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Abstract: Mechanistic models are widely used for modelling of wastewater treatment plants. 7 

However, as they are based on simplified and incomplete domain knowledge, they often lack 8 

accurate predictive capabilities. In contrast, data-driven models are able to make accurate 9 

predictions, but only in the operational regions that are sufficiently described by the dataset 10 

used. We investigate an alternative hybrid model, combining mechanistic and data-driven 11 

techniques. We show that the hybrid approach combines the strengths of both modelling 12 

paradigms. It allows for accurate predictions out of the training dataset without the need for 13 

complete domain knowledge. Moreover, this approach is not limited to wastewater treatment 14 

plants and can potentially be applied wherever mechanistic models are used. 15 
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Introduction 17 

Mechanistic models formulate empirical knowledge, such as mass balances and conversion 18 

rates, in a set of differential equations. These models can subsequently be used to simulate the 19 

behaviour of wastewater treatment plants (WWTPs), e.g. the different versions of the Activated 20 

Sludge Model (ASM) [1]. Their interpretability makes them an ideal tool for the design and 21 

analysis of WWTPs. However, extensive expert knowledge is required to design and maintain 22 

these models. This incorporated knowledge is a simplification of the plant and does not fully 23 

describe all underlying processes. For example, aeration dynamics are significantly simplified 24 

and lumped together by the 𝑘𝐿𝑎 parameter. Complex bacterial community dynamics are crudely 25 

divided into heterotrophs and autotrophs. Mixing behaviour is completely discarded by using a 26 

continuously stirred tank reactor (CSTR) or a systemic model approach. Although these 27 

simplifications are essential for constructing an interpretable model, the trade-off is a lack of 28 

accurate predictive capabilities. 29 

In contrast, data-driven techniques, such as linear regression and neural networks, 30 

search for relationships in available data, which is becoming more abundant. They subsequently 31 

use this gathered knowledge for simulation. Given sufficient and representative data, these 32 

models can make accurate predictions and can be automatically updated to adapt to changes in 33 

the process. However, data-driven models lack the interpretability of mechanistic models. 34 

Moreover, they are limited by the characteristics of the dataset used. They need a large amount 35 

of data representative of the whole operational space and fail to extrapolate into operational 36 

regions not seen before. 37 

To use a model for operational purposes, such as predictive control or digital twins, one 38 

needs a model that is capable of accurate predictions, both in regimes seen and not seen before. 39 

Given that the domain knowledge incorporated is a simplification, mechanistic models do not 40 

capture all complexity and therefore do not predict accurately. On the other hand, data-driven 41 
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models fail to predict in situations not seen before. To mitigate these problems, we investigate 42 

an alternative hybrid model consisting of both regular and neural differential equations [2]. By 43 

incorporating respectively a mechanistic and data-driven technique, the strengths of both 44 

paradigms are combined. This allows for the incorporation of all available expert knowledge 45 

and data into a hybrid model. The data-driven part of the model can fill in the gaps in domain 46 

knowledge, while the mechanistic part can fill in the operational regions not represented in the 47 

dataset. Thus, this approach allows for a trade-off between data and domain knowledge, while 48 

boosting predictive accuracy.  49 

Methods 50 

We performed a simulation study to assess the performance of three different models: 51 

(1) a mechanistic model using a set of ordinary differential equations of the form 52 

𝑑𝑋

𝑑𝑡
 =  𝑓(𝑋, 𝑡) ,          53 

constructed from domain knowledge, e.g. the ones present in traditional ASM models,  54 

(2) a data-driven model using a set of neural differential equations of the form 55 

𝑑𝑋

𝑑𝑡
 =  𝑛𝑛(𝑋, 𝑡) ,       56 

where 𝑛𝑛(𝑋, 𝑡) is a neural network with 1 hidden layer of 100 neurons using Tanh 57 

activation functions, 58 

(3) a hybrid model using a combination of ordinary and neural differential equations of the 59 

form  60 

𝑑𝑋

𝑑𝑡
 =  𝑓(𝑋, 𝑡)  +  𝑛𝑛(𝑋, 𝑡). 61 

The Benchmark Simulation Model 1 (BSM1) [3] is used as mechanistic (sub)models. 62 

However, to simulate imperfect domain knowledge in the mechanistic (sub)models, we adapted 63 

the BSM1 model to not account for anoxic growth of heterotrophs. We thus deliberately 64 

removed a piece of the model and thereby simplified it.  Although this is an artificial construct, 65 

it allows us to study the effects of incomplete domain knowledge in mechanistic models. 66 

To calibrate the models, we generated synthetic data of the behaviour of a wastewater 67 

treatment plant using the full BSM1 model. The model simulated 150 days with constant 68 

influent to obtain a steady-state. Subsequently, 7 days were simulated using the first 7 days of 69 

the dry weather influent specified by BSM1. Note the use of two different versions of the BSM1 70 

model: one version (incorporating anoxic growth of heterotrophs) to generate the dataset and 71 

one version (excluding anoxic growth) used to model this dataset.  72 

To validate the calibrated models, we simulated 7 dry days using the last 7 days of the 73 

BSM1 dry weather influent. We subsequently used the BSM1 rainy weather influent to assess 74 

the capabilities of predicting into an operational region not represented in the original dataset. 75 

During days 8-10 of this influent dataset, a rain event occurs resulting in higher hydraulic loads 76 

and lower contaminant concentrations, an operational region highly different from dry influent. 77 

For all simulations, we visualised the NH4 concentration in the effluent during day 8-12, 78 

as this period includes the rain event. All simulations were performed using the PyTorch 79 

platform [4]. For each simulation, the mean root squared error (MRSE) between the ground 80 

truth is calculated. 81 



 
  

 

Results and Conclusions 82 

The mechanistic model is able to capture the general trends in the behaviour of the WWTP, 83 

both during dry (Fig. 1a) and rainy weather (Fig. 1b). However, as the model does not fully 84 

include all processes (i.e., it does not account for anoxic growth of heterotrophs), it is not able 85 

to accurately simulate the WWTP dynamics.  86 

 87 

(a) Dry weather     (b) Rainy weather 88 

Figure 1. The mechanistic model, based on incomplete domain knowledge, is able to capture the general trends 89 

in the behaviour of the WWTP during both weather regimes. However, it is not able to make accurate predictions. 90 

 91 

The data-driven model is able to make accurate predictions during dry weather (Fig. 2a). 92 

However, when simulating the behaviour during rainy weather (Fig. 2b), the model fails to 93 

make accurate predictions. Moreover, at times it gives physically impossible results, such as 94 

the negative NH4 concentrations encountered. The rainy weather influent is characterized by 95 

high hydraulic loads nearly twice the size as present in the dry weather influent, and 96 

contaminant concentrations half as high. Thus, this operational regime is not represented by the 97 

original dataset and the model is in effect extrapolating, leading to poor performance. 98 

 99 

(a) Dry weather     (b) Rainy weather 100 

Figure 2. The data-driven model is able to make accurate predictions in the dry weather regime (a).  However, 101 

when a rain event occurs (b), an operational regime not represented in the original dataset, the model fails to predict 102 

accurately. Moreover, it even gives physically impossible results such as negative concentrations. 103 

The hybrid  model is able to accurately predict during dry weather (Fig. 3a). Moreover, 104 

it is able to give fairly accurate predictions during rainy weather (Fig. 3b). However, its 105 

performance is worse than during dry weather. With imperfect domain knowledge and a non-106 

representative dataset, no submodel is able to capture the dynamics of the WWTP by itself. 107 

However, the combination of both submodels into the hybrid model allows for a better 108 

predictive performance. 109 



 

 

 110 

(a) Dry weather     (b) Rainy weather 111 

Figure 3. The hybrid model, incorporating both an (imperfect) mechanistic and data-driven submodel, makes 112 

accurate predictions during dry weather (a). The data-driven submodel is able to fill the gaps in domain knowledge 113 

of the mechanistic submodel. However, the performance during rainy weather (b) is slightly worse, as neither 114 

perfect domain knowledge nor a representative dataset is available. 115 

The RMSE for the different models and influent regimes is shown in Table 1. It can be 116 

seen that during dry weather, a regime represented in the dataset, the data-driven model 117 

performs the best (RMSE=5.59). The mechanistic model (39.35) is unable to fully capture the 118 

dynamics as it has imperfect domain knowledge. The hybrid model (7.62), in effect augmenting 119 

the mechanistic model with a data-driven part, is able to fill in the gaps of the imperfect 120 

mechanistic model and comes close to the performance of the purely data-driven model. When 121 

considering rainy weather, the data-driven model (149.31) performs the worst, as it is 122 

extrapolating into an unknown operational space. The mechanistic model (79.42) better 123 

captures the system dynamic but is underestimating it most of the times. The hybrid model 124 

(17.22) clearly outperforms the other models. It is able to combine the strength of both 125 

submodels and mitigates their weaknesses. However, it should be noted that a trade-off is made, 126 

as the model becomes less interpretable due to the presence of a black-box component. 127 

 128 

Table 1. RMSE for different models and influent regimes. 129 

 Model Dry weather (RMSE) Rainy weather (RMSE) 

 Mechanistic model 39.35 79.42 

 Data-driven model 5.59 149.31 

 Hybrid model 7.62 17.22 

 130 

To conclude, this simulation study shows that a hybrid model is able to combine the 131 

strengths of both the mechanistic and data-driven modelling paradigms. It allows for accurate 132 

predictions without the need for complete domain knowledge. Although the exclusion of a 133 

certain part of the domain knowledge is artificial, this study shows the potential of the hybrid 134 

approach. We are currently planning to apply this technique to a dataset of a real WWTP. 135 

Mechanistic models are widely used in WWTPs and the wider chemical industry. The 136 

hybrid approach allows to naturally incorporate data-driven techniques into these existing 137 

models. It improves the predictive capacity, which is essential for online applications such as 138 

predictive control and digital twins. Moreover, it is possible to update these models 139 

automatically, making them adaptive to changes in the process. 140 
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