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Removing the Hidden Data Dependency of DIA with
Predicted Spectral Libraries
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Data-independent acquisition (DIA) generates comprehensive yet complex
mass spectrometric data, which imposes the use of data-dependent
acquisition (DDA) libraries for deep peptide-centric detection. Here, it is
shown that DIA can be redeemed from this dependency by combining
predicted fragment intensities and retention times with narrow window DIA.
This eliminates variation in library building and omits stochastic sampling,
finally making the DIA workflow fully deterministic. Especially for clinical
proteomics, this has the potential to facilitate inter-laboratory comparison.

With data-independent acquisition (DIA), an MS instrument
regularly measures precursor ions and continuously cycles
through predefined m/z ratio windows to equally regularly
measure the intensity of their fragment ions throughout an LC
gradient. This is both more qualitative and quantitative than
data-dependent acquisition (DDA), where precursor ions are
measured intermittently while fragment ions are only measured
stochastically. However, the complexity of DIA data has shown
to be very challenging.
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To date, the most common peptide-
centric way to address this complexity is
using previously identified peptides from
DDA as targets in the DIA data.[1] First,
DDA peptide identifications are trans-
lated into a spectral library with Pep-
tide Query Parameters (PQPs), which
typically contain the sequence as well
as the analytical coordinates (m/z, in-
tensity, and retention time or RT) for
the observed ions for a given peptide.
These PQPs are then used to compute an

evidence score for each target peptide, based on its fragment
traces in DIA.[2] Ultimately, these evidence scores are supple-
mented with additional features, e.g., ppm and RT errors, allow-
ing a semi-supervised machine learning algorithm to weigh and
re-score the target peptides to obtain a maximum of true targets
at an empirically determined false discovery rate (FDR) using the
target–decoy approach.[3–5]

Unfortunately, deriving PQPs from DDA data intrinsically
means transferring its limitations. In fact, fractionation, stochas-
tic data acquisition, processing, and identification introduce bias
in the library and require considerable effort. This compromises
inter-laboratory comparison and can even alter the biological con-
clusions between laboratories.[6] However, thanks to the availabil-
ity of state-of-the-art prediction algorithms, these PQPs can now
be predicted directly, setting the stage for much easier and much
more reproducible peptide-centric DIA data extraction.[7–9]

Here, we compare the effect of using libraries from different
origins on peptide-centric approaches, by assessing their qual-
itative and quantitative performance on a public wide window
(10–20 m/z) DIA dataset of HeLA cells[10] (Figure 1). Three basic
spectral libraries were used here, with PQPs derived from a)
an experimental DDA dataset, b) a protein sequence database
(FASTA), and c) a predicted spectral dataset. Each of these
three libraries can be used directly as a source library, or can
be converted into a DIA library by using them first on a narrow
window (2 m/z) DIA dataset of the sample. The resulting six
possible libraries can all be used alike by the EncyclopeDIA
software to identify and quantify wide window DIA data.[10] We
define in the further text (i) peptide detections as being reported
by the software above 1% FDR, (ii) peptidoforms as having
deconvoluting charge states and (iii) robust peptides as being
detected in three separate runs with at least three transitions.
In-house or public DDA source libraries are frequently built

by extensive fractionation of samples. With adequate statistical
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control, such proteotypic libraries allow direct peptide detections
in wide window DIA (Figure 1Aa).[11] We illustrate this by us-
ing the publically available Pan-Human library, which contains
nearly 10 000 proteins derived from 331 DDA runs on a range
of human cell lines and tissues[12] (Figure 1Ba). To reduce the
effort and variability from DDA library building, a library-free
peptide-centric data analysis workflow was proposed recently.[13]

Herein, the PECAN (or Walnut) scoring algorithm allows direct
detection of peptides derived from a FASTA in wide window DIA
data (Figure 1Ab). This is akin to a source library that i) contains
only peptide sequences and m/z coordinates, and ii) lacks prior
selection of proteotypic peptides. On wide window DIA data, this
approach thus provides a limited number of PQPs, which is not
sufficient to differentiate between the high number of false tar-
gets, i.e., true negatives, and the lower number of true positives
in the library.[14] This manifests as indiscernible target and decoy
score distributions, resulting in a very high false negative rate
(FNR; Figure 1Bb).
Here, we propose a promising way to improve upon the

FASTA source library—while still omitting prior DDA—by
predicting fragment ion intensity and RT in silico (Figure 1Ac;
Figures S1 and S2, Supporting Information). Using a spectral
dataset with such predicted fragment intensities (MS²PIP) and
peptide RTs (Elude) more than doubles the number of peptides
detected in the wide window DIA (Figure 1Bc).[7,15] However,
considering all tryptic peptides in a Human proteome still un-
derperforms compared to the Pan-Human DDA library, which is
fully contained in the predicted spectral dataset (Figure 1Ba,Bc).
Notably, this is not due to poor prediction because predicting
only those peptides present in the Pan-Human library performs
very similar to using the Pan-Human library directly (Figure S3,
Supporting Information) and the underperformance can thus
only be attributed to the many false targets when using the
complete database.[11] An elegant way to filter out false target
peptides upfront, is by measuring a pool from every condition
with staggered narrow window DIA (Figure 1Ad–f). This reduces
MS2 chimericity to DDA-like quality in a DIA setting, allowing
detection with increased specificity. This accurate prior filtering
makes the statistical burden of false targets in the wide window
DIA surmountable again. Notably, due to instrument limitations
this “Precursor Acquisition Independent From Ion Count”
(PAcIFIC)[16] can currently only be performed by means of gas
phase fractionation (GPF), i.e., sampling different m/z regions
separately.[10] Still, the added acquisition depth and specificity
allows for 88k (DDA), 47k (FASTA), and 95k (predicted) doubly
and triply charged peptide detections as reported by the soft-
ware, corresponding to 84k, 44k, and 90k peptidoforms in six
narrow window GPF DIA runs of a HeLA cell lysate (Figure S4,
Supporting Information). To assure that this additional filtering
is accurate, we confirmed the estimated FDR by using an en-
trapment experiment wherein we included Pyrococcus furiosus
proteins as false targets alongside the expected human proteins
in the respective source libraries.[17] Hereby, the measured FDR
for narrow window DIA filtering is 2% for the DDA, 1% for the
FASTA, and 1% for the predicted source library, in accordance
with the theoretically estimated FDR based on the target-decoy
strategy. In the process, we can measure the identification cost
of adding false targets: adding 3–6% false targets results in an

Significance Statement

Data-independent acquisition (DIA) is quickly developing into
themost comprehensive strategy to analyse a sample on a
mass spectrometer. Correspondingly, awaveof data analysis
strategies has followed suit, improving the yield fromDIAex-
perimentswith each iteration. As a result, aworldwidewave
of investments inDIA is already takingplace in anticipation
of clinical applications. Yet, there is considerable confusion
about themost useful and efficientway to handleDIAdata,
given theplethora of possible approacheswith little regard for
compatibility and complementarity. In our study,weoutline the
currently available peptide-centricDIAdata analysis strategies
in aunifiedgraphic called theDIAmondDIAgram. This leads
us to an innovative and easily adoptable approachbasedon
predicted spectral information.Most importantly, our contri-
bution removeswhat is arguably the biggest bottleneck in the
field: the current need for data-dependent acquisition (DDA)
prior toDIA analysis. Fractionation, stochastic data acquisi-
tion, processing, and identification all introducebias in the
library. By generating libraries throughdata independent, i.e.,
deterministic acquisition, stochastic sampling in theDIAwork-
flow is now fully omitted. This is a crucial step toward increased
standardization. Additionally, our results demonstrate that a
proteome-widepredicted spectral library can surrogate an ex-
haustiveDDAPan-Human library thatwasbuilt basedon331
priorDDA runs.

average decrease of 1–2% in detections (see Entrapment Section
in Supporting Information Methods).

Additionally, the peptide detections in narrow window DIA
can be translated into novel and integrated PQPs, which are
calibrated to the specific LC–MS system and are specific to DIA
(Figure 1A). This approach was recently made readily applicable
as chromatogram libraries: DIA libraries of narrow window DIA
peptide detections comprising their calibrated PQPs.[10] Such
chromatogram libraries outperform direct wide window DIA
extraction for every source library. The modest gain for a DDA
source library (≈20%) derives mainly from PQP calibration, as
only 50% of the source peptides was filtered out (Figure 1Ba,Bd).
In contrast, in the FASTA source library, 98.5% of the pep-
tides were filtered out, and RT and intensity coordinates were
generated de novo. Taken together, this resulted in the largest
gain (≈170%; Figure 1Bb,Be). Finally, the chromatogram library
derived from a predicted spectral library increases the number
of detections by ≈100% compared to direct wide window DIA
data extraction, making it the most efficient overall peptide
detection strategy of the DIAmond DIAgram (Figure 1Bc,Bf).
Importantly, when looking only at robust peptide detections, i.e.,
with a minimum of three transitions and found in triplicate,
the gain compared to the Pan-Human library is rather modest.
Additionally, the robust peptides detected by all three chro-
matogram libraries show a large overlap, convincingly showing
that the Pan-Human library is very exhaustive and that all three
chromatogram libraries mainly detect proteotypic peptides
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Figure 1. Peptide-centric data extraction fromwide windowDIA data. A) DIAmondDIAgrampresenting peptide-centric strategies for DIA data extraction.
Peptide-centric approaches rely on libraries (central column) that contain PeptideQuery Parameters (PQPs), which are derived from the peptide sequence
and can additionally contain the three ion coordinates, i.e., mass to charge ratio (m/z), Intensity (Int), and retention time (RT) (three-part pie charts).
These can either be experimental (blue), theoretical (grey), or predicted (red). PQPs are used to score the evidence of peptide detections in continuous
DIA data (boxes). These are supplemented with additional features of the match so that a support vector machine can weigh and re-score them to obtain
a maximum of true targets at an empirically determined FDR using the target-decoy approach (arrow heads). DDA source libraries (both in-house and
public) only comprise prior proteotypic peptide identifications and contain measured PQPs for all three ion coordinates. These are therefore directly
applicable to quantify peptides in 10–20 m/z wide window DIA (Wide DIA) data (a). However, when a proteome FASTA is used as a source library,
sensitivity is reduced (dashed arrow), i.e., too many false negatives are produced due to the high statistical burden (b). This also holds for libraries
with predicted fragment intensities (MS²PIP) and RT (Elude), albeit to a lesser extent (c). Prior 2 m/z narrow window DIA (Narrow DIA) provides the
specificity to remove false targets in the sample first (d–f). The DIA ion coordinates from these detections can additionally be integrated into new and
calibrated PQPs (cal). These DIA libraries, called chromatogram libraries, can be derived from any source library (triple arrow). B) Doubly and triply
charged peptide detections in wide window DIA following each of the routes depicted in (A). Shading highlights the number of robust peptides that
is detected in triplicate wide window DIA runs with at least three transitions, allowing robust quantification. C) Comparison of the identified robust
peptides in Wide DIA for route (d–f). The large overlap shows that all three approaches detect proteotypic peptides. Only peptides of double and triple
charge that are detected in triplicate wide window DIA runs with at least three transitions are shown.

(Figure 1C). Peptides unique to the Pan-Human library include
very high molecular masses that were not predicted, high
molecular weight peptides that generate many doubly charged
transitions that are not predicted by default, as well as very
small peptides with inherently poor RT or fragmentation pattern
predictions. Peptides that are unique to the predicted library
are all peptides that were not present in the Pan-Human source
library and are very low abundant in the wide window DIA data,
implying they were missed during the DDA sampling in the
Pan Human library (Figure S4, Supporting Information). Note
that some peptides will pass the detection threshold only in the
narrow window DIA and not in the wide window DIA because
of increased interference in the latter (1788 for the predicted and
673 for the Pan-Human). Importantly, the PQP requirements of
the source library for building chromatogram libraries on narrow
window DIA are relatively liberal: the measured Pan-Human
library was acquired on a TripleTOF instrument but allows wide

window DIA data peptide detection on an Orbitrap instrument.
The in silico equivalent is that 95% of the detected peptides
overlap when the MS²PIP engine is trained on either Orbitrap
or TripleTOF data. As a result, other fragment ion intensity
predictors such as Prosit and Deep Mass[8,9] perform similarly
when combined with narrow window DIA[18] (Figures S5 and S6,
Supporting Information). Overall, the peptide-centric workflow
seems to have matured to a level that has covered much of the
most obvious growing potential. Fortunately, very different ways
of mining DIA data are continuously being presented, such as
the use of neural networks or building ion networks.[19,20]

We conclude that predicted libraries are highly relevant and
performant for wide window DIA identification, and that three
elements of a spectral library affect its overall performance: i) the
amount of false targets included, ii) the amount of informative
PQPs, and iii) the accuracy of PQPs on the specific instrument
setup. In this study, we could show that a narrow window DIA
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acquisition of six GPFs combined with a predicted spectral
library of the full human proteome was able to surrogate a
measured DDA Pan-Human library, thus liberating the DIA
workflow from any stochastic acquisition. Especially for clinical
proteomics, this can facilitate inter-laboratory comparison. Im-
portantly, the software tools MS²PIP, ELUDE, and EncyclopeDIA
are all instrument independent, publicly available, and mutually
compatible, thus making this workflow immediately accessible
to everybody interested.

Code Availability

MS²PIP, Elude, Prosit, and EncyclopeDIA are open source, li-
censed under the Apache-2.0 License, and are hosted on https://
github.com/compomics/ms2pip_c, https://github.com/percola
tor/percolator, https://github.com/kusterlab/prosit, and https://
bitbucket.org/searleb/encyclopedia/wiki/Home. All supporting
material is available on https://github.com/brvpuyve/MS2PIP-
for-DIA/.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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