
+

x

2
ψ0,k(x)

)
= xψ0,k(x)

because the polynomials mk span the kernel of D0. Hence D̃c,k = −e0D̃c, and the proof is complete.

Remark 1. Some caution has to be taken when using the expression ‘raising operator with respect to k’
because this operator only raises the second index when it is applied to ψ0,k. When the first index is not

zero, Proposition 6 yields −e0D̃cψj,k = −e0ψj+1,k.

Corollary 2. One has

ψj,k(x) =
(x

2
− cDx

0

)j [
−e0

(x

2
− cDx

0

)]k
(e0 − 1) exp

(
−|x|

2

4c

)
.

Proof. The successive application of Proposition 6 and the above Lemma 1 prove this corollary.

Theorem 3. The basis elements ψj,k of the L2-space can be written as specific, Clifford-valued combi-
nations of the real-valued functions

φn1,n2(x0, r) =
[(x0

2
− c∂x0

)n1
(r

2
− c∂r

)n2
]

exp

(
−|x|

2

4c

)
.

Proof. Based on Corollary 2 and the fact that

x

2
− cDx

0 = e0

(x0

2
− c∂x0

)
+ ω

(r
2
− c∂r

)
the binomial theorem yields

ψj,k(x0, r) =
∑
n1,n2

n1+n2=j+k

an1,n2(ω)
[(x0

2
− c∂x0

)n1
(r

2
− c∂r

)n2
]

exp

(
−|x|

2

4c

)
.

where the coefficients an1,n2
are specific, Clifford-valued combinations of 1, e0, ω and e0ω. This proves

the theorem.

4 Slice Segal-Bargmann transform

As was demonstrated in Theorem 3 of the previous section, the Clifford-Hermite functions can be ex-
pressed in terms of classical two-dimensional Hermite functions in the variables x0 and r.

For the classical Hermite functions, the operators x0

2 − c∂x0
and r

2 − c∂r in Theorem 3 act as raising
operators for the indices n1 and n2 of φn1,n2 , respectively. A logical requirement for the slice Segal-
Bargmann transform SB would thus be to transform these operators to respective complex variables z1

and z2, acting as multiplication operators on the slice Fock space.
This already suggests the following notation:

Definition 12. In the complexified setting the following notations will be used:

z = z1e0 + z2ζ = (x1e0 + x2ζ) + i(y1e0 + y2ζ)

and

Dz
0 = e0∂z1 + ζ∂z2 ,
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where ζ ∈ Sm−1 and ∂z` , ` ∈ {1, 2} denotes the classical Cauchy-Riemann operator with respect to z`, so

∂z` =
1

2
(∂x`
− i∂y`) .

Finally, |z|2 is a shorthand notation for |z1|2 + |z2|2 = x2
1 + x2

2 + y2
1 + y2

2 so |z|2 ∈ R. Mind that
|z|2 6= zz = |z1|2 + |z2|2 + (z2z1 − z1z2)e0ζ 6∈ R.

Based on Corollary 2, Definition 12, and the above reasoning, we propose the following expression for
the elements ϕj,k spanning the slice Fock space.

Definition 13. The monomials ϕj,k spanning the slice Fock space FS are defined as

ϕj,k(z) = zj(−e0z)k(e0 − 1)

=
(
z1e0 + z2ζ

)j [−e0

(
z1e0 + z2ζ

)]k
(e0 − 1) (3)

with z` = x`+ iy`, where ` ∈ {1, 2}, x` and y` are real and i denotes the classical complex unit commuting
with all basis elements ej , j ∈ {0, . . . ,m}.

In the classical case the exponential factor in the Hermite functions is mapped onto a constant function
so this behaviour has been assumed here as well.

Corollary 3. One has

ϕj+1,k(z) = zϕj,k(z)

ϕ0,k+1(z) = −e0zϕ0,k(z).

Proof. This follows from the definition of ϕj,k.

The operator z thus acts as a raising operator with respect to the first index of ϕj,k.

Lemma 2. The differential operator Dz
0 = e0∂z1 + ζ∂z2 acts as a lowering operator with respect to the

first index of the monomials ϕj,k and one has

Dz
0ϕj,k(z) = C(j, k)ϕj−1,k

with C(j, k) as in Theorem 1.

Proof. Using the definition of the monomials ϕj,k for j = 2t, one obtains

Dz
0ϕ2t,k(z) =

(
e0∂z1 + ζ∂z2

) [(
−z2

1 − z2
2

)t [−e0

(
z1e0 + z2ζ

)]k
(e0 − 1)

]
=e0(−2tz1)

[(
−z2

1 − z2
2

)t−1 [(
z1 − z2e0ζ

)]k
(e0 − 1)

]
+ ke0

[(
−z2

1 − z2
2

)t [(
z1 − z2e0ζ

)]k−1
(e0 − 1)

]
+ ζ(−2tz2)

[(
−z2

1 − z2
2

)t−1 [(
z1 − z2e0ζ

)]k
(e0 − 1)

]
− kζe0ζ

[(
−z2

1 − z2
2

)t [(
z1 − z2e0ζ

)]k−1
(e0 − 1)

]
=− 2t(z1e0 + z2ζ)

[(
−z2

1 − z2
2

)t−1 [(
z1 − z2e0ζ

)]k
(e0 − 1)

]
=− 2tϕ2t−1,k(z),

which proves the lemma for even j. An analogous calculation proves the statement for j = 2t+ 1.
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4.1 Explicit expression

As we are searching for an integral transform which maps the Clifford-Hermite functions ψj,k onto the
polynomials ϕj,k, we can establish a system of partial differential equations the kernel function KSB has
to obey. Writing

SB(ψj,k)(z) =

∫
Rm+1

KSB(x, z)ψj,k(x) dx0drdσx,

where z denotes z1e0 + z2ζ, the kernel function must be such that the raising and lowering operators for
the Clifford-Hermite functions are mapped on the raising and lowering operators for the monomial basis
of the Fock space as given in Corollary 3 and Lemma 2.
Keeping in mind the properties of the inner product on L2 (see Proposition 5), one obtains the following
partial differential system: {[

KSB(x, z)
(
x
2 + cDx

0

)]
= zKSB(x, z)[

KSB(x, z)
(
x
2 − cD

x
0

)]
= cDz

0KSB(x, z)
(4)

or, equivalently, {
KSB(x, z)x = (z + cDz

0)KSB(x, z)

2c
[
KSB(x, z)Dx

0

]
= (z− cDz

0)KSB(x, z)
.

Mind that the square brackets denote the differential operator is acting from the right, as the Clifford
multiplication is non-commutative. Based on the latter partial differential system and the particular
structure of the kernel function KM of the slice Fourier transform FS as defined in Definition 11, the
following expression for KSB is proposed:

KSB(x, z) = A
Γ
(
m
2

)
2πm/2

exp

(
−|x|

2 − 4x0z1 + 2(z2
1 + z2

2)

4c

)
×
[
(1− ζω) exp

(rz2

c

)
+ (1 + ζω) exp

(
−rz2

c

)]
,

where the appropriate value for the constant A can be obtained by having a closer look at the transform
of ψ0,0. One gets

SB(ψ0,0)(z) =

∫
Clm+1

KSB(x, z)(e0 − 1) exp

(
−|x|

2

4c

)
dx0drdσx

= A 2c π (e0 − 1). (5)

Requiring SB(ψ0,0) to be equal to the Clifford-valued constant e0 − 1, we put A = 1/2cπ.

Definition 14. The slice Segal-Bargmann transform of a function f ∈ V is given by

SB(f)(z) =
Γ
(
m
2

)
4cπm/2+1

exp

(
−z

2
1 + z2

2

2c

)
×∫

Rm+1

exp

(
−|x|

2 − 4x0z1

4c

)[
(1− ζω) exp

(rz2

c

)
+ (1 + ζω) exp

(
−rz2

c

)]
f(x)dx0drdσx

with x = x0e0 + rω, z = z1e0 + z2ζ and z1, z2 ∈ C.

Theorem 4. The slice Segal-Bargmann transform is a linear integral transform which obeys

SB (xψj,k) = (cDz
0 + z)ϕj,k(z)

SB(2cDx
0ψj,k) = (cDz

0 − z)ϕj,k(z).
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Proof. The linearity of the slice Segal-Bargmann transform follows directly from the definition. In order
to prove these relations, we will write the above kernel function as a product of two commuting functions
KSB1 and KSB2 defined as

KSB1 (x0, z1) = exp

(
−x2

0 + 4x0z1 − 2z2
1

4c

)
KSB2 (x, z2) = exp

(
−r

2 + 2z2
2

4c

)[
(1− ζω) exp

(rz2

c

)
+ (1 + ζω) exp

(
−rz2

c

)]
.

In this proof the prefactor
Γ(m

2 )
2πm/2 is omitted since it is not affected by the statement of the lemma. With

respect to the first expression, we observe that

KSB1 (x0, z1)x0 = (c∂z1 + z1) exp

(
−x2

0 + 4x0z1 − 2z2
1

4c

)
and analogously KSB2 (x, z2)rω equals

(c∂z2 + z2) exp

(
−r

2 + 2z2
2

4c

)[
(ω + ζ) exp

(rz2

c

)
− (ω − ζ) exp

(
−rz2

c

)]
= ζ (c∂z2 + z2) exp

(
−r

2 + 2z2
2

4c

)[
(1− ζω) exp

(rz2

c

)
+ (1 + ζω) exp

(
−rz2

c

)]
.

Combining these results with the fact that KSB2 e0 = e0KSB2 yields∫
Rm+1

KSB1 (x0, z1)KSB2 (x, z2)(x0e0 + rω)ψj,k(x)dx0drdσx

= [z + cDz
0]

∫
Rm+1

KSB1 (x0, z1)KSB2 (x, z2)ψj,k(x)dx0drdσx,

which proves the first part of the lemma.
In an analogous reasoning we now investigate the action of the partial derivatives on KSB1 and KSB2 .

The former yields

∂x0KSB1 (x0, z1) =
(z1

c
− x0

2c

)
exp

(
−x2

0 + 4x0z1 − 2z2
1

4c

)
=

(
z1

c
− 1

2c
(c∂z1 + z1)

)
exp

(
−x2

0 + 4x0z1 − 2z2
1

4c

)
=

(
z1

2c
− 1

2
∂z1

)
KSB1

and ∂rKSB2 (x, z2)ω equals

exp

(
−r

2 + 2z2
2

4c

)[
(ω + ζ)

(z2

c
− r

2c

)
exp

(rz2

c

)
+ (ω − ζ)

(
−z2

c
− r

2c

)
exp

(
−rz2

c

)]
= ζ exp

(
−r

2 + 2z2
2

4c

)[
(1− ζω)

(
z2

c
− 1

2
∂z2

)
exp

(rz2

c

)
+(1 + ζω)

(z2

c
− r

2
∂z2

)
exp

(
−rz2

c

)]
= ζ

(
z2

c
− 1

2

(
∂z2 +

z2

c

))
exp

(
−r

2 + 2z2
2

4c

)[
(1− ζω) exp

(rz2

c

)
+ (1 + ζω) exp

(
−rz2

c

)]
= ζ

(
z2

2c
− 1

2
∂z2

)
KSB2 .
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When performing partial integration on the full integral expression of SB(Dx
0ψj,k), two m-dimensional

integrals show up of which the limiting values have to be calculated for x0 → ±∞ and for r going to 0
and +∞. However all four of the corresponding terms will disappear because, on the one hand,

lim
x0→∞

exp(−|x|2/4c) = lim
r→∞

exp(−|x|2/4c) = 0 (6)

and, on the other hand, ∫
Sm−1

ωψj,k(x0, 0, ω) dσx = 0 ∀j, k ∈ N (7)

because the functions

ψj,k(x0, 0, ω) = hj,k(x)mk(x) exp

(
−|x|

2

4c

)∣∣∣∣
r=0

do not depend on ω (see [8]). All remaining terms correspond to Equations (6) and (7) and we finally get∫
R×R+×Sm−1

KSB(x, z)(∂x0e0 + ∂rω)ψj,k(x)dx0drdσx

=

[
1

2
Dz

0 −
z

2c

] ∫
R×R+×Sm−1

KSB(x, z)ψj,k(x)dx0drdσx,

which proves the second part of the lemma.

Corollary 4. One has
SB(ψj,k)(z) = zj (−e0z)

k
(e0 − 1) = ϕj,k(z).

Proof. As was shown in the previous section, the Clifford-Hermite functions can be written as

ψj,k(x) =
(x

2
− cD0

)j [
−e0

(x

2
− cD0

)]k
(e0 − 1) exp

(
−|x|2

4c

)
.

By Theorem 4 and because KSB(x, z)e0 = e0KSB(x, z) it is straightforward to verify that

SB(ψj,k)(z) = zj (−e0z)
k
SB(ψ0,0)(z).

Putting A = 1/2cπ in (5) it follows that SB(ψ0,0)(z) = (e0 − 1), which proves the corollary.

Theorem 4 allows to transform several properties of the Clifford-Hermite functions to the slice Fock
space. In particular, the analogue of the scalar differential equation turns out to be a very intuitive
equality for the monomials ϕj,k

Corollary 5. The scalar differential equation
(
4c2D2

0 + |x|2
)
ψj,k(x) = 4c(j+k+1) ψj,k(x) is transformed

into
(zDz

0 +Dz
0z)ϕj,k(z) = −2(j + k + 1) ϕj,k(z).

Proof. Theorem 4 allows to write the action of the slice Segal-Bargmann transform on 4c2D2
0 + |x|2 as[

(cDz
0 − z)

2 − (cDz
0 + z)

2
]

= −2c(Dz
0z + zDz

0),

which proves the corollary.

Remark 2. Note that the scalar differential equation for the Clifford-Hermite functions reduces to a more
intuitive form on the slice Fock space. Indeed, given that zDz

0 +Dz
0z = −2(z1∂z1 + z2∂z2 + 1), the above

expression can be rewritten as E ϕj,k = (j+k)ϕj,k, where E denotes the Euler operator E = z1∂z1 +z2∂z2
which measures the degree of a homogeneous polynomial in z1 and z2.
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Corollary 6. The polynomials ϕj,k satisfy the following relations:

zDz
0 ϕj,k = C(j, k) ϕj,k

Dz
0z ϕj,k = C(j + 1, k) ϕj,k.

Proof. These relations follow from consecutive application of Corollary 3 and Lemma 2.

Remark 3. The scalar differential equation of Corollary 5 can also be retrieved by taking the sum of the
identities of Corollary 6.

5 Monomial basis of the slice Fock space

The purpose of this section is to prove the orthogonality of the monomials ϕj,k with respect to a well-
defined inner product. To do so we will thoroughly use the results of the previous sections.

5.1 Inner product

Inspired by the particular behaviour of the inner product 〈ψj1,k1 , ψj2,k2〉L2 of two Clifford-Hermite func-
tions, as to

〈ψj1,k1 , ψj2,k2〉L2 = 〈D̃cψj1−1,k1 , ψj2,k2〉L2

= 〈ψj1−1,k1 , D̃c
†
ψj2,k2〉L2

= −c C(j2, k2)〈ψj1−1,k1 , ψj2−1,k2〉L2 ,

where D̃c = x
2 − cD

x
0 and D̃c

†
= −x

2 − cD
x
0 denotes its adjoint with respect to the inner product, we

require the inner product 〈ϕj1,k1 , ϕj2,k2〉FS on the Fock space to establish an analogous property. For the
time being, we write this inner product as

〈ϕj1,k1 , ϕj2,k2〉FS =

∫
C×C×Sm−1

ϕj1,k1(z) ϕj2,k2(z) h(z) dz1dz2dσζ ,

where dzj = dxjdyj and h(z) denotes the weight function h(z1, z2, ζ) that has to be determined. From
Lemma 2 we know that Dz

0 acts as a lowering operator with respect to the index j of ϕj,k. The above
requirement therefore translates to the following proportionality

〈zϕj1−1,k1 , ϕj2,k2〉FS ∼ 〈ϕj1−1,k1 , D
z
0ϕj2,k2〉FS .

Given that a well-defined inner product has to be symmetric as well, the same should hold with respect
to the second argument:

〈ϕj1,k1 , zϕj2−1,k2〉FS ∼ 〈Dz
0ϕj1,k1 , ϕj2−1,k2〉FS .

Expressing both conditions with respect to the weight function h one obtains the following partial differ-
ential systems: {

z1h(z) = B∂z1h(z)

z2h(z) = B∂z2h(z)
and

{
B∂z1h(z) = z1h(z)

B∂z2h(z) = z2h(z),

where the proportionality factor B ∈ R remains to be fixed. Observing that these expressions are invariant
under complex conjugation, h should depend on |z1| and |z2| only. Inspired by the inner product on the
classical Fock space (see Definition 1), we propose the following weight function:

h(z) = A exp

(
|z1|2 + |z2|2

2B

)
,

where the constants A and B remain to be fixed. A straightforward calculation shows that this expression
satisfies all of the above partial differential equations. The constants can be fixed by requiring the
functions ψj,k with low indices j and k to be orthogonal. This end result yields the following definition.
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Definition 15. The inner product 〈f, g〉FS of two polynomials f, g : C × C × Sm−1 → Cm+1 in FS is
defined as

〈f, g〉FS =
1

cπ

Γ(m/2)

2πm/2

∫
C×C×Sm−1

f(z) g(z) e−|z|
2/c dz1dz2dσζ ,

where |z|2 = |z1|2 + |z2|2 and . denotes the complex Clifford conjugation.

Corollary 7. One has 〈e0f, g〉FS = −〈f, e0g〉FS for all f, g ∈ FS.

Proof. This follows from the above definition of the inner product and the fact that e0f = f e0 =
−fe0.

Corollary 8. One has 〈f, g〉FS = 〈g, f〉FS for all f, g ∈ FS.

Proof. Taking the complex Clifford conjugation of the definition of the inner product proves the corollary.

Theorem 5. The inner product 〈f, g〉FS of two polynomials f, g ∈ FS satisfies

〈f,−cDz
0g〉FS = 〈zf, g〉FS

〈−cDz
0f, g〉FS = 〈f, zg〉FS

Proof. Putting z` = x` + iy` for ` = 1, 2, one has

Dz
0 exp

(
−|z|

2

c

)
=

1

2

[
e0

(
−2z1

c

)
+ ζ

(
−2z2

c

)]
exp

(
−|z|

2

c

)
= −z

c
exp

(
−|z|

2

c

)
.

Performing partial integration on Dz
0 one gets

〈f,Dz
0g〉FS = − 1

cπ

Γ(m/2)

2πm/2

∫
C×C×Sm−1

f(z)Dz
0

[
exp

(
−|z|

2

c

)]
g(z) dz1dz2dσζ

where all the additional terms vanished because

lim
xi→±∞

f(z)g(z) exp

(
−|z|

2

c

)
= lim
yi→±∞

f(z)g(z) exp

(
−|z|

2

c

)
= 0

for i = 1, 2 and because f(z) only depends on z1 and z2. Putting things together, we finally obtain
〈f,Dz

0g〉FS = − 1
c 〈zf, g〉FS . The proof of the second equation is achieved by taking the Clifford conjuga-

tion of the above expression and performing partial integration on Dz
0 in the expression for 〈Dz

0f, g〉FS .

5.2 Orthogonality of the basis functions

Before proving the orthogonality of the full set of polynomials {ϕj,k}, the following lemma addresses the
specific case where j = 0.

Lemma 3. One has

〈ϕ0,k1 , ϕ0,k2〉FS = 2cπ(2c)k1k1!δk1k2 .

Proof. Combining Corollary 3, Corollary 7 and Corollary 6, one obtains

〈ϕ0,k, ϕ0,k〉FS = 〈−e0zϕ0,k−1, ϕ0,k〉FS = 〈zϕ0,k−1, e0ϕ0,k〉FS

= 〈zϕ0,k−1, zϕ0,k−1〉FS = −c〈ϕ0,k−1, D
z
0zϕ0,k−1〉FS

= −c C(1, k − 1)〈ϕ0,k−1, ϕ0,k−1〉FS = 2ck〈ϕ0,k−1, ϕ0,k−1〉FS

= . . .

= (2c)kk!〈ϕ0,0, ϕ0,0〉 = 2(2c)kk!(cπ)2

because a straightforward calculation yields 〈ϕ0,0, ϕ0,0〉 = 2(cπ)2.
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Now we can determine the inner product of two monomials ϕj1,k1 and ϕj2,k2 in the slice Fock space.
Different cases will be distinguished corresponding to the parity of j1 and j2.

Theorem 6. Let ϕji,ki(z) = zji [−e0z]ki(e0 − 1) for i = 1, 2. The inner product of these two monomials
ϕj1,k1 and ϕj2,k2 is given by

〈ϕj1,k1 , ϕj2,k2〉FS = B(j1, k1)δj1j2δk1k2

with

B(j1, k1) =

{
(2c)2t1+k1+1πt1!(t1 + k1)! j1 = 2t1,

(2c)2t1+k1+2πt1!(t1 + k1 + 1)! j1 = 2t1 + 1.

Proof. By Corollary 8 we can assume j1 ≥ j2. Using Corollary 3, Lemma 2 and Theorem 5, one has

〈ϕj1,k1 , ϕj2,k2〉FS = 〈zϕj1−1,k1 , ϕj2,k2〉FS

= −c〈ϕj1−1,k1 , D
z
0ϕj2,k2〉FS

= −c C(j2, k2)〈ϕj1−1,k1 , ϕj2−1,k2〉FS

= . . .

= (−c)j2C(j2, k2) . . . C(1, k2)〈ϕj1−j2,k1 , ϕ0,k2〉FS

where the third equality is due to Lemma 2.
If now j1 − j2 would be bigger than 0, this procedure could be repeated at least one more time, yielding
a factor C(0, k2) to show up. Given that C(j, k) = −j for even j, this additional factor would make the
inner product vanish.
The inner product of two monomials ϕj1,k1 and ϕj2,k2 can thus only be different from zero if j1 = j2. In
this case the inner product in the last expression reads 〈ϕ0,k1 , ϕ0,k2〉FS and the previous lemma can be
used. Simplifying the final expressions yields the theorem.

5.3 Normalised basis functions

Denoting the normalised Clifford-Hermite functions ψj,k as ψ◦j,k, one has
ψ◦2t,k(x) :=

1

2cπ

√
t!√

(k + t)!

(e0 − 1) (x0 + x)k

(
√

2c)k
Lkt

(
|x|2

2c

)
exp

(
−|x|

2

4c

)
ψ◦2t+1,k(x) :=

1

2cπ

√
t!√

(k + t+ 1)!
x

(e0 − 1) (x0 + x)k

(
√

2c)k+1
Lk+1
t

(
|x|2

2c

)
exp

(
−|x|

2

4c

)
,

where the original polynomials ψj,k have been divided by the square root of their respective norms, given
by (see [7]) 

√
〈ψ2t,k, ψ2t,k〉L2 =

√
2cπ(
√

2c)2t+k
√
t!(k + t)!√

〈ψ2t+1,k, ψ2t+1,k〉L2 =
√

2cπ(
√

2c)2t+k+1
√
t!(k + t+ 1)!.

With respect to the above defined inner product 〈., .〉FS , the monomials ϕj,k can as well be normalised,
which yields


ϕ◦2t,k(z) =

1√
2cπ

(
−(z2

1 + z2
2)
)t

(2c)t
√
t!

(z1 − e0ζz2)k(e0 − 1)

(
√

2c)k
√

(t+ k)!

ϕ◦2t+1,k(z) =
1√
2cπ

z

(
−(z2

1 + z2
2)
)t

(2c)t
√
t!

(z1 − e0ζz2)k(e0 − 1)

(
√

2c)k+1
√

(t+ k + 1)!
,
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because the square roots of their respective norms are given by (see Theorem 6)
√
〈ϕ2t,k, ϕ2t,k〉FS =

√
2cπ(
√

2c)2t+k
√
t!(t+ k)!√

〈ϕ2t+1,k, ϕ2t+1,k〉FS =
√

2cπ(
√

2c)2t+k+1
√
t!(t+ k + 1)!

.

Given the linearity of the slice Segal-Bargmann transform, we can end this section with the following
theorem.

Theorem 7. The slice Segal-Bargmann transform maps the L2 basis of orthonormal Clifford-Hermite
functions ψ◦j,k onto the orthonormal basis ϕ◦j,k of the slice Fock space FS:

SB(ψ◦j,k)(z) = ϕ◦j,k(z).

6 Properties of the slice Segal-Bargmann transform

6.1 Inverse slice Segal-Bargmann transform

The integral expression for the inverse slice Segal-Bargmann transform has to show analogous behaviour
as the forward slice Segal-Bargmann transform, apart from some signs and conjugations. Moreover,
integration will be performed over complex variables now. In order to write the inverse slice Segal-
Bargmann transform as an integral transform

SB−1(ϕj,k)(x) =

∫
C×C×Sm−1

KSB,−1(z,x)ϕj,k(z) exp

(
−|z1|2 + |z2|2

c

)
dz1dz2dσζ ,

where dzj denotes dxjdyj for j = 1, 2, its kernel function KSB,−1 thus has to satisfy a partial differential
system, as was the case for the forward slice Segal-Bargmann transform. In this case we want SB−1 to
behave as follows:

SB−1(zg)(x) =
(x

2
− cDx

0

)
SB−1(g)(x)

SB−1 (cDz
0g) (x) =

(x

2
+ cDx

0

)
SB−1(g)(x)

(8)

where g ∈ FS . This system, however, has to be translated into partial differential equations with respect
to the kernel function KSB,−1. This is why the above integral expression has been written in a rather
suggestive way: by including a factor exp

(
−(|z1|2 + |z2|2)/c

)
in the integrand, the expression already

refers to the inner product on FS as defined in Definition 15.
Though the integral expression can not be an inner product (because KSB,−1 6∈ FS), the relations of
Theorem 5 remain valid and can be used to transform the above partial differential system. Indeed,
denoting the integral formally as 〈KSB,−1, ϕ〉FS , one has〈

KSB,−1, Dz
0ϕ
〉
FS

= −1

c

〈
zKSB,−1, ϕ

〉
FS〈

KSB,−1, zϕ
〉
FS

= −c
〈
Dz

0KSB,−1, ϕ
〉
FS

.

Therefore the above conditions on the inverse slice Segal-Bargmann transform SB−1 yield the following
conditions on KSB,−1: 

(x

2
− cDx

0

)
KSB,−1(z,x) = −c

[
KSB,−1(z,x)Dz

0

]
(x

2
+ cDx

0

)
KSB,−1(z,x) = −KSB,−1(z,x)z.
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Now taking the Clifford conjugate of these expressions and keeping in mind that x0 and r are real
variables, we obtain the following equations:

[
KSB,−1(z,x)

(x

2
+ cDx

0

)]
= zKSB,−1(z,x)[

KSB,−1(z,x)
(x

2
− cDx

0

)]
= cDz

0KSB,−1(z,x),

which are identical to the equations that were proposed for the kernel function KSB of the forward slice
Segal-Bargmann transform, if KSB is substituted by KSB,−1. We thus obtain the kernel function for the
inverse transform immediately by taking the full conjugation of KSB .
This leads to the following definition of the inverse slice Segal-Bargmann transform SB−1:

Definition 16. The inverse slice Segal-Bargmann transform of a function g ∈ FS is given by

SB−1(g)(x) =
1

c2π2

Γ
(
m
2

)
2πm/2

exp

(
−|x|

2

4c

) ∫
C×C×Sm−1

exp

(
−z1

2 + z2
2 − 2x0z1

2c

)

×
[
(1− ωζ) exp

(
rz2

c

)
+ (1 + ωζ) exp

(
−rz2

c

)]
g(z) exp

(
−|z1|2 + |z2|2

c

)
dz1dz2dσζ ,

where dzj = dxjdyj for j = 1, 2.

Remark 4. Note that in this definition the prefactor has already been adapted in such a way that
SB−1(ϕ0,0) = ψ0,0.

Theorem 8. The integral transform SB−1 on FS is the inverse of the slice Segal-Bargmann transform
SB on L2.

Proof. The functions ϕj,k span the slice Fock space FS so it suffices to check the statement for these
monomials in order to prove the theorem. Writing ϕj,k(z) = zj(−e0z)k(e0 − 1) and using (8), one gets

SB−1(ϕj,k)(x) = SB−1
(
zj(−e0z)k(e0 − 1)

)
(x)

=
(x

2
− cDx

0

)j [
−e0

(x

2
− cDx

0

)]k
SB−1(ϕ0,0)(x).

Given that

SB−1(ϕ0,0)(x) = exp

(
−|x|

2

4c

)
(e0 − 1) = ψ0,0(x),

one has SB−1(ϕj,k) = ψj,k and the lemma has been proven.

6.2 Slice Fourier transform on the slice Fock space

Now we have explicit integral expressions for the forward and the inverse slice Segal-Bargmann transform,
we can investigate which operator on the slice Fock space corresponds to taking the slice Fourier transform
on L2. In other words, we want to find the operator GS on FS that makes the following diagram commute:

L2 L2

FS FS

SB

FS

GS

SB−1

We obtain the following theorem.
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Theorem 9. The operator on the slice Fock space FS corresponding to the slice Fourier transform FS
on L2 is given by

GS : FS → FS : f(z) 7→ −i f(−iz).

Proof. Taking the slice Segal-Bargmann transform of the basis functions ψj,k and their slice Fourier
transforms (−i)j+k+1ψj,k, the operator on FS that maps the functions ϕj,k(z) onto −iϕj,k(−iz) is given
by the above operator GS .

Otherwise stated, the action of the slice Fourier transform in the slice Fock space is the combination
of a multiplication with (−i) and a substitution of the argument by (−i) times the argument.

Corollary 9. The basis functions ϕj,k of FS are eigenfunctions of GS with respective eigenvalues (−i)j+k+1.

Proof. Performing GS on ϕj,k yields

GSϕj,k(z) = −i ϕj,k(−iz) = (−i)j+k+1 ϕj,k(z),

because ϕj,k is a homogeneous monomial of degree j + k.

6.3 Reproducing kernel space

Our final aim is to show that the slice Fock space FS is a reproducing kernel space. It is to say, there
exists a reproducing kernel KFS such that

ϕj,k(z) =
〈
KFS (u, z), ϕj,k(u)

〉
FS

(9)

=
1

cπ

Γ(m/2)

2πm/2

∫
C×C×Sm−1

KFS (u, z) ϕ(u) e−|u|
2/c du1du2dσν ,

for all basis functions ϕj,k.

In order to get some grip on the structure of KFS , we first approach this problem using a Mehler
formula. Indeed, a formal series expression for the reproducing kernel reads

KFS (u, z) =

∞∑
j,k=0

ϕj,k(z)ϕj,k(u)

〈ϕj,k, ϕj,k〉

=
1

cπ

∞∑
t=0

(z2
1 + z2

2)t(u2
1 + u2

2)t

(2c)2tt!

∞∑
k=0

(z1 − z2e0ζ)k(u1 + u2e0ν)k

(2c)k(t+ k)!

+
1

cπ

∞∑
t=0

(z2
1 + z2

2)t(u2
1 + u2

2)t

(2c)2tt!

∞∑
k=0

(z1 + z2e0ζ)k+1(u1 − u2e0ν)k+1

(2c)k+1(t+ k + 1)!
,

where the series has been split with respect to even and odd values of j. Changing the summation index
k → k − 1 in the second series, we can recombine both series expressions and obtain

1

cπ

∞∑
t=0

(z2
1 + z2

2)t(u2
1 + u2

2)t

(2c)2tt!
(10)

×

[ ∞∑
k=1

(z1 − z2e0ζ)k(u1 + u2e0ν)k + (z1 + z2e0ζ)k(u1 − u2e0ν)k

(2c)k(t+ k)!
+

1

t!

]
.

Instead of summing this series directly, we proceed in a different way.

Proposition 7. The reproducing kernel for the slice Fock space FS only consists of a scalar part and a
two-vector part which does not contain e0. In other words, one has

KFS = f + gζν

where f, g : C4 → C.
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Proof. Formula (10) is Clifford-valued because e0ν and e0ζ appear in its numerator. Given that these
expressions both square to −1, the only possible Clifford-valued parts are e0ν, e0ζ and ζν. At the same
time, one observes that e0KFSe0 = −KFS . Indeed, pulling e0 from the left through the above series
expression (10) and multiplying it with the e0 at the right, only yields a minus sign. Therefore the closed
form of KFS can only consist of a scalar part and a ζν-part.

Equation (9) should hold for all basis functions ϕj,k, so in particular for ϕj+1,k. According to Corollary
3 one has ϕj+1,k(z) = zϕj,k(z) and therefore

zϕj,k(z) =
〈
KFS (u, z),uϕj,k(u)

〉
FS

. (11)

The corresponding requirement for ϕj−1,k reads

Dz
0ϕj,k(z) =

〈
KFS (u, z), Du

0ϕj,k(u)
〉
FS

. (12)

Proposition 8. Writing the reproducing kernel as

KFS = f + g ζν,

where f, g : C4 → C, the following relations for f and g have to be met:
c∂u1f = z1f

c∂u1g = z1g

c∂z1f = u1f

c∂z1g = u1g,

and


c∂u2f = −z2g

c∂u2g = −z2f

c∂z2f = −u2g

c∂z2g = −u2f,

where . denotes the complex conjugation.

Proof. Using Theorem 5, equations (11) and (12) can be written as

zϕj,k(z) = −c
〈
Du

0KFS (u, z), ϕj,k(u)
〉
FS

−cDz
0ϕj,k(z) =

〈
uKFS (u, z), ϕj,k(u)

〉
FS

.

Because these identities must hold for all j, k ∈ N, one has

zKFS (u, z) = −c[KFS (u, z)Du
0 ]

−cDz
0KFS (u, z) = KFS (u, z)u,

which translate to the above conditions on f and g.

Proposition 9. The function

A exp

(
z1u1

c

)[
A1 cosh

(
z2u2

c

)
− ζνA2 sinh

(
z2u2

c

)]
with A,A1, A2 ∈ R solves the systems of differential equations of Proposition 8.

Proof. In the above systems of differential equations, one observes that f and g have to obey the same
conditions with respect to z1 and u1. Up to a multiplicative constant, these conditions yield a common
factor exp (z1u1/c).
The other system implies that, with respect to z2 and u2, both f and g are a linear combination of the
hyperbolic functions cosh (z2u2/c) and sinh (z2u2/c).

The particular choice to write f as a cosh function and g as a sinh function is motivated in the
following theorem.
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Theorem 10. The reproducing kernel of the slice Fock space FS reads

KFS (u, z) =
1

cπ
exp

(
z1u1

c

)[
cosh

(
z2u2

c

)
− ζν sinh

(
z2u2

c

)]
.

Proof. To prove this theorem, we use the fact that the classical Fock space F is a reproducing kernel
space (see [25]). To be more precise, on F one has

1

π

∫
C
ezuuke−|u|

2

du = zk

for all k ∈ N and where u and z are complex variables. Summing this expression with the same expression
where z is substituted by −z and dividing the resulting integral by 2, one gets

1

π

∫
C

cosh (zu)uke−|u|
2

du =

{
zk k even

0 k odd
.

Analogously, dividing the difference of these integrals by two yields

1

π

∫
C

sinh (zu)uke−|u|
2

du =

{
0 k even

zk k odd
.

For KFS to be the reproducing kernel, equation (9) should be satisfied for all j, k ∈ N. Now we have that

ϕj,k(u) = (u1e0 + u2ν)
j

(u1 − u2e0ν)
k

(e0 − 1).

With respect to the Clifford-valued parts of the functions ϕj,k, one observes that KFS commutes with
e0 and that the spherical integral transforms ν into ζ. With respect to u1 and u2, combining the above
three identities yields the desired behaviour.
Finally, the constants A,A1 and A2 have been fixed by expressing equation (9) for ϕ0,0 and ϕ1,0.

7 Conclusion

In this paper we have introduced the Segal-Bargmann transform in the context of the slice Dirac operator.
Based on results obtained in the articles [8] and [7], an appropriate slice Fock space could be defined.
Next the slice Segal-Bargmann transform was constructed such that it mapped the Clifford-Hermite basis
functions onto a monomial basis of the slice Fock space. The same approach could be used to find the
kernel of the inverse slice Segal-Bargmann transform as well. Putting all of this together, we showed
that under the slice Segal-Bargmann transform the action of the slice Fourier transform is mapped onto
multiplying the variable on the slice Fock space with −i, where i denotes the complex unit. Finally we
showed that the slice Fock space is also a reproducing kernel space.
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Progress in Mathematics. Birkhäuser/Springer Basel AG, Basel, 2011. Theory and applications of
slice hyperholomorphic functions.

[14] K. Diki and A. Ghanmi. A Quaternionic Analogue of the Segal–Bargmann Transform. Complex
Anal. Oper. Theory, 11(2):457–473, 2017.

[15] X.-T. Dong and K. Zhu. The Fourier and Hilbert transforms under the Bargmann transform. ArXiv
e-prints, 1605.08683, May 2016.

[16] G. Gentili and D. C. Struppa. A new theory of regular functions of a quaternionic variable. Adv.
Math., 216(1):279 – 301, 2007.

[17] R. Ghiloni, V. Moretti, and A. Perotti. Continuous slice functional calculus in quaternionic Hilbert
spaces. Rev. Math. Phys., 25:1350006, 2013.

[18] R. Ghiloni and A. Perotti. Slice regular functions on real alternative algebras. Adv. Math.,
226(2):1662–1691, 2011.

[19] W. D. Kirwin, J. Mourão, J. P. Nunes, and T. Qian. Extending coherent state transforms to Clifford
analysis. J. Math. Phys., 57(10):103505, Jan. 2016.

[20] J. Mourão, J. P. Nunes, and T. Qian. Coherent state transforms and the Weyl equation in Clifford
analysis. J. Math. Phys., 58(1):013503, July 2017.

[21] D. Peña Peña, I. Sabadini, and F. Sommen. Segal-Bargmann-Fock modules of monogenic functions.
ArXiv e-prints, 1608.06790, Aug. 2016.

[22] M. Wakayama and T. Yamasaki. The quantum Rabi model and Lie algebra representations of sl2.
Journal of Physics A: Mathematical and Theoretical, 47(33):335203, 2014.

[23] A. I. Zayed. Handbook of Function and Generalized Function Transformations. Mathematical Sci-
ences Reference Series. CRC Press, 1 edition, 1996.

20



[24] H. Zhong, Q. Xie, M. T. Batchelor, and C. Lee. Analytical eigenstates for the quantum Rabi model.
Journal of Physics A: Mathematical and Theoretical, 46(41):415302, 2013.

[25] K. Zhu. Analysis on Fock Spaces, volume 263 of Graduate Texts in Mathematics. Springer US, 2012.

8 Acknowledgements

L. Cnudde and H. De Bie are supported by the UGent BOF starting grant 01N01513.

21


