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Abstract

ReaxFF is a computationally efficient force field to simulate complex reactive dy-

namics in extended molecular models with diverse chemistries, if reliable force-field

parameters are available for the chemistry of interest. If not, they must be optimized

by minimizing the error ReaxFF makes on a relevant training set. Because this opti-

mization is far from trivial, many methods, in particular genetic algorithms (GAs), have

been developed to search for the global optimum in parameter space. Recently, two al-

ternative parameter calibration techniques were proposed, i.e. Monte-Carlo Force Field

optimizer (MCFF) and Covariance Matrix Adaptation Evolutionary Strategy (CMA-

ES). In this work, CMA-ES, MCFF and a GA method (OGOLEM) are systematically
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compared using three training sets from the literature. GA shows the smallest risk

of getting trapped into a local minimum, whereas CMA-ES is capable of reaching the

lowest errors for two third of the cases. For each method, we provide reasonable de-

fault settings and our analysis offers useful guidelines for their usage in future work.

An important side effect impairing the parameter optimization is numerical noise. A

detailed analysis reveals that it can be reduced, e.g. by using exclusively unambiguous

geometry optimizations in the training set. Even without this noise, many distinct

near-optimal parameter vectors can be found, which opens new avenues for improving

the training set and detecting overfitting artifacts.

1 Introduction

Molecular dynamics (MD) is a powerful tool to study the temporal evolution of various

atomistic models under realistic conditions. An essential ingredient in such simulations is a

computationally efficient method to compute reliable atomic forces at every time step of an

MD simulation. The quantum-mechanical (QM) treatment of the molecular electronic wave-

function allows one to compute these forces for any (reactive) chemical system, e.g. using

density functional theory (DFT) methods. However, for long molecular dynamics simula-

tions (nano- to microseconds) of extended atomistic models (up to millions of atoms), even

DFT approximations become computationally prohibitive. Only linear-scaling and massively

parallel (tight-binding) DFT implementations can handle such system sizes, by taking ad-

vantage of a large number of CPU or GPU cores, reducing the wall time of a single MD step

to the order of minutes or hours.1–6 Alternatively, one may use so-called force-field (FF) or

molecular mechanics approximations, where the electronic structure calculation is replaced

by a much cheaper and more approximate model to compute forces acting on atoms. Many

force fields (FFs) model chemical bonds by simple springs with empirical parameters in

Hooke’s law, which immediately reveals their major drawback, i.e. most force fields cannot

describe chemical reactions. Reactive FFs overcome this limitation with a more complex
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mathematical expression that can describe reactive processes7–10 and ReaxFF11–14 is one

of the most popular models in this category. ReaxFF owes its popularity to a combina-

tion of unique advantages. It can be reparameterized for different combinations of chemical

elements, which makes ReaxFF broadly applicable. Furthermore, the superior computa-

tional efficiency of ReaxFF has been demonstrated in comparison to (tight-binding) DFT

approximations15 and neural-network potentials.16 As opposed to hybrid QM/MM methods,

ReaxFF can describe complex systems in which many reactive events occur simultaneously

throughout the atomistic model, such as simulations of hydrocarbon oxidation17,18 or me-

chanical wear resistance of graphene.19

Even though a detailed description of the complete mathematical form of ReaxFF goes

beyond the scope of this paper, it is instructive to review a few of its essential aspects.

The ReaxFF model is a potential energy expression for an atomistic model that ultimately

takes the Cartesian coordinates of atomic nuclei and a set of empirical ReaxFF parameters

as input. Analytic differentiation of this energy with respect to atomic positions yields the

forces needed in a molecular dynamics simulation. The ReaxFF energy is a sum of many

contributions,

EReaxFF = Ebond + Eover + Eunder + Eval + Etors + EvdW + Echarge + Especific (1)

most of which are covalent terms responsible for describing local chemical phenomena: bond

breaking & formation (bond), over-coordination (over), under-coordination (under), valence

angle bending (val), bond torsion (tors). The next two terms describe non-covalent interac-

tions between all pairs of atoms within a cutoff distance, even when they are not chemically

bonded. The van der Waals (vdw) interaction is similar to the Morse potential and captures

any effects due to steric repulsion and dispersion interactions. The energy of the fluctu-

ating charge model (charge) includes the pairwise screened Coulomb interaction and the

polarization cost of the fluctuating charges. The local energy terms depend on bond orders,
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calculated for every pair of nearby atoms from their interatomic distances. Because these

bond orders are recomputed for every atomic configuration, ReaxFF is capable of describ-

ing chemical phenomena. Finally, ReaxFF contains several optional terms, which are not

employed in all of the parameterizations:

Especific = Elp + Epen + Ecoa + Econj + Etrip + EH-bond + Elg + . . . (2)

These terms can handle phenomena that are only of interest in specific cases: interaction

with a lone pair (lp), penalty for valence angles between two double bonds (pen), conjugation

correction for valence angles (coa), conjugation correction for bond torsions (conj), triple-

bond stabilization (trip) and hydrogen bonding (H-bond). The low-gradient (lg) pairwise

R−6 term was introduced to better describe long-range dispersion interactions20 but is rarely

used in recent parameterizations. More specific corrections exist, not listed explicitly in Eq.

(2) because they are irrelevant for this work, such as the C2 (carbon dimer) energy term21 or

the iron dimer term.22 Another recent extension developed by van Duin is eReaxFF, which

introduces explicit electron or hole particles that can interact with the atoms.23

As a consequence of its wide adoption, several ReaxFF implementations were developed

next to the original “Standalone ReaxFF” by van Duin.11,14,17 The development of new

energy terms in ReaxFF were done in the original code and were later adopted in other

implementations. One of the earliest parallel versions was presented in LAMMPS.24 Other

notable implementations of ReaxFF can be found in GULP,25 the code by Nomura26 and

in PuReMD.27 The latter two strongly focus on efficient parallelization on high-performance

clusters. One concern with various implementations is that they are not fully compatible

with the code by van Duin, e.g. because some were re-implemented from scratch and intro-

duced modifications to make the potential energy surface smoother.25 This introduces the

risk that ReaxFF parameterizations from the literature, calibrated with one implementation,

may no longer yield sensible results in another one. All results in this work were obtained
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with ReaxFF in ADF2018, unless noted otherwise. This implementation is directly based

on the original code by van Duin to assure that the functional form of the potential energy

closely follows the original, but has an improved efficiency and parallel scaling.28 This imple-

mentation intends to maintain a compatible potential energy with the standalone ReaxFF,

but we did fix several bugs in the force evaluation to make geometry optimization more

robust, in the frame of this project. While such changes introduce a slight incompatibility,

we give preference to accurate forces.

The ReaxFF energy expression contains many empirical parameters, which need to be

optimized before ReaxFF can be used for production simulations. Even though a consid-

erable number of tuned parameter sets are published in the literature,11,17,21,29–35 one must

extend this effort if no parameters are available yet for the chemistry of interest. To find the

new parameters, a training set must be constructed, which consists of reference properties,

xi,ref, of molecules or crystals relevant to the chemistry of interest. The ReaxFF predictions

for these properties, xi,calc({pj}), are determined by a parameter vector, pj, which can be

adjusted to minimize the deviation from the training data. To maintain compatibility with

previous works, many of these parameters are constrained to historical values and on the or-

der of 50 free parameters must be estimated. The quality of a parameter vector is quantified

by an objective function, hereafter referred to as the Error. We used the same least-squares

Error as in the original work by van Duin:36

Error({pj}) =
n∑
i=1

(
xi,calc({pj})− xi,ref

σi

)2

(3)

where the sum runs over all training data points. In each term, σi is an estimate of the

acceptable deviations between the ReaxFF calculation and the corresponding reference value.

In ADF2018, Error contributions take into account the periodicity of dihedral angles. For

example, a calculated dihedral angle of −170 deg and a reference value of +170 deg results

in only a difference of 20 deg.
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Finding the optimal parameters for a given training set is far from trivial. The tradi-

tional approach consisted of successive one-parameter parabolic extrapolations (SOPPE).36

Even though the Error is a simple sum of squares, it is in practice an ill-behaved function

of the parameters {pj}, with significant numerical noise and many local minima, such that

the SOPPE optimization becomes very laborious.32,37 It seems more appropriate to employ

global optimization algorithms. Brute-force global optimizers, which perform a grid search in

the parameter space, are computationally not feasible because their cost scales exponentially

with the number of parameters. Instead, several groups have designed genetic algorithms

(GAs) specifically for ReaxFF parameterization, aiming at a good global-optimization effi-

ciency.34,37–39 It was shown that GAs can minimize the objective function equally well or even

further than the SOPPE method originally introduced by van Duin.37,40 Furthermore, these

GAs no longer require manual intervention and human judgment while minimizing the Error.

Next to GAs, many other techniques were proposed, such as a Multi-Objective Evolutionary

Strategy (MOES),41 a parallel local search algorithm,42 Taguchi method based optimiza-

tion,43 Monte-Carlo force-field optimizer32,44 (MCFF) and Covariance Matrix Adaptation

Evolutionary Strategy (CMA-ES).45,46 The goal of this work is to assess and comprehend

the efficiency of the MCFF and CMA-ES optimizers in comparison to a state-of-the-art GA.

The tendency of optimizers to get trapped in a local minimum will be tested by restarting

the fitting procedure from the same initial guess (with different random seeds) or from dif-

ferent random initial parameter vectors. Since GAs are also popular for the parametrization

of other force fields,47–53 we expect that the comparison in this work is also useful beyond

the scope of ReaxFF.

Our comparison follows a relatively conservative approach to obtain representative test

results for the ReaxFF community. The training sets from previous GA studies of Hartke

were used without modifications,37 except for minimal corrections to one set, as will be

explained below. Furthermore, reasonable default settings were used for all optimization

algorithms, without tuning them for each specific case. Further refinements for each com-
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bination of training set and initial guess can improve the performance, for which ample

suggestions are provided through the analysis of our results.

When simply minimizing the Error in Eq. (3), there is a significant risk to overfit the

parameters. Overfitted parameters have a low Error for the training set but still produce

unphysical results in realistic ReaxFF molecular dynamics simulations.54,55 While we recog-

nize the importance of this problem, this work mainly focuses on testing and understanding

the strengths and weaknesses of the parameter optimization algorithms. Nevertheless, to

avoid overfitting, one may introduce a so-called test set, in addition to the training set. An

optimization can be interrupted when the Error on the test data increases, even though the

Error on the training data is still decreasing, a technique commonly referred to as “early

stopping”.34 Overfitting can also be observed by unrealistic values of optimized parameters

for which prior knowledge is available, e.g. an atomic radius. In such cases, it could be

beneficial to fix the parameter or to limit its interval of allowed values.

The remainder of this paper is structured as follows. In section 2, we describe training

sets, ReaxFF geometry optimization details, parameter optimization algorithms with their

settings and the evaluation criteria used to compare the performance of these algorithms.

The results of this comparison are described in section 3, where we also discuss guidelines

for an effective usage of the optimization algorithms and good practices for the design of a

new training set. Finally, section 4 summarizes the main conclusions and gives an outlook

on future work.

2 Methods

2.1 Training sets

Three training sets from the literature are used in this work: one for solid and liquid cobalt

and defects in cobalt crystals,31 one for silica clusters and (porous) crystals30 and one focusing

on disulfide mechanochemistry.34 Key properties of the three training sets are compared in
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Table 1, highlighting fundamental differences in the types of information they contain. For

example, the Cobalt set only contains energy data, while the Disulfide set is the only one

containing atomic forces. Moreover, these training sets also differ in the number of free

parameters.

Table 1: Overview of ReaxFF training sets used in this work. The number of data points in
each training set is broken down into five categories: C (atomic charges), G (geometry, inter-
nal coordinates), F (Cartesian atomic forces), P (cell parameters) and E (reaction energies).
Note that unused geometries in the geo files were not counted and similarly non-existing
geometries in the trainset.in file were ignored. The Error of the optimal parameters re-
ported in the literature is included, and Errors for the same parameters were recomputed
with ADF.

Label Npar Ngeo
Number of data points Literature

Error

ADF Error
C G F P E Total Default Torsion2013

Cobalt 12 146 144 144 1444 1459 1459

Silica 67 302 5 26 13 265 309 3196 4607 * 6438 *

Disulfide 87 231 255 4401 219 4875
12393 15577 16271

7574 †

* Computed with a development version of ADF2019.3 instead of ADF2018.
† The lower Error value could be reached by overfitting the paremeters.34

In the first place, a training set provides primary information to evaluate the Error,

see Eq. (3). This primary information consists of molecule or crystal geometries for which

reference data is provided, including atomic charges, equilibrium geometries (internal coor-

dinates), Cartesian atomic forces, cell parameters and reaction energies. The original papers

from which the training sets were taken, also contain secondary information: the final opti-

mal parameters and constraints that were imposed during the parameter optimization. The

first kind of constraint is the reuse of existing ReaxFF parameters without modification to

maintain backward compatibility. This also facilitates the generation of a new training set,

because it only needs to contain data to determine the new parameters. The second type of

constraint is the allowed interval, further denoted as [pmin
i , pmax

i ], for each parameter pi. We

followed these constraints as closely as possible. However, for the Silica training set, some of

these intervals had to be modified, as explained in section S1 of the supporting information.
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Despite the fact that we used training sets from the literature without modification to

their primary information, except for one typographical error described in section S1 of

the supporting information, we encountered difficulties reproducing literature values of the

Error for optimal parameters published with these training sets. Table 1 compares Errors

reported in the literature with the ones we computed with ADF (Default settings). While

the correspondence is acceptable for the Cobalt training set, the Error computed with ADF

for the Silica and Disulfide training sets is significantly larger. As will be explained in

section 3, the Error function for these two training sets is inherently non-robust because of

ill-behaved geometry optimizations. For a small number of molecules, the optimal geometry

is extremely sensitive to irrelevant details. For example, a change in parameters by less

than 0.5% can result in a different conformation, causing changes of the Error by 1000 units

or more. This high sensitivity makes it practically impossible to reproduce an Error value

from the literature. Note that we have computed the Error for the Silica training set with

a development version ADF2019.3, because older versions incorrectly parsed a negative van

der Waals well depth parameter. The newer version of ADF was only needed for these two

Errors because all other calculations employed positive parameters for the van der Waals

well depth.

2.2 Geometry optimization

Properties of the optimized geometries are used to evaluate the Error [see Eq. (3)], except

when energies or forces of non-equilibrium structures are specified in the training set. Hence,

many geometries need to be re-optimized for any new trial parameter vector during the

parameter optimization.

We have taken several measures to improve the geometry convergence because it re-

sults in a smoother Error function, which facilitates the parameter fitting. First of all, the

line-search algorithm in the L-BFGS optimizer was modified to handle cases with negative

curvature more gracefully. Secondly, we used relatively stringent convergence settings: the
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geometry optimization continues until the maximum force on any of the atoms drops below

0.1 kcal mol−1 Å−1. In some problematic cases, 3000 optimization steps were not sufficient,

after which the algorithm stopped, and the last geometry was used instead of the optimal

one. Such convergence issues may appear when the optimal geometry is near a point with

discontinuous ReaxFF forces or an ill-conditioned Hessian matrix, representing the curvature

of the potential energy surface. Finally, the Torsion2013 option was implemented to reduce

discontinuities in the interatomic forces, as explained in section S2 of the Supporting Infor-

mation. This option has only a small effect on the potential energy landscape and ReaxFF

results in general. For example, the last two columns of Table 1 show that the Torsion2013

correction has only a modest impact on the Error value. (The error for Cobalt is not affected

because this ReaxFF parameterization does not use torsional terms.) Because this option

improves geometry convergence with minimal side effects, it was enabled in all parameter

optimizations.

2.3 Initial guess of the parameter vector

Initial guesses of different quality were generated to test the influence on the outcome of

the parameter optimization. The ‘best’ type of initial guess is the optimal parameter vector

previously reported for these training sets. However, the literature parameters for the Silica

training set were unsuitable as an initial guess because nine parameters exceeded their al-

lowed intervals. In this case, we used minimally corrected parameters as best guess instead.

(See section S1 of the supporting information for details.) In general, the best guess may not

be optimal in this work for two reasons: (i) the Error function has reproducibility issues as

explained above and (ii) the literature parameters for the Disulfide training set were obtained

with early stopping.

An ‘educated’ initial guess was constructed from a database of ReaxFF parameters main-

tained by SCM,56 using only parameters published prior to the corresponding training set.

For every parameter, the following steps were taken:
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1. All unique historical parameter values were looked up for the same type of parameter,

associated with the same combination of chemical elements. Only those lying in the

allowed interval for the training set, [pmin
i , pmax

i ], were retained and their median was

used as a guess.

2. If in the previous step, no historical parameters were found in the allowed interval, the

search for unique historical parameters was extended and they only had to be of the

same type but they were allowed to be associated with other chemical elements. Of all

these values, we took the median.

3. If again no historical values could be found in the previous step, we just took the center

of the allowed interval as initial guess.

In case of the Cobalt training set, there is only one parameterization predating the training

set21 and the result of the above procedure is that the educated guess for Cobalt coincides

with the parameters from Ref. 21.

Finally, 10 ‘random’ initial parameter vectors were constructed for each training set. For

every parameter, we sampled random values from a uniform distribution over the interval

[pmin
i +(pmax

i −pmin
i )/4, pmax

i − (pmax
i −pmin

i )/4], i.e. the central segment of the allowed interval

spanning half the width.

Other types of prior knowledge could be used to construct an initial guess, e.g. cer-

tain ReaxFF parameters correspond to properties of chemical elements or bonds, for which

experimental or ab initio data is available. However, this approach is only applicable to pa-

rameters with a physical interpretation and we have not attempted to construct such guesses

in this work.

2.4 Parameter optimization algorithms

The settings of the parameter optimization algorithms described in this section are not

excessively tuned for each combination of training set and initial guess. Instead, our settings
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are reasonable defaults with which we aimed at an acceptable trade-off between global and

local optimization performance for one run. With this choice, we obtain results that a

non-expert can expect. While case-by-case tuning of optimization algorithm settings can

be beneficial, subsequent tweaking of settings becomes computationally infeasible when the

cost of a single run is already high.

The first algorithm in our comparison, the Monte-Carlo Force Field (MCFF) optimizer,32

is primarily inspired by a physical model. By sufficiently slowly cooling down a many-particle

system, it will eventually reach its ground state. By applying the same process to a simulated

system, one may obtain a good approximation of the global minimum of any high-dimensional

function, a technique commonly referred to as simulated annealing.44 The two remaining op-

timization algorithms are Evolutionary Algorithms and are inspired by the biological model

of evolution: a population, where individuals are defined by their genes (parameter vectors),

is evaluated and only the fittest individuals (lowest Error) are retained (in a modified form) in

the next generation. Over many generations, the genes evolve towards optimal fitness. Evo-

lutionary Algorithms form a class of parameter optimization algorithms that simulate this

mechanism, with the same purpose of finding the minimum of a high-dimensional function.

Two algorithms from this class are considered in this work: the Covariance Matrix Adapta-

tion Evolutionary Strategy (CMA-ES)45,57 and a Genetic Algorithm (GA) implemented in

OGOLEM.37

2.4.1 Monte-Carlo Force Field (MCFF) optimizer

MCFF uses simulated annealing to find optimal parameters.32,44 While this is in principle

a global optimization method, a true global optimization with simulated annealing requires

very slow cooling rates, which can be too costly in practice. This difficulty is comparable to

rapid cooling of a liquid, which can result in a glass instead of a crystal with a lower energy.

At every iteration, MCFF makes a small change to the parameter vector and computes

the corresponding change in the Error function. In this work, the small step consisted of
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a random change, of 10% of the parameters, sampled from a uniform distribution over the

interval [−(pmax
i −pmin

i )s/100, (pmax
i −pmin

i )s/100], where s controls the magnitude of step size.

When the error decreases, the step is always accepted. In case of an increase, it is accepted

with a probability exp(−βn∆Error), where βn is the inverse dimensionless temperature at

iteration n. The initial value of s was set to 1.0 and MCFF dynamically updates s to keep

the acceptance ratio within user-specified bounds, in our case [50%, 70%].

For every combination of training set and initial guess of the parameters, we performed

three MCFF runs with 9k, 3x3k and 45k iterations. In case of 3x3k, 3 MCFF runs of 3000

steps were done in series, where the second and the third run are restarts using the optimal

parameters from the previous run as initial guess.16 The initial inverse temperature was

always determined by

β0 =

√
Npar

2

1

C1Error0

, (4)

where Npar is the number of optimized parameters, Error0 is the Error of the initial param-

eters. In case of the second and third segment of a 3x3k run, β0 is derived from the initial

Error of the current restart instead of the Error of the initial guess. C1 is approximately

the initial magnitude of relative thermal fluctuations of the Error and was set to 1, allowing

MCFF can escape local minima easily. If one prefers MCFF to perform a more local search,

C1 should be reduced by one or two orders of magnitude. The final inverse temperature is

set to

βN =

√
Npar

2

1

C2

, (5)

where C2 is approximately the absolute fluctuation of the error at the final iterations and

was set to 5. Such a small value for C2 will let MCFF converge to the bottom of a (local)

minimum. The above relation between Error fluctuations and inverse temperature would be

exact if the Error were a quadratic function of the ReaxFF parameters and the sampling

were complete, as shown in section S3 of the supporting information. In practice, these

relations are approximate because the Error is a more intricate function and the number of
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steps is too small for a complete sampling, especially when the Error is nearly flat in some

directions.38 To obtain an annealing simulation, βn is divided by a constant factor at every

iteration of the MCFF algorithm:

βn
βn+1

=
N

√
C2

C1Error0

(6)

where N is the total number of iterations. The above configuration of the MCFF algorithm

can be implemented with the control parameters in Table 2.

Table 2: MCFF and CMA-ES settings used in the ReaxFF control file. Control parameters
not included in the table are left to their default value.

MCFF

mcffit N = 9000, 3000 or 45000 Number of MCFF iterations.

mcbeta β0 =
√

Npar

2
1

C1Error0
Initial inverse temperature.

mcbsca βn
βn+1

= N
√

C2

C1Error0

Value by which the inverse temperature is
divided at every step.

mcstep 1.0
The initial value for the step size s. The
maximum change of a parameter in one MC
step is mcstep/mcrxdd.

mcrxdd 100
Constant denominator in the expression for
generating random steps. (In principle re-
dundant as it can be absorbed into s.)

mcscps 1.05
The step size s is multiplied (divided) by this
factor when the acceptance ratio is too high
(low).

mctart 50.0 The target (minimum) acceptance ratio

mcmart 70.0 The maximum acceptance ratio

mcacpf 0.1
Fraction of the parameters that is changed in
one MCFF step.

CMA-ES

mcffit N = 20000 Maximum number of CMA-ES iterations.

ffotol TolX = 10−6 or 10−5 CMA-ES convergence criterion. (See text for
details.)

mcrxdd Nσ = 4
Controls the width of the initial normal dis-
tribution in parameter space.
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2.4.2 Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES)

CMA-ES is a stochastic gradient-free optimization algorithm proposed by Hansen et al 45,57

and is occasionally used for force-field parametrizations.46,53,58,59 Starting from a user-provided

initial guess, CMA-ES iteratively improves a multivariate normal distribution in the param-

eter space to find a distribution whose random samples minimize the objective function. In

essence, one iteration consists of the following steps and we refer to Ref. 45 for a detailed

description:

1. A population of λ = 4 + b3 lnNparc random points (trial parameter vectors) is drawn

from the normal distribution, where Npar is the number of parameters being optimized.

The non-elitist version of the algorithm was used, denoted as (µ/µW , λ)-CMA-ES, im-

plying that no parameter vectors from previous iterations were added to the population.

2. The Error is computed for all of the trial parameter vectors.

3. The population is sorted by increasing Error and only the first λ/2 points are retained

and assigned a weight, according to the default logarithmic weighting scheme from Ref.

45.

4. The mean (center) and covariance of the normal distribution are updated using the

weighted points, using heuristic rules explained in Ref. 45.

5. When σ‖pg‖ and σmaxi
√
Cii drop below a threshold, TolX, convergence is reached and

the algorithm stops. In these criteria, σ is a variable step size, C is the current estimate

of the covariance matrix and pg is an average over previous steps with an exponential

window. More details on these quantities can be found in Ref. 45. Alternatively, one

may also stop after a maximum number of iterations.

The value of the objective function at each trial point is only used to rank the points, which

makes CMA-ES invariant to any rank-preserving (strictly increasing) transformation of the
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objective function. As the evaluation of each trial point is completely independent from the

rest of the population, this step of CMA-ES is trivially parallel.

Starting from the initial guess, the covariance matrix C is incrementally improved by the

feedback from sampled points and tends to approximate the inverse Hessian matrix, thus

capturing the relative sensitivities of the parameters and also the correlations between them.

The step length σ (overall width of the sampled distribution) is automatically controlled by

the algorithm in every iteration, depending on the directions of previous steps. If subsequent

steps move in a similar direction, the step length is increased accordingly. If, instead, sub-

sequent steps tend to be in opposite directions, the algorithm is overshooting an optimum

and thus responds by scaling down the step length.

The initial mean of the normal distribution is set to the initial guess (see section 2.3)

and the initial covariance matrix is diagonal with each diagonal element set to ((pmax
i −

pmin
i )/Nσ)2, where Nσ = 4. With this value of Nσ, CMA-ES starts with a relatively broad

initial distribution, such that the algorithm explores a large portion of the parameter space

before converging. One may turn CMA-ES into a more local optimizer with higher values

of Nσ. We used TolX = 10−6 for the Cobalt training set and TolX = 10−5 for the two

other training sets. These convergence criteria are very tight, which allows us to test if the

algorithm can find better solutions even after it has practically converged. Finally, we also

terminate CMA-ES when it reaches 20k steps. Our configuration of the CMA-ES algorithm

can be reproduced with the control parameters in Table 2.

The CMA-ES algorithm is implemented using the c-cma-es library.60 The upper and

lower bounds on the parameters (pmin
i and pmax

i ) are imposed by setting the Error to the

maximum floating point value whenever parameters fall outside their allowed interval.

Because multiple Error evaluations are used in one CMA-ES iteration (λ defined above),

one must be careful when comparing the efficiency with MCFF, in terms of number of

iterations needed to achieve a low Error. For the Cobalt, Silica and Disulfide training sets,

λ is 11, 16 and 17, respectively. In a serial calculation, this would be the relative cost of one
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CMA-ES iteration compared to MCFF. However, in ADF, multiple Error evaluations can be

carried out in parallel within one CMA-ES iteration. To avoid ambiguities with differences in

computational cost of one iteration in different algorithms, the number of Error evaluations

(#Error calls) will be used to quantify the computational cost.

2.4.3 Genetic Algorithm (GA)

Compared to CMA-ES, a genetic algorithm follows Darwin’s theory of evolution more closely.

GAs mathematically model the crossover and mutation of genes upon reproduction and the

survival of the fittest species in each generation. In the context of ReaxFF, GAs have been

proposed as effective global parameter optimization strategies.34,37–39 To remain consistent

with the previous GA studies for optimizing ReaxFF parameters, the OGOLEM implemen-

tation was selected for the current work.34,37

In a genetic algorithm, a parameter vector is denoted as a set of genes of an individual and

a population of such individuals is optimized by constructing child individuals from which

only the fittest are retained. In this work, a starting population of 500 individuals comprises

an initial guess (see section 2.3) and a set of uniformly distributed vectors within the allowed

parameter intervals. In OGOLEM’s pool-based algorithm, two new children are generated

and evaluated in one iteration and the best one replaces a lesser-fit individual from the pool

as soon as the calculation of the fitness has completed. Any new child is derived from two

parents, selected from the population, with a higher probability of selecting fitter ones. The

parents’ genes are exposed to either binary or unary genetic operations to produce genes

for the new individual. Because the genes of fitter parents contribute more to the following

generations, a genetic algorithm produces a fit population after many iterations. In our

work, fitter means a lower value of the Error in Eq. (3).

The complete input files used for OGOLEM are provided in section S4 of the supporting

information and only the most important settings are summarized below. The number

of iterations is set to 110k, 160k and 170k for the Cobalt, Silica and Disulfide training
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sets, respectively. This way, the maximum number of Error evaluations is the same as for

CMA-ES. A child’s genes are derived using either a binary (recombination or crossover)

or a unary (mutation) operator, with probabilities of 80% and 20%, respectively. Binary

recombination implies an exchange of genetic information between parents’ genes and can

be realized with different crossover flavors. In this work, we used (i) a mixing recombination

operator (20% probability), which determines child genes as a weighted average of its parents’

values and (ii) a multipoint exchange (80%), which defines a random number of cutting

points in the parameter vector and switches between the two parents genes after each point.

The unary mutation generates new child’s genes by making random modifications to the

genes of one parent. Either a subset of the parameters are taken from a uniform distribution

over the entire interval of allowed values (20%) or small perturbation to some parameters are

sampled from a Gaussian distribution (80%). OGOLEM also supports niching, which defines

equidistant bins for every parameter and imposes conditions on the number of individuals

that may occupy each bin. We used the niching setting from Ref. 37, but these had a

relatively low impact on our calculations. The number of individuals rejected by the niching

conditions was marginal in all our calculations.

In addition to the basic settings described above, more details can be controlled through

the OGOLEM input file (see section S4 of the supporting information), which is both a

weakness and a strength of genetic algorithms. Ample settings allow one to tune the algo-

rithm to specific use cases, but they also make it far from trivial for casual users to control

these settings effectively.

A particular advantage of the pool-based GA implementation in OGOLEM is its parallel

efficiency. CMA-ES supports synchronous parallelization, which means that all Error calcu-

lations within one iteration have to be completed before a new iteration can be started. When

one Error calculation takes much longer than all others, some cores become idle until the

last calculation of an Error within one iteration has completed. The pool-based GA allows

for asynchronous parallelization, meaning that whenever an Error calculation has completed,
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the algorithm can decide which parameter vector to process next, without having to wait for

the completion of other Error calculations, effectively avoiding idle CPU cores.

2.5 Evaluation criteria

While the main performance criterion in this work is the lowest value of the Error reached

during an optimization, we also check other aspects of the trajectories through parameter

space followed by the optimization algorithms. For each combination of training set, initial

guess and optimizer settings, we performed 10 optimizations. All optimization runs are

ranked by the lowest Error reached at any point during the optimization. The lowest Error

for the best, second best and worst run are compared to test (i) the sensitivity to the initial

guess and (ii) the tendency of the algorithm to get locked into local minima. We also report

the number of Error evaluations needed to reach this lowest Error for the best run, which is

a good indication for efficiency of the optimization. To asses how much the parameters have

changed, we also compute the distance (Euclidean norm) d1 between the initial guess and

the parameter vector of the lowest Error (for the best run) in reduced parameter units:

p̃i =
pi

pmax
i − pmin

i

(7)

Finally, we also compute the distance d2 between the optimal parameters of the best and

second best run, to investigate parameter degeneracies. It was previously observed that

the Error is not sensitive to certain linear combinations of parameters, making the optimal

parameters degenerate.38

3 Results and discussion

In total 45 sets, with 10 parameter optimizations each, were carried out in this study. There is

one set for every combination of (i) three different training sets (Cobalt, Silica and Disulfide),

(ii) three optimizers (MCFF, CMA-ES and GA) with three different settings for MCFF and
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(iii) three different qualities of the initial guess (best, educated and random). A summary

of the numerical results for each set, in line with the evaluation criteria discussed above, is

given in Tables 3, 4 and 5. In addition, Figure 1 shows the decrease of the error as function

of the number of Error evaluations for four out of 45 representative sets. Similar plots for

all 45 sets are included in section S5 of the supporting information. In case of MCFF, all

Error values are plotted, for CMA-ES, only the lowest Error at each iteration is shown and

for GA, the lowest Error up to a given point is depicted.

The most important result in Tables 3, 4 and 5 is the significant spread on the lowest

Error between the best and the worst out of 10 runs, for all 45 combinations of algorithm,

initial guess and training set. The variation is explained by the random seed affecting

stochastic optimization algorithms. When random initial guesses are used within one set,

these differences also affect the outcome. For the random and educated guesses, the lowest

Error in the worst run is always significantly higher compared to the Error values from the

literature in Table 1. Hence, performing just a single run with any of the algorithms from

this work, starting from a realistic guess, holds a significant risk for obtaining relatively poor

parameters.

The spread between best and worst run is a good inverse measure for the robustness of

an optimization algorithm, i.e. it shows how reproducible the entire procedure is. From this

point of view the GA results are the most appealing, with the lowest spread. The least robust

optimizations are the MCFF-9k runs, which have a significant risk of getting trapped in high

local minima of the Error function. This is partially addressed by restarting the MCFF a

few times (3x3k) or by annealing slowly (45k), but this is still, especially for random initial

guesses, not as robust as GA. CMA-ES is generally more robust than MCFF, but it is still

more sensitive to initial guess and random seed than the GA, in particular for the silica

training set.

A second important observation is that for the Cobalt and Disulfide training sets, the

lowest Error from the best (out of 10) CMA-ES runs is significantly lower than that of
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Table 3: Overview of Cobalt parameter optimization results. Each row summarizes 10
optimization runs carried out with identical settings. (See text for details.)

Algorithm
(#Error calls)

Guess
Best run 2nd-best

run

Worst
run d1

2* d2
3*

#Error to
lowest [k] 1

Lowest
Error

Lowest
Error

Lowest
Error

MCFF-9k
(9k)

best 9 1386 1392 1477 0.15 0.18

edu 8 1737 2066 3925 0.81 0.84

rand 9 1623 2430 4492 1.05 1.25

MCFF-3x3k
(9k)

best 6 1362 1374 1450 0.15 0.17

edu 6 1711 1860 3439 0.63 0.37

rand 7 1708 1842 6306 0.34 0.80

MCFF-45k
(45k)

best 39 1360 1363 1449 0.22 0.25

edu 41 1532 1806 3265 1.04 1.32

rand 45 1422 1458 3064 1.10 1.12

CMA-ES-20k
(≤220k)

best 50 1180 1199 2437 1.45 0.43

edu 89 1157 1172 2467 1.47 0.99

rand 23 1150 1168 3013 1.01 0.70

GA-110k
(220k)

best 217 1344 1357 2468 0.68 0.78

edu 220 1347 1375 2845 1.10 0.72

rand 220 1346 1468 2765 1.19 0.58

1 The number of Error evaluations before the lowest Error was reached, divided by
1000.

2 Distance from the initial guess to the optimal parameter vector for the best run.
3 Distance between the optimal parameter vectors in the best and second best run.
* Distances are in dimensionless parameter units, see Eq. (7).
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Table 4: Overview of Silica parameter optimization results. Each row summarizes 10 opti-
mization runs carried out with identical settings. (See text for details.)

Algorithm
(#Error calls)

Guess
Best run 2nd-best

run

Worst
run d1

1* d2
2*

#Error to
lowest [k] 1

Lowest
Error

Lowest
Error

Lowest
Error

MCFF-9k
(9k)

best 4 5709 6096 8622 2.38 2.89

edu 5 5995 6755 8125 2.48 2.82

rand 7 5882 6334 11795 2.46 3.23

MCFF-3x3k
(9k)

best 9 4639 4724 5825 2.34 2.58

edu 6 4598 4678 6425 1.29 2.11

rand 9 4574 6913 57189 2.63 2.76

MCFF-45k
(45k)

best 17 4885 5034 7298 2.66 2.83

edu 12 5632 5695 11412 2.56 2.93

rand 36 5059 5536 9768 2.76 2.34

CMA-ES-20k
(≤320k)

best 95 3791 3890 10217 2.14 2.21

edu 116 3742 3870 10539 2.08 2.40

rand 209 3727 4097 7888 2.68 2.75

GA-160k
(320k)

best 319 3587 3618 3986 2.15 2.37

edu 215 3705 3712 4356 1.86 2.06

rand 167 3577 3642 4062 2.55 2.57

1 The number of Error evaluations before the lowest Error was reached, divided by
1000.

2 Distance from the initial guess to the optimal parameter vector for the best run.
3 Distance between the optimal parameter vectors in the best and second best run.
* Distances are in dimensionless parameter units, see Eq. (7).
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Table 5: Overview of Disulfide parameter optimization results. Each row summarizes 10
optimization runs carried out with identical settings. (See text for details.)

Algorithm
(#Error calls)

Guess
Best run 2nd-best

run

Worst
run d1

2* d2
3*

#Error to
lowest [k] 1

Lowest
Error

Lowest
Error

Lowest
Error

MCFF-9k
(9k)

best 8 11899 11981 14305 1.80 2.49

edu 8 14852 15721 19655 2.93 3.06

rand 9 11960 14332 25634 2.75 2.77

MCFF-3x3k
(9k)

best 9 10914 11248 13389 1.44 1.79

edu 6 13754 14595 20816 2.65 2.79

rand 6 13886 14311 39381 2.71 3.10

MCFF-45k
(45k)

best 34 10605 11719 15341 2.83 3.18

edu 44 9608 11828 19898 3.27 3.33

rand 44 8507 9684 15274 2.90 2.69

CMA-ES-20k
(≤340k)

best 309 8994 10337 13257 2.34 2.89

edu 248 8693 9128 15386 3.12 2.79

rand 250 6716 9388 14665 3.10 2.57

GA-170k
(340k)

best 328 18524 19213 22170 1.97 2.19

edu 339 18054 18478 21270 2.44 2.46

rand 340 19285 19489 21637 2.33 2.32

1 The number of Error evaluations before the lowest Error was reached, divided by
1000.

2 Distance from the initial guess to the optimal parameter vector for the best run.
3 Distance between the optimal parameter vectors in the best and second best run.
* Distances are in dimensionless parameter units, see Eq. (7).
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Figure 1: Representative plots of the Error as function of the number of Error calls, for
MCFF (a, b), CMA-ES (c) and GA (d). Each plot displays the progress of the Error for 10
optimizations, with square boxes showing the lowest error achieved in each run. (Training
set and algorithm settings are indicated in each panel.) Differences within one plot are
caused by the stochastic behavior of the optimization algorithms and in panel (b) also by
the differences between the random initial guesses. In panels (c) and (d), the plot on the
right is a continuation of the plot on the left, with different axes to depict the Error near
convergence.
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the GA. With the current settings, the GA has not converged yet in all the cases. This

is evident for the disulfide training set, i.e. no saturation has been reached yet in Fig. 1d

and related figures on pages S19 and S21 of the Supporting Information. For the disulfide

training set with best initial guess, the GA was continued up to 4 million iterations, which

yielded a lowest Error in the best run of 9502, still without reaching a visible saturation of

the Error. We expect even more GA iterations would further decrease the Error, which we

have not tested due to limitations of our computational resources. CMA-ES is certainly not

an exhaustive global optimizer, e.g. it may converge to a relatively high local minimum.

However, it demonstrates remarkable local optimization efficiency because it exploits the

parameter covariance,45,57 unlike MCFF or GA.

The rate of convergence of the tested algorithms is also markedly different, as shown

in Figure 1. MCFF slowly cools down the parameters and the lowest Error is usually en-

countered close to the end. More MCFF iterations (45k steps) led to lower Errors, as one

would expect from any simulated annealing method. The restarts (3x3k steps) are in some

cases advantageous over one slower annealing of 9k steps, see e.g. Table 4 for random ini-

tial guesses. Because the restarts do not dramatically deteriorate the lowest Errors for other

cases, they can be used by default to reduce the risk of getting trapped into a local minimum

with MCFF.16 However, significant improvements are often made in the last restart, see e.g.

Figure 1b, such that additional restarts could lead to even lower Error values. CMA-ES first

explores a wide region of the parameter space, resulting in very high initial Errors. After-

wards, it exhibits a rapid decrease of the Error over the first few thousand Error calculations,

after which the Error levels off to a plateau. In some rare cases, such a plateau is followed

by another decrease in the Error after several 10k Error evaluations. Therefore, when using

CMA-ES, it could be promising to implement a pruning scheme,46 where one first performs a

series of short CMA-ES optimizations with different initial guesses or random seeds and then

continues only the most promising ones with additional CMA-ES iterations. The number of

steps needed in the short runs depends on the complexity of the training set and the number
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of free ReaxFF parameters. With hindsight, for the training sets considered in this work,

a few thousand Error evaluations would have been sufficient. The progress of the Error of

the GA follows a similar pattern as CMA-ES, starting with a very high values, followed by

a rapid decrease. In comparison, CMA-ES reaches lower values earlier in most runs, with a

few exceptions, confirming the above observations, i.e. that CMA-ES can be more efficient

but is not as robust. Note that Fig. 1d and corresponding GA Error plots in section S5 of the

supporting information show the lowest Error up to a given iteration. The GA continuously

attempts to escape its current local minimum and many of these attempts result in a high

Error, not shown in these plots.

The quality of the initial guess may have some positive influence on the lowest Error, but

the effect is marginal. A (rare) logical example can be found when optimizing parameters

with MCFF over 3x3k steps for the Disulfde set: the lowest Error with best, educated and

random guesses are 10914, 13754 and 13886, respectively. However, the educated guess may

also lead to inferior results in comparison to the random guesses. An interesting case is

the Disulfide set with the CMA-ES optimizer, where the lowest Error with best, educated

and random guess are 8994, 8693 and 6716, respectively. In addition, in all sets of 10 runs

with random initial guesses, there is no significant rank correlation between Error for the

initial guess and the lowest Error. The limited impact of the initial guess is consistent with

our settings of MCFF, CMA-ES and GA. The algorithms will explore a significant part of

the parameter space in the first iterations in an attempt to avoid convergence to a high

local minimum. This also implies that the parameter trajectories quickly depart from the

initial guess. One may lower the initial fluctuations in MCFF (lower C1 in Eq. 4) or the

initial width in CMA-ES (higher Nσ) to let these algorithms stay closer to the initial guess.

Obviously, this also increases the risk of getting trapped into a local minimum with a high

Error.

The performance of any of the selected parameter optimization algorithms, e.g. to find

a lower Error, can be improved by carefully tuning the algorithm settings or by performing
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subsequent runs, as shown in this work for MCFF. It would go beyond the scope of this work

to perform such a tuning on each combination of training set, initial guess and optimization

algorithm. Instead, our comparison shows the typical differences in behavior of the selected

optimization algorithms, which a non-expert may expect using reasonable default settings.

Finally, we observed that two runs with the same initial guess and the same algorithm

may converge to significantly different parameters, yet having nearly equal Error values. An

illustrative example is the optimization of parameters for the Silica training set with CMA-

ES using the educated initial guess. In this case, the best and second-best runs have similar

Errors: 3742 and 3870, respectively. Yet, the distance between these two solutions (d2 =

2.40) is of the same order as the distance from the initial guess to the optimal parameters of

the best run (d1 = 2.04). This is a general pattern: comparable (low) Errors can be obtained

with significantly different parameter vectors. This is most likely due to the presence of

several local minima with a similar depth in the Error function. To shed some light on the

origin of distinct solutions with nearly the same Error, Figure 2 depicts the Error as function

of a linear interpolation (in 1000 steps) between the solution from the best and second-best

run (CMA-ES and educated guess), for the three training sets. These scans illustrate that

the Error is not a convex function and may thus have several local minima. Our findings

do not exclude the possibility that the Error is insensitive to certain linear combinations of

parameters, which could also result in multiple solutions with a similar Error.38

The curves in Figure 2 also exhibit a significant degree of noise for the Disulfide and to

larger extent for the Silica training set, in line with previous works.32,40 To illustrate the

severity of the noise, the Error of neighboring points in Figure 2b can differ by 1000 units,

while the parameters change by less than 0.5%. Such levels of noise alone can create many

local minima, most of which are irrelevant. This also explains why a recomputation of the

Error for the Silica and Disulfide training sets in Table 1, using force-field parameters from

the literature, can differ strongly from earlier publications. For these training sets, the Error

itself is not robust, i.e. small changes parameters may have a large impact on the Error.
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Figure 2: For the three training sets, a linear scan through parameter space is performed:
pai +x(pbi − pai ), where x ∈ [0, 1]. The two end points of the scan, pai and pbi , are the solutions
of the best and second best run when optimizing the parameters with CMA-ES using the
educated initial guess. At 1000 equidistant grid points for x, the total Error is computed
and shown in the plots as a black curve. In case of the Silica and Disulfide training sets, the
red curve is the Error without those contributions that cause large discontinuous jumps in
the Error along the linear scan.
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Because this noise in the Error degrades the performance of any optimization algorithm, the

remainder of this section addresses its origins and explores mitigation strategies for future

work.

A detailed analysis revealed that the jumps in Figure 2 are caused by 8 out of 309 items

in the Silica training set and 11 out of 4875 items in the Disulfide training set. The Error

without these noisy items (red curve) is much smoother. We repeated some of the CMA-ES

runs after removing the problematic items from these training sets. While the lowest Error

for the worst run decreases notably, the results for the best run do not improve significantly.

This means that the problematic items in the training set mainly increase the risk that CMA-

ES converges to a higher local minimum. In other words, one can also improve the robustness

of a parameter optimization by designing training sets without noisy Error contributions.

To understand the origin of the noise in Figure 2, we investigated every term in the Error

function, see Eq. (3), along the linear scan. Noise in a ReaxFF prediction, ∆xi, relative to

a mean value 〈xi〉, adds a contribution to the noise in the Error (to first order) comprising

two factors:

∆Errori ≈
2

σ2
i

|〈xi〉 − xi,ref|︸ ︷︷ ︸
factor 1

∆xi︸︷︷︸
factor 2

(8)

When we observe significant noise in the Error, this can be either due to a large first or second

factor. This is consistent with earlier work of Larsson et al,40 where it was observed that

the Error function becomes smoother near the optimal parameters, which can be explained

by a decrease of the first factor.

For the Silica training set, apparently only 8 out of the 309 Error terms are responsible

for the largest jumps in Figure 2. Several smaller discontinuities are also present for exactly

the same reasons as the larger jumps. Most of the problematic terms in the Error are related

to molecules for which at least two (but often many more) metastable conformations or

configurations exist. Two examples are shown in Figure 3. The 12-membered silica ring in

Figure 3a can have many slightly different conformations due to the high flexibility of the Si-
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O-Si angles. Figure 3b represents the products of a silica condensation reaction. The water

molecule is weakly bound to the condensed silica cluster, with two possible configurations

differing in energy by 20 kcal mol−1. The end result of the geometry optimization (either

of the two states) depends erratically on the force field parameters, resulting in sudden

changes of the Error by approximately 300 units with only tiny changes in parameters. One

could reduce this sensitivity by (a) using more rigid molecules and (b) by including reaction

products separately in the training set instead of combining them into a single complex.

Another problematic case is the energy of a slightly expanded unit cell of quartz. The

training set specifies that this geometry should only be optimized for five steps, instead of

the usual 3000, without reaching convergence. Due to the large remaining atomic forces,

small changes in geometry cause large differences in energy. The exact configuration after

five steps depends unpredictably on force field parameters and algorithmic details of the

geometry optimizer, which is another source of noise. In this case, allowing for more geometry

iterations should resolve the issue, at the expense of an increased computational cost.

Figure 3: Two of the problematic molecules in the Silica training set responsible for discontin-
uous jumps in Figure 2b: (a) a 12-membered silica ring and (b) the product of a ring-closing
condensation reaction of a linear silica trimer. For both molecules, 100 optimized geometries
are shown in overlay, obtained with different ReaxFF parameters along the scan. In part
(b), the water molecule, which is a product from this condensation reaction, is part of this
geometry, for which ReaxFF predicts roughly two stable positions relative to the three-ring.

For the Disulfide training set, 11 out of 4875 Error terms are responsible for all the visible
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noise in Figure 2. These 11 terms measure errors on dihedral angles (torsions about C-O

and C-S bonds) in the four molecules shown in 4. The geometry optimization of the four

molecules is usually not complete after 3000 steps. In case of convergence failure, the last

geometry is used as the best available approximation of a converged result. However, due to

the incomplete convergence, the internal coordinates contain a virtually random component,

which is yet another source of noise.

Figure 4: Four molecules in the Disulfide training set, whose Errors on the dihedral angles
are responsible for the noise in Figure 2c.

Remarkably, there is no visible noise in Figure 2 for the Cobalt training set, for which

there could be two explanations. First, the Cobalt training set only contains energy dif-
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ferences, which are not sensitive to small deviations in the geometry, because the nuclear

forces are nearly zero after the geometry optimization. A second possible explanation is that

the Cobalt Reactive force field uses exclusively two-body terms, thereby eliminating some

sources of noise present in three- and four-body energy terms.

The relation between geometry convergence and noise in the Error provides a second

explanation for the observation of Larsson et al. that the Error becomes smoother near the

optimal parameters. The geometries provided in the training set are normally the optimal

ones that ReaxFF should reproduce. Hence, with good ReaxFF parameters, fewer geometry

optimization steps are needed, resulting in a lower risk for geometry convergence failures and

corresponding discontinuities in the Error function.

4 Conclusions and outlook

Our systematic comparison of the MCFF, CMA-ES and GA optimizers reveals that all three

methods require multiple independent optimization runs to obtain parameters with a low

Error. Particularly, a single optimization run with any of these methods, with reasonable

default settings and an educated (or random) initial guess, has a significant risk of obtaining

parameters with relatively high errors. The main reason is that the end result of these

stochastic algorithms is affected in an unpredictable manner by the random seed and the

initial guess.

Different optimization algorithms have their strengths and weaknesses. For example,

CMA-ES is capable of finding the lowest Error for two out of three training sets, but does

not find them systematically. Depending on the initial guess or the random seed, it may

also converge to a higher local minimum. In contrast, GA is more robust, i.e. it exhibits the

minimal difference between the lowest Error for independent runs.

With any of the tested optimizers, further tuning of algorithm settings may improve their

performance and result in effective methods to optimize ReaxFF parameters. For example,
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one can switch between different algorithms in subsequent runs to combine the robustness

of GA with the CMA-ES local optimization efficiency. Alternatively, many independent

short runs, e.g. with CMA-ES, can compensate for its risk of getting trapped in high local

minima. Such advanced schemes will certainly be more effective than a single run with a

single method, yet they also exhibit a larger number of hyperparameters, which may require

case-by-case tuning.

For all three training sets in this work, independent optimization runs result in clearly

different ReaxFF parameters with almost equally low Error values, which seems troublesome

at first glance but in fact provides useful information. Intuitively, one may simply select

the lowest minimum. However, different solutions of comparable quality can be used more

effectively, which will be explored in future work. For example, one could also select a

local minimum affected less by overfitting, with a low Error on a test set instead of the

training set, in analogy to to early stopping. Another use case is improving the reliability of

ReaxFF simulations with reinforcement learning. The spread on outcomes from production

runs using different near-optimal parameters is a lower bound for the uncertainty on the

prediction of interest. To reduce this uncertainty, we suggest to add properties of molecules

to the training set, for which ReaxFF results vary with different near-optimal parameters.

Including such reference data will narrow down the region in the parameter space where the

Error is low, potentially reducing overfitting artifacts. This method of enhancing training

sets should allow one to start even from an incomplete training set and continuously extend

it until consistent predictions for a production run are obtained.

Our assessment also highlighted the importance of a robust geometry optimization for the

calibration of ReaxFF parameters. When geometries converge poorly, the final ones contain

a random component, which propagates to the Error and impairs the parameter calibration.

In the course of this work, we have refined the geometry optimization algorithm used in

the ADF2018 implementation of ReaxFF, resulting in a smoother Error function. While

such improvements are clearly beneficial, discontinuities in the Error may still appear when
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optimized geometries have a high sensitivity to the force field parameters, e.g. in case of very

flexible systems in the training set with different possible conformations. In future work,

convergence issues or multiple (meta)stable configurations could be detected automatically

through a high sensitivity of the geometries to small changes in ReaxFF parameters.
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