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Abstract

Multi-band orthogonal frequency-division multiplexing (MB-OFDM) is an im-

portant transmission technique for ultra-wideband (UWB) communication. One

of the challenges for practical realization of these UWB MB-OFDM systems is

the estimation of the channel. In UWB MB-OFDM, the channel can be mod-

elled as sparse, and channel estimation (CE) based on compressed sensing (CS)

can be used. However, the existing techniques all require prior knowledge of

some channel parameters, which are not known in practice, e.g. the dictionary

size, corresponding to the effective duration of the channel impulse response

(CIR), and the sparsity of the CIR. Therefore, in this paper, we propose a CS-

based channel parameter estimation method to estimate the dictionary size and

the sparsity based on a pilot preamble of which the duration is shorter than

the total duration of the CIR. Using the resulting parameter estimates, we re-

construct the CIR with the compressive sampling matching pursuit (CoSaMP)

method. We show that the proposed algorithm is able to accurately estimate

the sparsity and the dictionary size, and can effectively reconstruct the CIR

for channels that are either based on a mathematical model or real, measured

channels. Moreover, as the algorithm has acceptable complexity, the proposed
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method is suitable for practical use.

Keywords: Multi-band orthogonal frequency-division multiplexing

(MB-OFDM), ultra-wideband (UWB), parameter estimation, compressive

sensing, channel impulse response

1. Introduction

Multi-band orthogonal frequency-division multiplexing (MB-OFDM) is a

technique that is considered as one of the most promising techniques for ul-

tra wideband (UWB) transmission, thanks to its ability to mitigate the effects

of multipath fading and interference, and to achieve a high spectral efficiency at5

a relatively low cost [1, 2]. One of the issues that needs to be solved in practical

UWB MB-OFDM systems comprises the estimation of the channel. To meet

this challenge, UWB MB-OFDM adopts a frame-based transmission [3], where

pilot sequences are included in the frame preamble for channel estimation (CE).

However, as the channel impulse response (CIR) in UWB MB-OFDM is very10

long, long pilot preambles must be used to accurately estimate the channel. As

long pilot preambles limit the data throughput, often the pilot preamble is short-

ened. Because of this shorter preamble, traditional channel estimators, such as

least-squares (LS), maximum-likelihood (ML) and minimum mean-squared er-

ror (MMSE) estimators [4, 5, 6, 7], fail to accurately estimate the CIR.15

In indoor environments, typically the propagation environment is complex,

and results in many reflections. At the same time, the resolution of the ul-

trawideband signal is very high, implying the system can identify many of the

multipath components. As a consequence, the channel impulse response will

typically be very long. However, measurements of the UWB indoor channel20

show that the multipath components are strongly clustered, implying the chan-

nel impulse response, although being widely dispersed in time, only contains

a limited number of non-zero contributions, i.e. the channel can be modelled

as sparse. For example, [8, 9] demonstrate that indoor channel models consid-

ered for the IEEE 802.15.4a standard [10] are sparse. Moreover, this sparsity is25
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shown to be enlarged when the signal resolution increases [9]. Also the different

channel models for the IEEE 802.15.3a standard [11] can be described with a

limited number of non-zero channel taps. Besides the theoretical channel mod-

els considered in the literature, we also performed a measurement campaign in

a laboratory environment, and show in this paper that the resulting channel is30

sparse. Consequently, we can use compressive sensing (CS) methods [12, 13] to

reconstruct the CIR and achieve channel estimation. Recently, several CE algo-

rithms based on CS for UWB communication have been developed [8, 14, 15, 16].

In [8], the applicability of CS for UWB channel estimation is investigated, and

the authors employ standard Matching Pursuit (MP) algorithms for CS, such as35

subspace pursuit (SP) [17], orthogonal matching pursuit (OMP) [18] and com-

pressive sampling matching pursuit (CoSaMP) [19], to accurately reconstruct

the CIR. In [14], the authors propose four practical dictionaries to increase the

sparsity of UWB signals, so that the UWB signals can be reconstructed more

efficiently. In [15], another CS technique, i.e. the Bayesian CS (BCS) algo-40

rithm [20], is employed to reconstruct UWB signals and obtain CE. Although

the BCS algorithm achieves a better performance than the MP algorithms, it

requires intensive computations, raising a barrier for practical implementation.

In [16], a CS dictionary, called eigen-dictionary, is proposed, exploiting the sta-

tistical sparsity of UWB signals where the channel structure exhibits several45

clusters of significant channel coefficients. Based on this structure, two novel

BCS algorithms are proposed to efficiently reconstruct UWB CIR. Common

to all these CS-based CE algorithms is that they require prior knowledge of

the parameters of the underlying CIR model, which is not available in prac-

tice. Without the knowledge of these parameters, the CIR can not be estimated50

accurately, deteriorating the performance of UWB MB-OFDM systems.

In this paper, we extend the CoSaMP algorithm from [19], which combines

low complexity and good CE performance, to autonomously estimate the re-

quired channel parameters. The CoSaMP algorithm requires the knowledge

about the dictionary size, of which the optimal value is strongly correlated to55

the effective CIR duration, i.e. the duration of the part of the CIR containing
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the dominant channel components, and the sparsity of the channel, i.e. the

number of non-zero channel taps. Optimally, the dictionary size and sparsity

must be estimated jointly. Several classical algorithms exist to achieve this joint

estimation, e.g. the simplex algorithm [21]. However, the computational bur-60

den of these algorithms is very high, and therefore limit the applicability of

these joint estimators. Therefore, as main novelty, we propose in this paper

an algorithm that has low complexity compared to the above-mentioned joint

estimation algorithm. To this end, we first show that, although the dictionary

size and sparsity are correlated, the optimal value of the dictionary size be-65

comes essentially independent of the sparsity if the sparsity is sufficiently large.

Based on this observation, we propose a two-step approach, where in the first

phase, the optimal dictionary size is estimated, while in the second phase, the

optimal value of the sparsity is obtained. In both phases, the algorithm adap-

tively searches for the optimal value of the parameter, using the pilot sequence70

included in the preamble. We show that the proposed adaptive CS-based pa-

rameter estimation algorithm not only can be applied to channels simulated

based on a mathematical model, but also is able to exactly reconstruct the CIR

measured in realistic scenarios. Although the proposed algorithm is sub-optimal

in the sense that the mean-squared error of the resulting channel estimation is75

slightly higher than for the case where the simplex method is used, the resulting

complexity is much smaller than with the simplex method, e.g. for short pilot

preambles, the complexity of the proposed algorithm is 10 times lower than with

the simplex method, and the difference in complexity increases when the length

of the preamble increases. Further, we compare the performance of the proposed80

algorithm with state-of-the-art algorithms, and demonstrate that the proposed

algorithm performs well, even if the pilot preamble is considerably shortened.

The rest of the paper is organized as follows. In Section 2, we introduce the

channel model used for MB-OFDM systems and describe the measurement setup

used to obtain the sparse measured channel. In Section 3, we briefly explain how85

CS is applied to the estimation of sparse channels, and we discuss the influence

of the dictionary size and sparsity on channel reconstruction. The algorithm to
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estimate the dictionary size and the sparsity is introduced in Section 4. Further,

we evaluate the complexity of the proposed algorithm in this section. In Section

5, we evaluate the performance of the proposed algorithm and compare its90

performance with that of state-of-the-art algorithms. Finally, the conclusions

are given in Section 6.

2. Sparse Channel

In this section, first we briefly introduce the CM for the IEEE 802.15.3a

standard [11], suitable for UWB MB-OFDM systems that was used to gener-95

ate the simulated channels, and then we describe the measurement setup that

was used to obtain sparse measured channels to test our algorithm in realistic

scenarios.

2.1. Channel Model

The channel impulse response considered for the IEEE 802.15.3a standard

[11] consists of a tapped-delay line model containing L clusters of K multipath

components:

h(t) = X

L∑
l=1

K∑
k=1

αk,lδ(t− Tl − τk,l), (1)

where αk,l are the multipath gain coefficients, Tl is the delay of the l-th cluster,

τk,l is the delay of the k-th multipath component relative to the l-th cluster

arrival time Tl and the prefactor X corresponds to the log-normal shadowing.

The delays Tl and τk,l follow an exponential distribution with cluster arrival

rate Λ and ray arrival rate λ, respectively:

P (Tl|Tl−1) = Λ exp[−Λ(Tl − Tl−1)] (2)

P (τk,l|τk−1,l) = λ exp[−λ(τk,l − τk−1,l)]. (3)

We select τ0,l = 0. The multipath gain coefficient αk,l in (1) can be decomposed

as follows:

αk,l = pk,lζlβk,l, (4)
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Table 1: Parameters of the Four Channel Models (CMs) from [11]

Parameters CM1 CM2 CM3 CM4

Λ 0.0233 0.4 0.0667 0.0667

λ 2.5 0.5 2.1 2.1

Γ 7.1 5.5 14.00 24.00

γ 4.3 6.7 7.9 12

σ1 (dB) 3.3941 3.3941 3.3941 3.3941

σ2 (dB) 3.3941 3.3941 3.3941 3.3941

σx (dB) 3 3 3 3

where pk,l equiprobably takes the values ±1 to account for signal inversions due

to reflections, ζl represents the fading associated with the l-th cluster, and βk,l

corresponds to the fading associated with the k-th ray of the l-th cluster. This

fading coefficient ζlβk,l follows a log-normal distribution:

20 log10(ζlβk,l) ∼ N(µk,l, σ
2
1 + σ2

2), (5)

where σ1 is the standard deviation from the cluster log-normal fading term

ζl and σ2 is the standard deviation from the ray log-normal fading term βk,l.

Further, defining the cluster decay factor Γ and ray decay factor γ, the mean

µk,l can be written as:

µk,l =
10 ln(Ω0 − 10Tl/Γ− 10τk,l/γ)

ln(10)
− (σ2

1 + σ2
2) ln(10)

20
, (6)

where Ω0 is the average energy of the first path of the first cluster. Finally, the

log-normal shadowing factor X of the total multipath power from (1) has the

distribution:

20 log10(X) ∼ N(0, σ2
x), (7)

where σx is the standard deviation of the log-normal shadowing of the total100

multipath power.

The parameters of the four channel models presented in [11] are listed in

Table I. These four models consider communication among UWB devices lo-

cated within a range of less than 10 m. Specifically, CM1 and CM2 model
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the line-of-sight (LOS) and non-LOS (NLOS) channel environments, for ranges105

smaller than 4 m. For larger ranges, the NLOS models CM3 and CM4 are used,

with emphasis on the strong delay dispersion Γ from CM4 [2]. In this paper,

we consider discrete-time channel models derived from the above continuous-

time models. Following the IEEE 802.15.3a standard [11], the discrete-time

CIR h = [h(0), h(1), . . . , h(Ltaps − 1)] can be obtained by oversampling the110

continuous-time CIR h(t), followed by an anti-aliasing filtering, down conver-

sion and decimation. As an example, we show in Figure 1(a) the discrete-time

domain CIR for a realization of CM1 with tap spacing t = 1/6 ns, together with

a close-up of the 180 first taps. As can be observed, the number of dominant

taps, having a non-negligible amplitude, is quite small, i.e. most taps have a115

(close to) zero amplitude. Further, the dominant taps are confined in the first

part of the CIR, i.e. the tail contains only close-to-zero taps. Hence, the effec-

tive duration of the CIR, corresponding to this dominant, first part of the CIR,

is much smaller than the total duration of the CIR. Similar results are obtained

with the other three channel models. Therefore, the channel can be considered120

as sparse in the time domain, indicating that compressive sensing methods to

reconstruct the CIR can be employed.

2.2. Measured Channel

The experiments to measure the sparse channels were carried out in a labora-

tory of Ghent University in Belgium. The laboratory, shown in Figure 2, roughly125

has an L-shaped form. The long side (Figure 2(b)) approximately has length 16

m and width 5 m, while the small side (Figure 2(c)) approximately has length

8.5 m and width 5 m. We selected one transmitter position and 15 receiver

positions (see Figure 2(a)). Of these positions, 8 positions (i.e. R1-R8) were

considered as light-of-sight positions, where a free space path exists between130

transmitter and receiver, 4 positions (i.e. R9-R12) were regarded as obstructed-

LoS (OLoS), where the signals undergo a reflection and/or a diffraction, and 3

positions (i.e. R13-R15) are non-LoS (NLoS) scenarios, as a plasterboard wall

is present between transmitter and receiver.

7



(a)

(b)

Figure 1: Sparse channel: (a) an example channel realization of CM1 with tap spacing of

t = 1/6 ns. (b) measured channel between transmitter and R1 receiver with tap spacing of

t = 4/5 ns
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(a)

(b)

(c)

Figure 2: Measurement environment: (a) Schematic representation, (b) Long side of labora-

tory, (c) Small side of laboratory.

9



Figure 3: UWB antenna with an automated positioning system

At both the transmitter and receiver sides, omnidirectional UWB anten-135

nas of type electrometrics EM-6865 [22] were placed 1.5m above ground level,

as shown in Figure 3. To measure the complex gain for each combination of

transmit and receive pair, we used a Rohde & Schwarz ZNB8 vector network

analyzer (VNA). The VNA calibration included the feeder cables to eliminate

their effect on the measurement data. We created at both sides a [4 × 4] vir-140

tual antenna array by using an automated positioning systems. At each of the

receiver positions, channel measurements were performed, and the channel was

obtained by averaging these measurement data. An example of the resulting

discrete-time CIR for receiver position R6 is shown in Figure 1(b), for a tap

spacing t = 4/5 ns. As can be observed, the CIR contains only a few dominant145

taps, i.e. most taps have a near-zero or zero amplitude, implying the channel

can indeed be considered as sparse. Similar results were obtained for the other

receiver positions.

3. Compressive Sensing Based Channel Reconstruction Scheme

In this section, we discuss the reconstruction of the CIR using CS methods,

and analyze the effect of two parameters, i.e. the dictionary size and sparsity of

CIR, on the CE. Let us first revisit the principle of CS. Let us assume we want
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to reconstruct a sparse signal ϕ from an observation ρ

ρ = Υϕ+ n0 (8)

where n0 is additive noise and Υ is called the measurement matrix. To obtain150

accurate estimates of ϕ, the measurement matrix Υ should satisfy the restricted

isometry property (RIP), i.e. it should be nearly orthonormal when operating

on the sparse vector ϕ. In following subsections, we derive the observation

model, discuss the RIP of the measurement matrix and the accuracy of the

reconstructed sparse channel, and evaluate the effect of the system parameters155

on the performance.

3.1. CS-Based Channel Reconstruction

Following [3], we consider a frame-based UWB MB-OFDM transmission

system, in which several known OFDM symbols are placed in a preamble for

channel estimation and synchronization, followed by a payload frame containing160

the OFDM data symbols. During the transmission of the payload frame, the

IEEE 802.15.3a standard [11] assumes that the channel remains unchanged.

To estimate the channel impulse response, we consider a preamble, where the

frequency domain pilots X = [X(0), X(1), · · · , X(N−1)] are selected randomly,

and the resulting UWB MB-OFDM symbol is repeated Np times. We assume a

long cyclic prefix is preceding the preamble, to avoid distortion of the preamble

due to transition effects at the start of the preamble, and no guard interval is

added between the pilot OFDM symbols. Hence, the time-domain samples of

each of the Np pilot OFDM symbols can be written as:

x(k + iN) = x(k) =
1√
N

N−1∑
n=0

ej2π
kn
N X(n) (9)

with k = 0, . . . , N − 1 and i = 0, . . . , Np − 1. After transmitting the preamble

over the channel with impulse response h, we obtain the the received sequence:

y(m) =

Np−1∑
i=0

N−1∑
k=0

x(k)h(m− k − iN) + w(m) (10)
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where w(m) is zero-mean additive white Gaussian noise with variance N0, and

h(l) = 0 for l < 0 or l ≥ Ltaps, with Ltaps the number of taps within the

total CIR duration. In this paper, we restrict our observation to the NNp

samples from the pilot preamble to avoid interference with the subsequent data

symbols. We assume this preamble is shorter than the total CIR length, i.e.

NNp < Ltaps. However, in order to allow accurate reconstruction of the channel,

the preamble must be long enough to capture the contributions of the majority

of the dominant components of the channel. As a result, the observation vector

(10) can be rewritten as

y = Φh + w, (11)

where h = [h(0), h(1), · · · , h(Ltaps− 1)]T , and the elements of the NNp×Ltaps
measurement matrix Φ1, which are obtained by substituting (9) into (10), are

given as

Φm,m′ =
1√
N

N−1∑
n=0

X⌊
m−m′

N

⌋(n)ej2π
n(m−m′)

N (12)

with bxc the floor of x. To reconstruct the channel, we define a Ltaps ×Mtaps

dictionary Ψ, where Mtaps < Ltaps corresponds to an interval containing all

dominant channel components. If the dictionary size Mtaps is too small, not

all dominant components will be recovered, but if it is selected too large, noisy

samples will affect the ability to properly reconstruct the channel and at the

same time the complexity of the algorithm will increase. Hence, the optimal

value of Mtaps must be determined by the receiver. We assume Mtaps ≥ NNp

and Ψ = [I 0]T , where I is the Mtaps×Mtaps identity matrix. Hence, we restrict

1As can be observed in (12), the measurement matrix Φ is a Hermitian matrix containing

the pilots X and components from the Fourier kernel. Hence, the measurement matrix can in

general not be written as a partial Fourier matrix. While it is shown in the literature that,

with exponentially high probability, the partial Fourier matrix satisfies the RIP, assuming

the number of measurements is nearly linear in the sparsity level, the RIP characteristics

of the matrix Φ will not be straightforward to show, as in general, this proof is a strongly

NP-hard problem [23, 24]. Although we are not able to prove that the matrix Φ is RIP, we

will demonstrate in the numerical results section that this measurement matrix can be used

to accurately estimate the CIR.
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our attention to the first Mtaps taps of the Ltaps taps of the CIR, which is a

reasonable assumption as the tail of the CIR in the considered channel models

contain only close-to-zero taps. To reconstruct the channel, we write the CIR h

as a linear combination of Mtaps � Ltaps basis vectors from the dictionary Ψ:

h = Ψξ (13)

where ξ = [ξ1, ξ2, · · · , ξMtaps ]T is a Mtaps × 1 vector. Because the channel is

sparse, only Ks of the Mtaps components of ξ will have non-zero value. There-

fore, we can rewrite ξ as

ξ = Bθ (14)

where θ = [θ1, θ2, . . . , θKs ]T is the Ks× 1 vector of parameters to be estimated,

while the selection matrix B determines the positions of the Ks non-zero channel

taps, i.e.

Bi,j =

 1 if i = v(j)

0 otherwise
(15)

where v = [v(1), v(2), · · · , v(Ks)] is the Ks × 1 vector with the positions of the

Ks dominant taps. Substituting (14) into (13), we obtain:

h = ΨBθ (16)

Note that θ can be estimated using standard channel estimation techniques such

as LS or MMSE, however, the main drawback of these approaches is that if the

CIR length Ltaps exceeds the preamble length NNp, as in the problem at hand,

the accuracy of the channel estimation is degraded. To overcome this issue, CS

can be used. It is shown in [25, 26] that the channel estimation accuracy of CS

outperforms that of LS and MMSE methods when Ltaps > NNp. Moreover, the

complexity of the CS method is lower than that of the MMSE approach. Hence,

provided that the measurement matrix Φ is incoherent with the dictionary Ψ

(which is the case in the problem at hand), the CIR can be estimated with high

reliability through solving the following well-known convex l1-norm optimization

problem:

ξ̂ = min‖ξ‖1 s.t. y = ΦΨξ. (17)
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This convex optimization problem can be solved using linear programming tech-

niques like subspace pursuit (SP), orthogonal match pursuit (OMP) and com-

pressive sampling matching pursuit (CoSaMP). Let us take a closer look at

the performance of the CS estimation. Assume the CIR has non-zero com-

ponents at positions v. The CS algorithm first has to estimate the positions

v̂ = [v̂(1), · · · , v̂(Ks)] of the dominant channel taps, and then it needs to es-

timate the values ĥv̂ of the dominating channel taps. To this end, we define,

for given Mtaps and Ks, the matrix A = ΦΨ = [a1,a2, · · · ,aMtaps
], and the

submatrix Av̂ = [av̂(1), · · · ,av̂(Ks)] of the matrix A. The LS estimate of the

dominant channel taps at positions v̂ is given by

ĥv̂ = Ψ(AH
v̂ Av̂)−1AH

v̂ y (18)

We assume that, at positions different from v̂, the reconstructed channel taps are

set to zero, i.e. ĥ = [0, · · · , 0, ĥv̂(v̂(1)), 0, · · · , 0, ĥv̂(v̂(Ks)), 0, · · · , 0]T . Taking

this into account, the MSE of h, i.e. MSE = E[‖(ĥ− h)‖22] yields

MSE = hHv̂ (CΦ− I)H(CΦ− I)hv̂ + hHv\v̂hv\v̂ +N0trace(C
HC) (19)

where the first and third term originate from the contribution of the recon-

structed channel at the positions v̂, and the second contribution from the non-

zero channel taps that were not selected in the reconstruction, i.e. at positions

v\ v̂. In (19), C = Ψ(AH
v̂ Av̂)−1AH

v̂ and hv̂ = [h(v̂(1)), · · · , h(v̂(Ks))]
T . Defin-

ing e = (CΦ− I)hv̂, the first term of (19) can be rewritten as

eHe = eHv∩v̂ev∩v̂ + eHv̂\vev̂\v (20)

i.e., the contribution of the positions that are both included in v and v̂ – or the

dominant channel taps that were correctly identified with the CS algorithm –

and the contribution from zero channel taps that were incorrectly identified as

dominant channel taps (v̂ \ v). Substituting (20) in (19), the MSE of h can be

decomposed as

MSE = eh + en (21)
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where the first term eh = eHv∩v̂ev∩v̂ + hHv\v̂hv\v̂ contains a channel-dependent

term, originating from the estimation errors in the dominant components due to

the CS reconstruction error, and the second term en = eHv̂\vev̂\v+N0trace(C
HC)165

contains the contributions from the noise and the estimation errors at time in-

stants that do not contain dominant channel components, but that are captured

by the CS algorithm due to noise. Both terms depend on the selection of the

parameters Mtaps and Ks through the matrix C. Preferably, the mismatch re-

lated to the compressive sensing must be made as small as possible. To obtain170

an accurate reconstruction of the channel, we need to select out of the Mtaps

channel components, the Ks taps with the largest energy, i.e. determine the

positions of the non-zeros components of B, and estimate the values of θ for the

selected Mtaps and Ks. The best performance of channel estimation is obtained

when Mtaps and Ks are matched to the effective duration and the dominant175

taps of the channel.

3.2. Effect of the Dictionary Size and Sparsity

To solve the l1-norm optimization problem discussed in the previous section,

we will employ the CoSaMP algorithm [19], as it combines good estimation ac-

curacy with low complexity. However, similarly as for the LS and MMMSE180

approaches, this algorithm requires the knowledge of the size Mtaps of the dic-

tionary, which must be matched to the effective duration of the channel, as well

as the sparsity Ks, to be able to reconstruct the channel. In this section, we

first theoretically analyze the effect of the dictionary size Mtaps and sparsity Ks,

as an improper choice of Mtaps or Ks can strongly affect the channel estima-185

tion performance and thus will influence the bit error rate (BER) performance.

Then, some simulations are conducted to verify our analysis.

First, we consider the effect of the dictionary size Mtaps on the performance.

On the one hand, if the dictionary size is too small, the search window will

not be able to ’catch’ all significant channel taps, causing a degradation of the190

channel estimation performance. On the other hand, if we select the dictionary

size too large, not only the complexity of the algorithm will increase, but also the
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estimation process will include samples having near-zero amplitude, implying

noise will start to play a larger role. As a result, increasing the dictionary size

will have a detrimental effect on both the performance and the complexity.195

Similarly, if the sparsity Ks is too small, not enough significant signal com-

ponents will be uncovered in the channel reconstruction process. As part of the

channel taps with non-negligible energy will not be included in this way, the

BER performance will be degraded. However, if the sparsity is too large, the

algorithm will start to include signal components with close-to-zero amplitude,200

indicating that the channel estimation error will increase due to the relatively

large effect of the noise on these close-to-zero channel components. Moreover,

increasing the sparsity will augment the computational complexity of the algo-

rithm.

The dependency of the MSE on Mtaps and Ks is illustrated in Figure 4,205

in which a pilot preamble with N = 128 and Np = 1 is transmitted to recon-

struct the CIR for a signal-to-noise ratio (SNR) Eb/No of 30dB. The results

are averaged over 500 random CM1-based channel realizations with Mtaps,opt =

180 effective taps and Ks,opt = 30 dominant taps. As explained, the MSE

will first reduce when Mtaps is increased, and slightly increases again when210

Mtaps > Mtaps,opt. Decomposing the MSE into the channel-dependent term

(first term of (21), Term1 in Figure 4) and the noise-dependent term (second

term of (21), Term 2 in Figure 4), we observe in Figure 4(a) that both the

channel-dependent term and noise-dependent term grow when Mtaps reduces,

for Mtaps < Mtaps,opt. When Mtaps reduces, dominant taps will start to fall215

outside the interval [0, Mtaps], implying those taps cannot be reconstructed

by the algorithm, so the mismatch between the true and reconstructed channel

increases, i.e. the channel-dependent term grows. At the same time, as not

enough dominant taps will be present in the interval [0, Mtaps], the algorithm

will start to reconstruct noise-dominated taps, implying the noise-dependent220

term also increases. This latter effect is larger when Ks is larger, as the algo-

rithm tries to reconstruct more close-to-zero taps. When Mtaps > Mtaps,opt, the

increase of the MSE as function of Mtaps is mainly due to the increase of the
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noise-dependent term, as the channel-dependent term is quasi-independent of

Mtaps, because the dominant taps are mainly contained in the first part of the225

interval, i.e. in [0, Mtaps,opt].

Further, we stated that when Ks is too small, some dominant channel taps

will not be reconstructed, while when Ks is too large, noise will start to play

a larger role. This is observed in Figure 4(b). When Ks < Ks,opt, the MSE is

dominated by the channel-dependent term, while this term becomes independent230

of Ks when Ks > Ks,opt, i.e. all dominant taps will be reconstructed. On the

other hand, the noise-dependent term grows with Ks, as more noise-dominated

taps will be taken into account.

4. Parameter Estimation

The dictionary size Mtaps and the sparsity Ks both affect the precision of235

channel estimation. Hence, knowledge about the parameters Mtaps and Ks is

indispensable. However, in realistic scenarios, prior information about these two

parameters is often not available, so we will estimate these parameters based

on the preamble. In this section, we first discuss the simplex method to jointly

estimate Mtaps and Ks. As the complexity of the simplex method is very high,240

we then propose a simpler, sub-optimal method to estimate Mtaps and Ks. We

show that the performance degradation of our method compared to the simplex

method is small. Finally, we compare the complexity of the proposed method

with that of the simplex method and the MMSE estimator.

4.1. Joint estimation245

To jointly optimizeMtaps andKs, we need to solve the following optimization

problem:

< Mtaps,opt,Ks,opt >= argmin
Mtaps,Ks

‖ΦΨξ̂ − y‖2

s.t. y = ΦΨξ.

(22)

which can be solved with the well-known simplex algorithm. This method can

accurately estimate Mtaps and Ks, as will be illustrated in Section 5. Although
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Figure 4: MSE and its constituent terms as function of (a) Mtaps for different Ks and (b) Ks

for different Mtaps.
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it is stated in [27] that the simplex algorithm in general needs polynomial time,

in the worst case, the simplex algorithm applied to the problem at hand has com-

plexity O{Mtaps,opt
2Ks,opt log2(Mtaps,opt) log2(Ks,opt)}. As this complexity is250

still very high, the simplex algorithm is unsuitable for practical implementation

in UWB MB-OFDM systems.

4.2. Adaptive CE Method

As jointly optimizing Ks and Mtaps is a challenging task, we first take a

look at the effect of both parameters on the BER performance, to be able to255

reduce the computational burden of the optimization. In Figure 5, we show the

BER of the pilot sequence as function of the dictionary size Mtaps and sparsity

Ks, with N = 128 and Np = 1. Comparing Figs. 4(a) and 5(a), we observe

that the minimum of the BER coincides with the minimum of the MSE, i.e. at

Mtaps,opt = 180, if Ks is sufficiently large. This optimal value of Mtaps for the260

BER does neither depend on the sparsity Ks nor on the SNR Eb/No. On the

other hand, from Figure 5(b), where the BER is shown as function of the sparsity

Ks, we find that when Mtaps is smaller than the optimum Mtaps,opt = 180 found

in Figure 5(a), i.e. for Mtaps = 140, the BER is largely independent of the value

of Ks, while when Mtaps ≥ Mtaps,opt, the BER shows a clear minimum at an265

intermediate value of Ks, i.e. at Ks,opt = 30. As the optimal value of Mtaps

is not prior known at the receiver, this implies that we need to first estimate

the dictionary size, to avoid that no optimum value for the sparsity can be

found. Similar results were obtained for the other channel models. Hence, in

the following, we propose an estimation algorithm for Mtaps and Ks, where in270

the first phase, the optimal value of Mtaps is determined, and in the second

phase, the optimal value of Ks. In both phases, we employ a dynamic search

algorithm.

4.2.1. Algorithm 1: Mtaps optimization

First, we will describe the algorithm to estimate Mtaps. In this algorithm,275

we need an initial value for Ks. First, we note that, when Ks > Ks,opt, the

19



140 160 180 200 220 240 260

M
taps

10-4

10-3

10-2

10-1

100

B
E

R

           : 20dB
           : 30dB
           : 40dB

K
s
=20

K
s
=64

K
s
=100

(a)

20 25 30 35 40 45 50 55 60

K
s

10-4

10-3

10-2

10-1

100

B
E

R

             : 20dB
             : 30dB
             : 40dB

M
taps

=140

M
taps

=180

M
taps

=220

(b)

Figure 5: BER performance as function of (a) Mtaps for different Ks and (b) Ks for different

Mtaps.

20



optimal value Mtaps,opt becomes (quasi-) independent of Ks. Further, we notice

from Figure 5 that selecting Ks > Ks,opt will have a smaller effect on the BER

than selecting Ks < Ks,opt. Therefore, we select Ks,initial > Ks,opt. As no prior

knowledge is available, we set Ks,initial to the maximum possible value that280

can be estimated with the preamble, i.e. Ks,initial = NNp. To find Mtaps,opt,

we define an initial search interval [Mmin, Mmax]. For the lower limit, we set

Mmin = NNp. To motivate this lower limit, we note that in practice, if the

length of the pilot preamble is shorter than the effective CIR length, the chan-

nel can not be estimated accurately. Hence, we assume that in the design phase,285

the length of the pilot preamble is selected in a proper way, i.e. that it is able to

catch all dominating channel components. Therefore, it is clear that the length

NNp of the pilot preamble is an appropriate lower limit for Mtaps. For the up-

per limit, we select Mmax = 5NNp, as it is shown in [28] that if the length NNp

of the pilot sequence is smaller than 20% of the CIR length, the CIR cannot be290

reconstructed accurately. Note that if the optimal value Mtaps,opt falls outside

this initial search interval, the algorithm can adapt the search range automati-

cally (see lines 10-13, Algorithm 1). However, for both simulated channels and

measured channels, we did not encounter any case where the optimal Mtaps,opt

was located outside this initial search interval, meaning the search interval was295

selected properly. Within the initial search interval, we select Nb equidistant

values for Mtaps, i.e. with step size Mstep = b(Mmax −Mmin)/Nbc. For each

of the Nb selected values Mtaps, we reconstruct the CIR with the CoSaMP

algorithm, and use the reconstructed channel to recover the data of the pilot

sequence and to compare the resulting bits with the known pilot symbols to300

obtain the BER, which serves as the optimization criterion in our algorithm.

From these Nb test values, we select the value Mtaps,opt that minimizes the

BER. We tighten the search interval around the found value of Mtaps,opt, i.e.

[Mtaps,opt −Mstep, Mtaps,opt + Mstep], reduce the step size with a factor Nb/2

(see line 3 of Algorithm 1), and continue the search procedure until the step305

size becomes smaller than or equal to the threshold Mstep,min, which we chose

Mstep,min = 1 in our simulations.
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4.2.2. Algorithm 2: Ks estimation

The dynamic window search algorithm to find Ks,opt, which is shown in

Algorithm 2, is similar to the algorithm to find Mtaps,opt. The initial search310

interval for Ks is set to [Kmin, Kmax] = [1, NNp], i.e. the minimum and

maximum Ks that can be estimated with a preamble length NNp. Similarly

as in Algorithm 1, we select Nb equidistant test values for Ks, with step size

Kstep = b(Kmax −Kmin)/Nbc, and reconstruct the CIR with the selected value

of Ks and Mtaps,opt from Algorithm 1, and compute the resulting BER of the315

pilot sequence. We gradually refine our search interval until the step size Kstep

is smaller than or equal to the threshold Kstep,min = 1. The outputs of this

algorithm are Ks,opt and the reconstructed CIR.

4.3. Complexity Analysis

To show that the proposed algorithm is suitable for practical implementa-320

tion, we evaluate the computational complexity of the algorithm. This com-

putational complexity, which is expressed in terms of the number of complex

multiplications (NCM), is compared to the complexity of the MMSE estimator.

The main share of the computations in the proposed algorithm stems from the

CoSaMP algorithm that is used to reconstruct the CIR for each combination325

of Mtaps and Ks. From [19], the number of complex multiplications required

in the CoSaMP algorithm equals O{Mtaps log2(Mtaps) log2(Ks)}. Hence, this

complexity depends on the considered Mtaps and Ks. In the Mtaps optimization

algorithm, given in Algorithm 1, Ks is fixed to Ks,initial, but Mtaps changes

during the course of the optimization. As in this optimization process, the330

dictionary size Mtaps will converge to Mtaps,opt, we approximate the complex-

ity of the CoSaMP algorithm by O{Mtaps,opt log2(Mtaps,opt) log2(Ks,initial)}.

Within each inner loop, Nb + 1 values of Mtaps are tested, and the inner

loop is executed O{logNb
(4NNp)} times, leading to the complexity O{(Nb

+1)Mtaps,opt log2(Mtaps,opt) log2(Ks,initial) logNb
(4NNp)}. Similarly, in the Ks-335

optimization algorithm, where Mtaps is fixed to Mtaps,opt, the complexity is ap-

proximated byO{Mtaps,opt log2(Mtaps,opt) log2(Ks,opt)}, as during the optimiza-
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tion process, Ks grows closer to Ks,opt. Further, per inner loop, Nb + 1 values

of Ks are tested and the inner loop is executed O{logNb
(NNp)} times, resulting

in a complexity O{(Nb + 1)Mtaps,opt log2(Mtaps,opt) log2(Ks,opt) logNb
(NNp)}.340

The total complexity of the algorithm therefore equals O{(Nb + 1)Mtaps,opt

log2(Mtaps,opt) · [log2(Ks,initial) logNb
(4NNp) + log2(Ks,opt) logNb

(NNp)]}.

To compare the complexity of the proposed algorithm with the complex-

ity of the MMSE estimator and the simplex algorithm, which are O{(NNp)3}

and O{Mtaps,opt
2Ks,opt log2(Mtaps,opt) log2(Ks,opt)} respectively, we consider345

the case where Mtaps,opt = 5NNp, Ks,opt = NNp and Nb = 5. As in most situa-

tions, Mtaps,opt and Ks,opt will be smaller than these values, the true complexity

will be smaller than the complexity shown in Figure 6. As can be observed in the

figure, compared with MMSE estimator and the proposed method, the high com-

plexity of simplex method makes it impracticable in channel estimation. Com-350

paring the MMSE estimator and our method, we find that when NNp > 112,

the proposed method has lower complexity than the MMSE method. Moreover,

taking into account that the worst case values of Mtaps and Ks were taken to

compute the computational complexity of our method, in practical situations,

the complexity reduction compared to the MMSE approach will be much larger355

than shown in the figure.

5. Numerical Results

In this section, we verify the performance of the proposed adaptive CE

method. The channel models (CMs) used in our simulations are based on the

UWB communication environments and propagation scenarios considered in the360

IEEE 803.15.3a standard [11] (see Table 1 for the parameters of these CMs). For

each of the four considered CMs, 500 random channel realizations are generated,

each having the same channel length Ltaps, with Ltaps = 600, 730, 1300, 2150 for

CM 1 to 4, corresponding to Ks = 30, 45, 92 and 163 dominant non-zero taps,

that are distributed over the first Mtaps = 180, 202, 341 and 698 taps of the365

channel, respectively. In the simulations, we set the bandwidth to 528 MHz, in
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Table 2: Parameters of the MB-OFDM System

Bandwidth (MHz) 528

RF Carrier Frequency (MHz) 5544

Frequency bandwidth (MHz) 5280 ∼ 5808

Number of Subcarriers N 128 256 512 1024

Subcarrier Spacing ∆f (MHz) 4.1251 2.0625 1.0313 0.5157

Sampling Rate (MHz) 528

the frequency band 5280-5808 MHz, which corresponds to band #5 in [29]. Fur-

ther, we take the number of subcarriers equal to 128, 256, 512 and 1024, which

corresponds to a carrier spacing of 4.1251 MHz, 2.0625 MHz, 1.0313 MHz and

0.5157 MHz, respectively. The sampling rate used in our simulations equals the370

bandwidth. An overview of the parameters is given in Table 2.

We first assess the probability of miss detection of Mtaps and Ks, i.e. Pmiss,

Mtaps = P (Mtaps,opt 6= Mtaps,real) and Pmiss,Ks = P (Ks,opt 6= Ks,real). To

this end, we consider the case of CM1, and transmit a pilot preamble of length

NNp = 128, in which N = 128 and Np = 1. In Figure 7, the probability of miss375

detection of Mtaps and Ks is shown for the proposed algorithm, and compared
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with those for the simplex algorithm which is implemented using the function

of fminsearch in Matlab. The figure demonstrates that when Eb/No increases,

the probability of miss detection of both Mtaps and Ks reduces, and drops below

5% when Eb/No is sufficiently large. Hence, both algorithms can determine the380

parameters Ks and Mtaps with high accuracy. Although the proposed algorithm

has a slightly higher probability of miss detection, the much lower complexity

of the proposed algorithm makers it more suitable for practical use. We also

evaluated the probability of miss detection for the other channel models CM 2

to 4, and the results are similar to that of CM1.385

Next, we evaluate the performance of the proposed channel estimator and

compare the results with the performance of OMP, SP and CoSaMP. For each of

the considered algorithms, we estimate the CIR for 500 channel realizations of

CM1, and compute the normalized mean-squared error (NMSE) E[‖(ĥ− h)‖22
/‖(h)‖22]. For the OMP, SP and CoSaMP algorithms, we assume no prior knowl-390

edge of Mtaps and Ks is available, and we set Mtaps = 256 and Ks = 60 for these

algorithms. As can be observed in Figure 8, the proposed algorithm outperforms

the other algorithms. This can be attributed to the optimized dictionary size

and sparsity in our method, resulting in a more accurate reconstruction of the
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Figure 8: NMSE of the proposed method and other CS reconstruction methods.

CIR, especially at higher Eb/No.395

To evaluate the BER performance of the proposed estimator, we transmit

for each channel realization a pilot preamble of NNp pilot symbols, followed

by 5000 OFDM symbols, each containing 1024 data symbols, where the data

is modulated using quadrature phase-shift keying (QPSK). The BER of CM

i is obtained by averaging the BER of the transmitted data over 500 channel400

realizations of CM i. The BER performance of the proposed algorithm is com-

pared with the performance of other CS methods, i.e. SP, OMP and CoSaMP,

traditional CE methods, i.e. LS and MMSE, and the case where the channel

is known. For the SP, OMP and CoSaMP methods, the same values for Mtaps

and Ks are used as mentioned for Figure 8. For CM1, the results are shown405

in Figure 9, assuming N = 128 and Np = 1. Taking into account that the

length of this pilot preamble is shorter than the effective CIR length, which

was 180 in our simulation, the channel estimators are not able to extract all

dominant CIR components. This results in a degradation of the BER compared

to the case where the channel is perfectly known at the receiver. Comparing410

the BER results, we observe that the proposed method outperforms all other

CEs, although the gap with the BER of the known channel is still relatively

26



0 5 10 15 20 25 30 35 40 45 50

E
b
/N

o
 (dB)

10-6

10-5

10-4

10-3

10-2

10-1

100

B
E

R

known channel
LS
MMSE
OMP
SP
CoSaMP
the proposed algorithm

Figure 9: BER performance of the proposed method compared to other selected methods for

CM1.

large. By increasing the pilot preamble length, by e.g. selecting Np = 4 and

Np = 8, this gap will become smaller (see Figure 10), as more CIR components

will be found. For Np = 8, several of the estimators, including the proposed415

one, exhibit a performance close to the ideal case with known channel. However,

the required pilot preamble is quite long, which will limit the data throughput

and thus its practical applicability. Therefore, this pilot preamble will be short-

ened, implying the proposed method will be an excellent solution to estimate

the channel in a practical implementation.420

Furthermore, we show the BER performance for the other channel models.

In Figure 11, the BER performance of the proposed method and other selected

methods is shown, assuming Np = 1, 2 and 4 pilot symbols of length N = 128

are used for CM2, CM3 and CM4, respectively. Our proposed method found for

the considered cases that the optimal dictionary size was Mtaps,opt = 202, 341425

and 698, and the optimal sparsity equalled Ks,opt = 45, 92 and 163, for CM2,

CM3 and CM4, respectively. We observed in our simulations that these numbers

for Mtaps,opt and Ks,opt are in accordance with the average effective duration

and the number of dominant taps of the CIRs. With these parameter settings,

we are able to recover about 85% of the power contained in the CIR. Figure 11430
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Figure 10: BER performance of the proposed method compared to other selected methods for

different lengths of the pilot preamble: (a) NNp = 512 (b) NNp = 1024.

28



0 5 10 15 20 25 30 35 40 45 50

E
b
/N

o
 (dB)

10-6

10-5

10-4

10-3

10-2

10-1

100

B
E

R

            : CM2
            : CM3
            : CM4

known channel
OMP
CoSaMP
the proposed algorithm

Figure 11: BER performance of the proposed method compared to other selected methods for

CM2, CM3 and CM4.

confirms the results from Figure 9, i.e. the proposed estimator outperforms

the other CE methods when the length of the pilot preamble is shortened for

practical reasons, so that not all dominant channel components can be retrieved.

Similarly as for CM1, when the length of the pilot preamble would be increased,

the difference between the performance of the considered CEs and that of the435

case with known channel will become smaller.

Finally, we applied the proposed method for the channels, measured with

the setup from Section 2.2. In this paper, we just show the results for channels

between transmitter and receiver positions R6, R12 and R14, corresponding to

a LoS, OLoS and NLoS scenario, and denoted by Channel 6, Channel 12 and440

Channel 14, respectively. The results for the other channels are similar to the

results of these three channels. From the measured data, we determined the

effective durations of Channel 6, 12 and 14, i.e. they are 168, 241 and 369

respectively, and the values of sparsity are 37, 61 and 91. We select Np =

1,1 and 2 pilot symbols of length N = 128 to reconstruct Channel 6, 12 and445

14, respectively. Further, to evaluate the BER performance of our method, we

transmitted 5000 OFDM symbols modulated by QPSK. The average BERs of
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Figure 12: BER performance for real, measured channels of channel 6, channel 12 and channel

14.

the three channels are shown in Figure 12. Compared with OMP and CoSaMP,

the proposed method achieves a lower BER. Although the pilot sequence has the

same length for Channel 6 and 12, the effective duration and sparsity of Channel450

6 are smaller than those of Channel 12, so the BER performance of Channel 6

is much better. Moreover, thanks to the longer pilot sequence, the average BER

of Channel 14 is lower than that of Channel 12, even though Channel 14 has a

longer effective duration and more dominant taps. Note that we can improve the

BER for Channel 12 by using the same pilot sequence length as for Channel 14.455

In that case, the BER of Channel 12 turned out to be better than for Channel

14 (results not shown in the figure). Similar to the results of the simulated

channels, the performance difference between the CS-based CE methods and

the known channel will be reduced when the length of pilot preamble increases.

460

6. Conclusion

In this paper, we propose an adaptive CS-based parameter estimation algo-

rithm for UWB MB-OFDM systems. Our method extends the CoSaMP method
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by also estimating the dictionary size Mtaps and sparsity Ks, needed to accu-

rately estimate the channel. Although state-of-the-art estimators are able to465

achieve close-to-optimal performance when the pilot preamble length is suffi-

ciently long to extract all CIR components, such pilot preamble lengths are

often not suitable for practical implementation as they limit the data through-

put. Therefore, in practice the pilot preamble is often shortened. However, this

results in a degradation of the system performance. We show in this paper that470

in such a situation, our method outperforms state-of-the-art channel estimators

considerably, as the estimated Mtaps,opt and Ks,opt better match the effective

duration and the sparsity of the CIR. Moreover, as the proposed method has

low complexity, it is suitable for practical implementation. In this paper, we

not only restricted our attention to theoretical channel models, we also evalu-475

ated our algorithm for measured channels obtained with the measurement setup

described in this paper. The results for these measured channels are similar to

the results of the theoretical channel models, meaning that our method can be

employed in practical scenarios.
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Algorithm 1 Mtaps estimation algorithm

1: Initialization: Set Ks,initial = NNp, searching block [Mmin, Mmax],

Mmin = NNp, Mmax = 5NNp, pilot sequence X, received pilot sequence y,

the number Nb of test values, Mstep = +∞ and Mstep,min = 1.

2: while Mstep > Mstep,min do % outer loop

3: Mstep ⇐ b(Mmax −Mmin)/Nbc;

4: for m = 0 : Nb do % inner loop

5: Mtaps ⇐Mmin +m ∗Mstep;

6: Obtain ĥ with CoSaMP using Mtaps, Ks,initial, X and y;

7: Calculate BERm with ĥ;

8: end for

9: mopt ⇐ argmin
m

BERm

10: if mopt = 0 or mopt = Nb then

11: Mtaps,opt ⇐Mmin +mopt ∗Mstep;

12: Mmax ⇐Mtaps,opt +NNp;

13: Mmin ⇐Mtaps,opt −NNp;

14: else

15: Mtaps,opt ⇐Mmin +mopt ∗Mstep;

16: Mmax ⇐Mtaps,opt +Mstep;

17: Mmin ⇐Mtaps,opt −Mstep;

18: end if

19: end while

20: Output Mtaps,opt.
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Algorithm 2 Ks estimation algorithm

1: Initialization: Set Mtaps,opt, searching block [Kmin Kmax], Kmin = 1,

Kmax = NNp, pilot sequence X, received pilot sequence y, the number

Nb of test values, Kstep = +∞ and Kstep,min = 1.

2: while Kstep > Kstep,min do % outer loop

3: Kstep ⇐ b(Kmax −Kmin)/Nbc;

4: for k = 0 : Nb do % inner loop

5: Ks ⇐ Kmin + k ∗Kstep

6: Obtain ĥ with CoSaMP using Mtaps,opt, Ks, X and y;

7: Calculate BERk with ĥ;

8: end for

9: kopt ⇐ argmin
k
BERk

10: Ks,opt ⇐ Kmin + kopt ∗Kstep;

11: Kmax ⇐ Ks,opt +Kstep;

12: Kmin ⇐ Ks,opt −Kstep;

13: end while

14: Output Ks,opt, CIR ĥ estimated with Mtaps,opt and Ks,opt.
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