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ABSTRACT Sourdough starters are naturally occurring microbial communities in
which the environment, ingredients, and bakers are potential sources of microorgan-
isms. The relative importance of these pools remains unknown. Here, bakers from
two continents used a standardized recipe and ingredients to make starters that
were then baked into breads. We characterized the fungi and bacteria associated
with the starters, bakers’ hands, and ingredients using 16S and internal transcribed
spacer (ITS) rRNA gene amplicon sequencing and then measured dough acidity and
bread flavor. Starter communities were much less uniform than expected, and this
variation manifested in the flavor of the bread. Starter communities were most simi-
lar to those found in flour but shared some species with the bakers’ skin. While hu-
mans likely contribute microorganisms to the starters, the reverse also appears to be
true. This bidirectional exchange of microorganisms between starters and bakers
highlights the importance of microbial diversity on bodies and in our environments
as it relates to foods.

IMPORTANCE Sourdough starters are complex communities of yeast and bacteria
which confer characteristic flavor and texture to sourdough bread. The microbes
present in starters can be sourced from ingredients or the baking environment and
are typically consistent over time. Herein, we show that even when the recipe and
ingredients for starter and bread are identical, different bakers around the globe
produce highly diverse starters which then alter bread acidity and flavor. Much of
the starter microbial community comes from bread flour, but the diversity is also as-
sociated with differences in the microbial community on the hands of bakers. These
results indicate that bakers may be a source for yeast and bacteria in their breads
and/or that bakers’ jobs are reflected in their skin microbiome.

KEYWORDS Lactobacillus, Saccharomyces, skin microbiome, sourdough

he bacterial and fungal species present in sourdough bread have the potential to

influence the flavors, aromas, shelf stability, and even nutritional quality of bread
(1-3). These microorganisms vary among starters (4, 5), regions, and baking environ-
ments (6) and may even vary within starters through time (7). Recent research has
begun to identify the potential for microorganisms from many sources to colonize
starters, including those from flour (8, 9), the air in bakeries (10), and even, some have
speculated (10), the bakers themselves. Here, we use an experiment in which we
brought together bakers from around the world to begin to disentangle these influ-
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ences, with a focus on the potential contribution of microorganisms from bakers’ hands
and bodies.

Ultimately, all starters begin with a set of relatively simple ingredients. Often, just
flour and water are mixed together and allowed to begin to ferment. Following
fermentation, starters are typically composed of both yeast and acid-producing bacte-
ria. Canonically, one or several Lactobacillus bacteria species produce the acid in the
starter, and the yeasts produce carbon dioxide. Recent research has, however, identified
a great deal more variation among starters than previously expected, including starters
reliant on bacteria and yeasts other than Lactobacillus and Saccharomyces (6, 7, 11, 12).

When starters are made, the first microorganisms with the opportunity to colonize
the starter are those in the flour itself. Flour has the potential to contain both species
of microorganisms that lived inside the grain (endophytes) and those species found
living on the outside of the grain or that colonize the grain during processing and
storage (9). In theory, microorganisms in water could also colonize, but none of the
common microorganisms in water systems are thought to play a major role in starters
(13). The dust in the air mixed into the starter may also influence the composition of
starters. Most of the bacterial genera commonly found in starters are often found in air
and dust samples (14). The presence of yeasts in dust samples is, however, rare (e.g.,
14). The microorganisms in air have the potential to add great variation among starters
in as much as the microbiology of dust and air is strongly influenced by geography,
vegetation type, and other regional factors (14).

A final potential contributor to sourdough starters is the biology of the person who
makes the starter in the first place. This is particularly true for the bacteria present in
starters—many of which are either human-associated species or closely related to
human-associated species. Bacteria of the genus Lactobacillus, for example, are domi-
nant members of human vaginal communities (15), gut communities (16), and to a
lesser extent, the hands (17). For example, in one study, 2% of the bacteria on the hands
of men and 6% of those on the hands of women were from the Lactobacillaceae family
17).

Here, we carried out an experiment to examine the correlations between the
microbes present in potential sources and the microorganisms found in starters. We
then separately tested the effect of these microbial communities on resultant bread
traits. Eighteen bakers from fourteen countries were sent flour with which to make
starter and a recipe to use in making the starter (see Fig. S1 in the supplemental
material). Bakers then brought their starters with them to Sankt Vith, Belgium, where
the bacteria and fungi of the flour, the starters, and the hands of the bakers were
sampled. We analyzed the similarity of the bacterial and fungal communities in the
starters to those in the flour and on the bakers’ hands using amplicon sequencing of
ribosomal DNA on an lllumina MiSeq platform. We particularly focused on the func-
tionally important yeasts and lactic acid bacteria. We compared the microbial commu-
nity (alpha- and beta-diversity) between starters and hands, assessed the likelihood of
flour, hands, and dust serving as sources for the starter community, and tested for a
relationship between microbial community composition and starter acidity as well as
final bread flavor.

RESULTS

Regardless of identity or geography, all bakers successfully made a starter which
would later be used to bake bread. Collectively, the starters were dominated by carbon
dioxide-producing yeasts (order: Saccharomycetales) and lactic acid bacteria (order:
Lactobacillales; Fig. 1). Baker's hands also had high relative abundances of lactic acid
bacteria and yeasts, including species which are not typically found on human skin
(Fig. 1). Within these functionally important groups, we noted amplicon sequence
variant (ASV)-level variation among bakers, both on their hands and in their starters
(Fig. 2).

Alpha-diversity metrics—both Shannon index and ASV richness— of rarefied bac-
terial and fungal communities differed between hands and starters. Compared to those
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FIG 1 Order-level composition of the bacterial and fungal communities for hands and starters by baker identity (bakers A to R). Only

orders with an average abundance of greater than 1% are shown.

of hands, the fungal communities in starters were not less diverse (P = 0.45, Mann-
Whitney U test; Fig. 3A) but were dominated, in terms of relative abundance, by fewer
taxa (P <0.001, Mann-Whitney U test; Fig. 3B). Bacteria had both lower Shannon
diversity (P <0.001, Mann-Whitney U test; Fig. 3C) and lower richness (P < 0.001,
Mann-Whitney U test; Fig. 3D) in starters than on hands. The differences among bakers
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in terms of the alpha-diversity of fungi and bacteria on their hands and in their starters
were large. However, bakers with more diverse hand communities did not have
significantly more diverse microbial communities in their starters (P> 0.4, Kruskal-
Wallis test).
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FIG 3 Alpha-diversity of rarefied bacterial and fungal communities differed between hands and starters. Boxplot shows the median and

the first and third quartiles, and whiskers show 1.5 times the interquartile range. *, P < 0.05 Mann-Whitney U test.

Similarly, rarefied Saccharomycetales yeast Shannon diversity was higher on hands
than in starters (P = 0.001, Mann-Whitney U test; Fig. 4A), although richness did not
differ significantly between the two habitats (P = 0.54; Fig. 4B). Both measures of the
diversity of Lactobacillales bacteria—Shannon index and richness—were higher on
hands than in starters (P = 0.001, Mann-Whitney U test; Fig. 4C and D). Consistent with
our results when considering all taxa, the diversity of either functional group on a
baker's hands was not predictive of its diversity in that baker’s starter (P > 0.2, Kruskal-
Wallis test).

Overall community composition at the ASV level differed between starters and
hands (fungi, P = 0.001 and R? for sample type = 0.16; bacteria, P = 0.001 and R? for
sample type = 0.22; permutational multivariate analysis of variance [PERMANOVA])
(Fig. 5, Fig. S3). Bray-Curtis dissimilarity was lower (i.e,, communities were more similar)
between starters and flour samples than between starters and hands and between
starters and dust or water samples from the baking facility for both bacterial and fungal
communities. In other words, starter bacterial and fungal communities were most
similar to flour samples.

We found that there was substantial overlap both between microbial taxa present
in starters and hands and between starter communities and flour samples (Table 1,
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Mann-Whitney U test.

Table S3). Overall, 59% of ASVs present in flour were found in at least one starter,
making up 23% of all ASVs in starters. A smaller proportion of the ASVs from hands
(11%) were found in starters, but these ASVs represented 46% of the ASVs present in
starters. These shared ASVs represented almost all of the reads in starters (97 * 4% of
bacterial reads; 97 * 4% of fungal reads) but fewer of the reads for hands (42 = 21%
of bacterial reads; 55 = of 20% fungal reads). The ASVs shared only by hands and
starters (i.e., those that were never found in flour) represented fewer reads in starters
(58 = 31% of bacterial reads; 32 = of 38% fungal reads) and on hands (29 £ 12% of
bacterial reads; 13 = 15% of fungal reads). Bacterial and fungal ASVs from flour and
hands were found at similarly high frequencies in starters (Table S4). Finally, hands had
many more unique taxa in total (1,296) and as a proportion of all ASVs (88%) than
starters or flour samples (Table 1, S3).

We also used a Bayesian approach, SourceTracker (18), to estimate the proportion of
microbes from dust, water, hands, and unknown sources that were found in sourdough
starters. SourceTracker analyses indicated that starters had the highest representation
of microbes found on hands (0.75 = 0.27; Fig. S4A), followed by flour (0.07 = 0.08) and

January/February 2020 Volume 5 Issue 1 €00950-19

mSphere’

msphere.asm.org 6

U39 Y33Y101|qIgSHBNSIBAIUN T8 0Z0Z ‘g aune uo /610’ wse aiaydswi//:ony woiy papeojumod


https://msphere.asm.org
http://msphere.asm.org/

Source Tracking Sourdough Microorganisms

A TS B 165
o
<
o
N o <
o
O ol
o
o & o
o
= fo) = <
Z o o Z o
o‘ —
] [e) o
o
< © g ] °
? o o
(o]
o - oo
? 1 T T T T T ! T T T
-0.6 -0.4 -0.2 0.0 0.2 0.4 -0.4 -0.2 0.0
NMDS1 NMDS1

FIG 5 Nonmetric multidimensional scaling of fungal (A) and bacterial (B) community portions by sample type. There is clustering of sample types and,
specifically, of flour samples with starters. Stress for fungal NMDS is 0.1799806 and for bacterial NMDS is 0.2079617.

unknown (0.14 *+ 0.23). All but two starters had a proportion of at least 0.5 identified
as sourced from hands. In contrast, when we trained a SourceTracker model with
starters identified as the potential source of bacteria and fungi and hands as the habitat
being colonized from that source (sink), we found that starters (0.25 = 0.29), unknown
(0.59 £ 0.22), and dust (0.08 = 0.09) were all common sources (Fig. S4B).

Although starter communities shared many similarities with the skin microbiome of
bakers’ hands, the effect of baker identity on starter composition was not strongly
visible in ASV-level beta-diversity. We did not find a relationship between baker identity
and beta-diversity overall (P> 0.05, PERMANOVA). We next tested whether the skin
microbiome of the bakers’ hands was more similar to their own starter than to someone
else’s using two beta-diversity metrics (Bray-Curtis dissimilarity includes abundance
data; the Jaccard index is only presence-absence). We saw that the bacterial skin
microbiome of bakers’ hands more closely resembled their own starter than a random
starter for both Bray-Curtis dissimilarity (P = 0.054) and Jaccard index (P = 0.054,
Mann-Whitney U test; Fig. 6A and B). Furthermore, bakers shared a more similar
Lactobacillales community with their own starter compared to a random starter (Bray-
Curtis, P =0.028; Jaccard, P = 0.026; Mann-Whitney U test; Fig. 6G and H). When
comparing fungal and yeast communities alone, there was a similar trend of greater
similarity to one’s own starter but no significant difference (P > 0.1, Mann-Whitney U
test; Fig. 6C to F).

As expected, the starters were acidic (pH mean, 4.50 * 0.38; total titratable acidity,
9.68 * 1.51) (Table S1), but the level of acidity varied among starters. The more similar
any two starters were in their pH, the more similar they were in their composition
(including both fungi and bacteria; P = 0.019, R? for acidity = 0.16, PERMANOVA). We
also assessed whether variation in the microbial community composition of starters
was associated with differences in the flavor of the final bread (Fig. 7). Starters were

TABLE 1 All bacterial and fungal ASVs that are shared by sources?

Source Flour Hand Starter
Flour 44

Hand 74 1,296

Starter 79 157 186
Total ASVs 133 1,463 358

aValues on the diagonal are unique to that sample type. 64 ASVs were found at least once in each of the
three sample types.
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FIG 7 A selection of the breads baked with the sourdough starters.

used to bake sourdough bread loaves following a standardized recipe and protocol
(Fig. S2). The resulting breads were scored for five taste characteristics (acid, cereal,
creamy, fermented, fruity; Table S5). Altogether, there was no association between
collective variation in these flavor characteristics and variation in microbial community
composition (P = 0.155, Mantel test). However, variation in starter community compo-
sition was associated with variation in the “acid” taste characteristic (P = 0.040, R2 =
0.13, PERMANOVA). There was also an association between Lactobacillales composition
and overall flavor (P = 0.025, Mantel statistic = 0.20) as well as with “acid” taste
(P =0.004, R? = 0.21). In contrast, Saccharomycetales community composition was not
related to aggregate flavor or to any individual flavor characteristic.

DISCUSSION

Here, we show that starters generally resemble the flour used to make them. But,
interestingly, a large proportion of the bacteria and yeasts in sourdough starters can
also be found on the hands of bakers. Even when the recipe and ingredients for a
starter and bread are identical, the diverse communities of starter bacteria and fungi
that arose— due to some mix of what was on bakers’ hands, what was in the air in their
kitchen, and other unknown sources—influenced the flavor of the bread.

In our study, 18 bakers used the same flour to make a single starter each and then,
using the same ingredients, a single loaf of bread each. The yeasts and bacteria in
starters can differ due to differences in flour type and condition (19, 20) and the
additional ingredients made using a starter (21). We sought to minimize the influence
of these factors, focusing instead on how differences in baker identity and location may
impact otherwise standardized starters. Nonetheless, the diversity of species of bacteria
and fungi we found in starters was high and not uniform. The number of microbial taxa
(ASVs) in the starters was somewhat surprising, as it was much higher than previous
estimates of global sourdough starter diversity (22). This result is due in part to our use
of DNA sequencing-based approaches, which unlike traditional cultivation-based tech-
niques, characterize both the bacteria and fungi that are easy to grow in the lab and
those that are not. Despite our different method, we still found the expected domi-
nance of yeasts and lactic acid-producing bacteria (23). Our reliance on DNA sequenc-
ing did not allow for plate counts or strain-level identification, but it had other
advantages (24), including broader taxonomic coverage and greater power to charac-
terize low-abundance samples (e.g., dust, hand swabs), thus enhancing comparability.
Future studies might pair sequence-based approaches and plate counts or strain-level
identifications on the same samples to elucidate how differences in approach alter our
understanding of these communities.

The variation in starter composition we observed is of practical relevance in as much
as it has the potential to influence the acidity of the starter as well as the flavor, texture,
shelf stability, and nutrition of the bread produced using the starter. Indeed, we found
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that the pH of the starter and bread flavor were both associated with the microbial
composition of the starter. It is known that the identity of bacteria in starters, especially
lactic acid bacteria, can influence pH and other chemical properties of bread (20, 25).
This association can occur because lactic acid bacteria produce different amounts of the
particularly “acid”-tasting acetic acid (25) or through the production of esters, alcohols,
and carbonyl compounds that can modify sourdough aromas (26). Our results corrob-
orate this, as we found that starters in which bacteria of the Lactobacillales order were
relatively more abundant were more acidic. In addition, we found that the composition
of the bacteria in the starter, including specifically, the Lactobacillales component,
influenced overall bread flavor. Future work could address whether specific members
of the Lactobacillales are responsible for making more or different compounds which
contribute to sourdough acidity and flavor.

A subset of the bacteria and yeasts found in starters was present in the flour used
to make the starters but not on the hands of the bakers. These bacteria and yeasts were
almost certainly from the flour itself, having colonized the flour either in the field or in
milling, processing, storage, and transport. Indeed, more than half (~60%) of the
microbial taxa (ASVs) present in flour were also found in at least one starter sample. In
other words, most microbial taxa found in flour successfully colonized at least some
sourdough samples. However, this is not to say that the reverse was true, that most
microbial taxa found in sourdough starters were uniquely from flour. A relatively large
number of bacterial and yeast taxa (~26% of all ASVs in starters) were shared between
the skin microbiome on bakers’ hands and the sourdough starters but were not found
in the flour. We suspect that these taxa colonized the starters from hands. We
hypothesize that while the overall microbial community of starters was most similar to
the flour used in their preparation (Fig. 5), bakers also introduced relevant species from
their hands or bodies more generally during the making and processing of the starter.
In addition, those taxa are more likely to be unique (not found in other sources) than
are taxa from flour. This hypothesis is corroborated by the results of the SourceTracker
analysis, which found hand samples to be the source of the greatest proportion of
bacteria found in starters, although it is important to note that there are limitations to
this approach and that it likely underestimates the role of unknown sources (27).

The idea that the microorganisms of mammals are key components of fermented
foods is not novel. Of course, fermented dairy products include the microorganisms in
the milk of the animal that produced the milk. They can also include the microorgan-
isms of the skin of the animal that produced the milk. Cow skin bacteria, including
strains of Staphylococcus, have been found in cheese (28). Other authors have com-
mented on the potential of the bodies of bakers to contribute microorganisms to
starters (5) or have found specific species of Lactobacillus plantarum and Lactobacillus
spicheri on bakers’ hands that have also been found in sourdoughs (10). We appear to
be the first to compare the skin microbiome of bakers’ hands to their starters in a
systematic way. Admittedly, our analyses are limited by the fact that we do not have
samples from the hands of bakers at the time when they initially prepared the
sourdough starters or replicate samples of individual starters. Future research should
include such paired samples as well as samples from nonbakers to more directly test if
bakers have unique, food-influenced microbiomes. Additional studies could test if
bakers and chefs more generally colonize the food they make as has been shown with
the traditional production of chicha, a fermented cassava drink (29, 30).

It has been argued that each human has a unique microbial contribution that is a
kind of fingerprint of his or her life (31); the same could, in theory, be true of each
baker’s bread. We did find some evidence that the individual microbiology of each
baker contributed to the uniqueness his or her starters’ microbiology, but the effect was
weak. Based on our results, we could not predict the baker who made a starter based
solely on his or her microorganisms. Why might we see many human microorganisms
in starters but relatively little match between a particular baker and a particular starter?
We can think of a few nonexclusive hypotheses. The first are technical. It may be that
the unique microorganisms contributed by bakers to their starters are unique strains
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rather than higher taxa (ASVs) and thus were missed by our methodology. Amplicon
sequencing identifies ASVs at a relatively coarse level, so approaches capturing more
genes may be necessary to identify individual contributions to starters. Some of the
relevant taxa may also have become too low in abundance either on human skin or in
starters due to travel, washing, or other physical processes between the time of
initiating the starters and when samples were collected. It is possible, for instance, that
a microbe taxon is more common one day when a baker is working in a bakery (and
has just touched another food or person) than it is the next day or week. Temporally
rare species found on human or other animal bodies may have large effects in food
fermentation. Our study design would miss such effects.

Other potential explanations are ecological. For instance, many of the yeasts and
Lactobacillales bacteria found on skin could be relatively common among humans, or
at least among bakers. We cannot rule out the possibility that the skin-associated
microorganisms we found in the starters came not from the bakers themselves but
instead from the air or equipment around the bakers (10), such that they may have
come from the bakers but also other individuals with which they live and work. Finally,
the process whereby microorganisms from hands colonize starters could be relatively
stochastic. That stochasticity is a key element in the composition of the starter
community is suggested by the observation that bacteria and fungi in starters were no
less variable from one starter to the next than were the bacteria and fungi found on
hands, even though the starters were all made using the same flour.

The relationship can also go the other way, with starters shaping the bakers working
with them. While our study was not designed to test this explicitly, it does indicate the
extent to which the skin microbiomes of bakers’ hands are unusual relative to the hands
of nonbakers. In studies to date of the hands of students (17) and the general public
(32, 33), the proportion of bacteria from the Lactobacillales has been relatively low.
These bacteria tend to be more common on the hands of women than those of men,
which has been thought to reflect incidental transfer of vaginal bacteria (human vaginal
communities are dominated by Lactobacillus species) (17, 34). We expected to find
something similar on the hands of bakers. Instead, we found that up to 27% (average,
15%) of the bacterial species and 88% (average, 33%) of the sequence reads on the
hands of bakers were from species of the genus Lactobacillus. Our study also appears
to show a much greater dominance of yeast on the hands of bakers than on hands
sampled in other studies (33, 35). Though warranting more extensive research, we
hypothesize that this dominance is due to the daily work of the bakers, which puts their
hands in contact with dough, starters, and flours for many hours a day. It is possible that
the skin microbiome of individuals’ hands more generally reflects the daily actions of
their hands but that this effect has been missed because so many of the hand studies
to date focus on students (who do not yet have a profession, especially one in which
their hands are exposed repeatedly to a particular nonrandom group of microorgan-
isms). Altogether, it seems that not only can bakers contribute microorganisms to their
foods, but their daily work contributes microorganisms to them. In other words, the
microorganisms on our hands may record not just who we are but also how we have
lived, with bakers’ bodies specifically documenting their intimate relationships with
bread.

MATERIALS AND METHODS

Experimental design. The objectives of the study were to have bakers from different locations in
Europe and North America make a spontaneously fermented sourdough starter using the same flour and
recipe and then to compare the microorganisms of these starters to the potential sources of microor-
ganisms, including bakers’ hands, flour, water, and dust. As a first step toward understanding the
relationship between the starter microbial communities and bread acidity and flavor, each baker’s starter
was used to make bread following the same recipe and using the same baking equipment. Dough acidity
and bread flavor profiles were then assessed for each bread and compared with the starter microbial
communities.

Making the sourdough starter. Professional bakers were recruited (n = 18) with the assistance of
Puratos Company. Bakers were instructed to make starters in their home country using a standardized
protocol (Fig. S1) and using flour that was shipped to them from a single source (stone-ground wheat
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flour; Epistar Tradition Francaise [T65-11/680]). Starters were made approximately 1 month prior to
sampling. All sampling complied with the North Carolina State University institutional review board
(NCSU IRB; IRB number 11952).

In short, on day 1 of the protocol, bakers mixed together a 1:1 mix of flour and unchlorinated water
and maintained it at room temperature covered. On subsequent days, the sourdough starter was fed by
removing 120 ml of starter then adding 240 ml of flour and 180 ml of water. Feeding was repeated daily
until the starter doubled overnight. Subsequently, the starter was kept in the refrigerator and only fed
once per week.

Sampling microorganism sources. (i) Samples of unrefreshed sourdough starters, water, and
dust. Bakers traveled with their starters to a central baking location in Belgium for sampling and bread
baking. Upon arrival on 4 July 2017, we sampled each baker’s unfed starter. “Unfed” or “unreplenished”
refers to starters that had not been provided flour and water in the shared baking facility. Starters were
maintained in various containers provided by the bakers for transport (most containers were glass). To
sample the starter, a sterile swab (BD BBL) was pressed into the depth of the starter (without remixing
the starter in the moment of sampling). After all starters were sampled, bakers were allowed to feed their
starter with flour and water provided by the Puratos Co. (in the same room). At this time, we sampled
the flour (stone-ground wheat flour; Epistar Tradition Francaise [T65-11/680]) that was sent to the bakers.
To account for additional sources of microorganisms other than flour and hands, we sampled the facility’s
tap water (as representative water) and dust from an interior facility door trim per the methods in
reference 14. To the extent that the time spent in a common facility influenced starters (postfeeding), the
expectation was that it would decrease variation in microbial composition.

(ii) Samples of baker’s hands. On the morning of 5 July 2017, as bakers arrived at the facility, but
prior to handling their starter, their hands were swabbed (in the facility). Swabbing consisted of one
dual-tip swab dipped in molecular-grade sterile water (MoBio) and then used to vigorously swab the
front and back of both hands (but not in between digits). Swabbing took approximately 1 minute per
person.

(iii) Samples of refreshed sourdough starters. A second sample of the now fed (or refreshed)
starters was taken. This sample was taken with a sterile swab by brushing the surface of the unmixed
starter. Additional control samples were taken of unused swabs and a swab with the sterile water used
for hand sampling.

As expected, the process of feeding starters (adding additional flour and water) did not introduce
large variation into the starter community. Starters were more similar to their prefed composition than
they were to another random starter regardless of the distance metric taken into account (P = 0.001,
Mann-Whitney U test; Fig. S5). Of note, the high similarity of unfed and fed starters suggests little change
in overall microbial composition due to (i) feeding, (ii) sampling depth (since unfed samples were
sampled at depth and fed samples were sampled on their surface), and (iii) colonization of novel
microbes over the short time periods involved in manipulation of starters. Because of the high similarity
between refreshed and unrefreshed starters (Fig. S5) and in order to avoid pseudoreplication, we only
included unrefreshed starter samples in our analyses. Due to a temporary loss of luggage, one baker did
not have a sample of fed sourdough starter.

Starter chemical analysis. The pH of each refreshed starter was measured prior to baking using a
pH meter (Knick; Elscolab). Total titratable acidity (TTA) was determined by titration (Titrino 848;
Metrohm). Briefly, 10 g of sourdough (prior to baking) was homogenized with 100 ml of distilled water
and neutralized with NaOH 0.1 N. The acidity is expressed as the volume in ml of NaOH 0.1 N added to
read a pH of 8.4. Starter pH and TTA were highly correlated (P < 0.001, rho =-0.92, Spearman
correlation; Table S1), so only analyses of pH and microbial composition are reported. All trends found
for pH and microbial composition were also found for TTA.

Bread baking and sensory analysis. Following sampling of the refreshed starters, bakers proceeded
to make a bread using shared equipment, shared space, and a standard recipe. Each baker used his or
her own starter to make a bread following a standardized recipe, ingredients, methods, and equipment
(Fig. S2). In order to screen the high number of breads (n = 17, with an additional sample used as the
reference) for flavor attributes, sensory free sorting was performed. An untrained panel of judges (the
bakers) was presented with all the breads and asked to provide five descriptors of that bread, along with
an intensity score.

Following the identification of the five dominant descriptors of all the breads, a panel of expert
judges (different from the bakers) scored each bread for flavor intensity from 0 to 10 for each of those
five descriptors (Table S5). One of the breads was chosen as a reference bread according to its average
values for descriptors. Each bread was scored by 8 to 9 judges. Judging took place over three sessions
in order to limit the number of breads assessed by any one judge.

Molecular analysis. (i) DNA extraction. The swabs were all kept at —20°C following collection.
Swabs were transported on ice to the Laboratory of Molecular Bacteriology at the Department of
Microbiology and Immunology of KU Leuven (Belgium), where DNA was extracted using the DNeasy
PowerSoil kit (Qiagen, formerly MoBio) with small modifications. In line with Fierer et al. (17), an extra
heating step was added after the addition of the lysis solution C1 at the start of the protocol. At the end
of the protocol, 5 minutes of incubation time was added to allow resuspension of the DNA on the filter
before elution (step 19). The remaining steps were performed per the manufacturer’s protocol. Extracted
DNA was mixed with DNAstable plus (Biomatrica) per the manufacturer’s protocol and shipped to the
United States for further amplification and sequencing.

(ii) DNA amplification and sequencing. Microbial communities were characterized following the
molecular and bioinformatics protocols described by Barberan et al. and Oliverio et al. (14, 36). Briefly,
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this included amplifying the v4 region of the 16S and the ITS region of ribosomal DNA with barcoded
primers to allow for sequencing in multiplex. PCRs were performed for each of the 60 extracted DNA
samples, and we included and sequenced multiple negative “no template” controls to check for possible
reagent contamination. Samples were normalized and cleaned with Sequalprep normalization plates
(Invitrogen) prior to sequencing in multiplex on the Illlumina MiSeq platform at the University of Colorado
BioFrontiers Next Generation Sequencing Facility with the 2 X 250-bp paired-end chemistry for a mixed
ITS/16S run.

(iii) DNA sequence processing. Raw sequences were demultiplexed and processed as exact
sequence variants (ASVs) with the DADA2 pipeline (37), as described at https://github.com/amoliverio/
dada2_fiererlab. The DADA2 pipeline resolves sequence variants rather than clustering by a percent
identity threshold. For both ITS and 1685, reverse reads were discarded due to poor quality. We quality
filtered reads for both to a maximum expected error threshold of 1. For the ITS data, we set truncQ = 2
and minLen = 150, and for the 16S data we set truncQ = 11 and truncLen = 240. Then we inferred
sequence variants with the DADA?2 algorithm (37), constructed a sequence table, and removed chimeras.
Taxonomy was assigned using the Silva database version 132 (38) for 16S reads and with the UNITE
database version 2.02 (39). 16S reads assigned to chloroplasts, mitochondria, or Eukaryota were removed
prior to downstream analyses. For both 16S and ITS data sets, reads not assigned a taxonomy at the
phylum level were also removed.

Samples resulted in 2,068 to 10,341 bacterial sequences for hands, 3,617 to 9,135 bacterial sequences
for starters, 1,666 to 29,293 fungal sequences for hands, and 1,579 to 30,705 fungal sequences for
starters. All raw data are publicly available through the European Nucleotide Archive under accession
number PRJEB34686.

Analyses including only hands and unrefreshed starter communities were carried out on a rarefied
data set, where 16S sequences were subsampled to a constant sequencing depth of 3,500 reads, and ITS
sequences were subsampled to 750 reads. Rarefaction removed environmental samples, however, so
analyses including flour or other environmental samples were conducted on the unrarefied data set.

Statistical analysis. All analyses were carried out in R version 3.3.3. Alpha- and beta-diversity metrics
were calculated with the package vegan (40). Alpha-diversity was calculated as ASV richness and
Shannon index. These values were compared for the bacteria or fungi and the Saccharomycetales and
Lactobacillales using Mann-Whitney U tests to compare hand swab to starter samples. The effect of baker
identity was tested with Kruskal-Wallis tests. The association between pH and TTA was tested with
Spearman correlation.

Beta-diversity between samples was calculated either as abundance-weighted Bray-Curtis dissimi-
larity or presence/absence Jaccard index using the ASV tables for hand, unrefreshed starter, flour, and
water samples or unrefreshed and refreshed starter samples. Permutational multivariate analysis of
variance (PERMANOVA) was conducted using the adonis function in the package vegan to test for
relationships between sample type, baker identity, and starter acidity on the composition of microbial
communities. Nonmetric multidimensional scaling (NMDS) plots were produced with Bray-Curtis distance
calculations using the metaMDS function.

To compare a baker’s starter with his or her hands relative to other hands, we calculated Bray-Curtis
or Jaccard beta-diversity measures among all hand and starter samples. We included only taxa present
in at least one starter and one set of hands to enhance the potential overlap between communities. We
then extracted the distances for a baker’s starter versus hand sample as well as for a baker’s starter versus
a random hand sample (selected with a random number generator). These were then compared with the
Mann-Whitney U test.

SourceTracker (18) was applied using default settings to the combined 16S and ITS data sets
including all environmental (water, dust, and flour), hand, and starter samples to assess which served as
likely sources for microbial colonization. First, we ran a model where the environmental and hand
samples were potential sources for the sourdough starter communities. Then we ran a model where the
environmental and starter samples were potential sources for hand swab microbial communities.
SourceTracker is often used to statistically identify the origin of microbes in mixtures derived from
multiple sources, such as in water supplies (41). Our use of this analysis is in line with this common
application.

In the flavor analysis, we took the average of all scores (n = 8 to 9 except for one reference bread,
which had n=1) to estimate each flavor. Most bakers judged the bread flavors similarly (average
standard deviation was 1.9). We compared overall flavors to overall composition with Mantel tests (using
the mantel function in vegan) and individual flavors to microbial composition with PERMANOVA.

Data availability. The DNA sequences referenced in the manuscript are available in the European
Nucleotide Archive under accession number PRJEB34686.
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