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Abstract In this paper the multi-objective, multi-fidelity optimization of a
wing fence on an unmanned aerial vehicle (UAV) near stall is presented. The
UAV under consideration is characterized by a blended wing body (BWB),
which increases its efficiency, and a tailless design, which leads to a swept
wing to ensure longitudinal static stability. The consequence is a possible ap-
pearance of a nose-up moment, loss of lift initiating at the tips and reduced
controllability during landing, commonly referred to as tip-stall. A possible
solution to counter this phenomenon is wing fences: planes placed on top of
the wing aligned with the flow and developed from the idea of stopping the
transverse component of the boundary layer flow. These are optimized to ob-
tain the design that would fence off the appearance of a pitch-up moment at
high angles of attack, without a significant loss of lift and controllability. This
brings forth a constrained multi-objective optimization problem. The eval-
uations are performed through Unsteady Reynolds-Averaged Navier-Stokes
(URANS) simulations. However, since controllability cannot be directly as-
sessed through Computational Fluid Dynamics (CFD), surrogate-derived gra-
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dients are used. An efficient global optimization framework is developed em-
ploying surrogate modeling, namely regressive universal co-Kriging, updated
using a multi-objective formulation of the expected improvement. The result
is a wing fence design that extends the flight envelope of the aircraft, obtained
with a feasible computational budget.

Keywords Multi-Objective Optimization · Surrogate Based Optimization ·
Regressive Universal Co-Kringing · Tip stall ·Wing Fence · Unmanned Aerial
Vehicle

1 Introduction

The widespread use of unmanned aerial vehicles (UAV) has become clear over
recent years. Within the range of UAVs that exists nowadays, this paper fo-
cuses on those that operate at a chord-based Reynolds number (Rec) below
5× 105, the condition which is referred to as low Reynolds number flow [18].

Airfoils operating at low Reynolds number conditions are characterized by
the appearance of a transitional separation bubble [35]. It is therefore of im-
portance to correctly resolve this phenomenon to assure a correct estimation
of the flight behavior of the UAV. This can be obtained by means of compu-
tational fluid dynamics (CFD) if appropriate turbulence modeling is applied.
The relatively low computational cost that is attributed to Reynolds-Averaged
Navier-Stokes (RANS) simulations allows its use in increasingly complex 3D
geometries. In the last couple of decades, a number of turbulence models have
been developed that attempt to model the transition phenomena that are at-
tributed to low Reynolds number flow. Here Menter et al.’s γ−Reθ model [22]
is used based on a comparative study of transitional turbulence models [36]. It
results in deviations of CL and CD up to 10% for the investigated conditions
near the stall angle.

The unmanned aerial vehicle which will serve as the base of this study
can be noted by its blended wing body (BWB) design [26]: a tailless aircraft
with its fuselage, the aircraft’s main body, integrated in the wing. The ab-
sence of a horizontal tailplane enforces the sweeping and twisting of the wing
to obtain longitudinal static stability, the intrinsic desire of the airplane to
correct minor changes in its angle of attack (AoA). However, the sweeping
of the wings introduces a pressure gradient on the wing normal to the free
stream, decreasing from the root to the tip. When the air is moving relatively
slowly, such as in the boundary layer, the flow will be influenced by this dis-
tribution and be sucked towards the tip. Moving towards the tip, this effect
will result in a more rapid growth of the thickness of the boundary layer and
in a higher likelihood of flow separation at high angles of attack, for example
during landing. This leads to a loss of lift, commonly referred to as stall, and
loss of effectiveness of the control surfaces (elevons). A special case of stall is
tip-stall. As its name indicates, the tips of the wing start stalling first. This
is a common but unwanted characteristic of swept wings. Since the tips are
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generally located behind the center of gravity (CoG), tip stalling will result
in a pitch-up moment, thus pulling the plane further into stall.

A number of solutions have been developped to tackle the problem of tip
stalling, such as vortex generators [24,1] and wing fences [37]. The wing fence,
boundary layer fence or potential fence can be defined as a plate which is
placed on top of the wing aligned with air flow and, depending on its design,
extending up to the trailing edge or extending over the leading edge to the
lower surface. It was the first aerodynamic device introduced on swept wings
to tackle the phenomenon of tip stalling. It has a straightforward concept:
stopping the transverse component of the boundary layer flow and changing
the lift distribution [9,25,31]. It is unambiguous to install on the wing with-
out making any modifications to the shape of the wing itself, making it an
attractive device.

Optimization of the geometry of the wing fence to obtain a stable, but as
slow as possible descent without a severe loss of lift and controllability and
in the absence of a nose-up pitching moment translates itself in a constrained
multi-objective optimization problem. In the 90s Multi-Objective Evolution-
ary Algorithms (MOEAs) such as NSGA-ii were often the first choice to tackle
such a problem. However, even with the advent of high performance computing
(HPC), this can be computational infeasible when the calculation of objectives
and constraints relies on CFD simulations. Thus, an efficient framework must
be used such as the efficient global optimization (EGO) algorithm by Jones et
al. [13], which relies on the introduction of an intermediate level in the form of
a surrogate model namely Kriging, which builds forth on the concepts of Gaus-
sian Processes. The EGO algorithm makes use of the Expected Improvement
(EI) to update the surrogate, but was developed for single-objective problems.
In the previous decade, a series of multi-objective reformulations of the Ex-
pected Improvement such as Keane’s Euclidean Expected Improvement have
been formulated [17,40,12,14,28,2].

The description of the initial geometry and the optimization problem, the
definition of the objective functions and constraints and the parameterization
of the wing fence are found in §2. The methodology by which the wing fence is
to be optimized is presented in §3: a surrogate based optimization framework
is proposed combining low-fidelity data obtained on a coarse grid and high-
fidelity data obtained on a fine grid by URANS simulations using the γ−Reθ
model. Furthermore, the operation conditions are added as variables that can
change continuously. As such, we overcome the limitations of multipoint prob-
lems where the objective is optimized in a discrete set of operating conditions
[24,16]. In §4 the convergence of the optimization is discussed, as well as the
initial design and the Pareto front from an aerodynamic point of view.
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2 Problem Description

2.1 Optimization Case

The minimization of the descent speed in a controllable fashion without the
risk of tip-stalling through the addition of a well-positioned and well-designed
wing fence translates into a constrained multi-objective optimization case. The
calculation of these objectives and constraints will be explained in this section.

In figure 1, the force diagram of the UAV during descent is presented,
where L corresponds with the lift, D with the drag and W with the drone’s
weight. The latter is a fixed value, while the former two can be written as
CL(α, δ,Re) 1

2ρV
2S and CD(α, δ,Re) 1

2ρV
2S. In these equations, CL and CD

correspond with respectively the lift and drag coefficient, both of which are
a function of the angle of attack α, the elevon deflection δ and the Reynolds
number Re. ρ corresponds with the density of air, V with the descent speed
and S with the projected area of the wing. The Reynolds number is defined
as Re = ρ · V ·MAC/µ with µ the dynamic viscosity of air and MAC is the

mean aerodynamic chord defined as 2
S

∫ b/2
0

c(y)2dy where y is the coordinate
along the span and b is the span. Also present in the diagram are the thrust
T , the flight path angle θ and the pitching moment Mpitch around the UAV’s
CoG.

θα

L

D

Mpitch

T

W

V

Fig. 1: Force diagram UAV drawn around the CoG

The equilibrium of vertical force, horizontal force and longitudinal mo-
ment1 are given by equations 1. Considering the significant influence of the
elevon setting on the aerodynamic coefficients, CL, CD and CM,pitch, the three
equations are directly coupled. This set of three non-linear equations contains
five unknowns: α, δ, θ, V and T . Thus, for every α, δ and θ, the first objec-
tive V (and a corresponding T ) can be determined using equations 1a and 1b.

1 The longitudinal moment is addressed as the pitching moment and defined as the total
moment around the tranverse/lateral axis, perpendicular to the symmetry plane with its
origin in the center of gravity. For equilibrium flight, this moment must equal zero. In this
regard, the pitching moment coefficient of the UAV differs from the conventional pitching
moment of an airfoil, which is defined around its aerodynamic center.
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However, as three instead of only two out of the five unknowns have been fixed
for three equations, they are not independent and have to satisfy the moment
equilibrium in equation 1c which is the first constraint.

Increasing θ, thus descending steeper, decreases T up to the point that a
reverse trust must be generated. The influence of θ on the V is minimal, the
latter changing only a few percent when changing the former between 0o and
20o. In this work, CL, CD and CM,pitch are obtained using CFD-simulations,
as will be explained further.


Lcos(θ) +Dsin(θ) + T sin(α− θ) = W

T cos(α− θ) + Lsin(θ) = Dcos(θ)

Mpitch = 0

(1a)

(1b)

(1c)

The second objective, controllability, is expressed as the roll moment that
is obtained through an infinitesimal elevon deflection around the equilibrium
position:

M ′(x′) =
∂Mroll

∂δ
=

1

2
ρV (x′)2Sc

∂CM,roll(x
′)

∂δ
(2)

The absence of tip-stalling corresponds to the absence of the nose-up pitch-
ing moment and thus longitudinal static stability, expressed as ∂CM,pitch/∂α <
0. The longitudinal static stability is added as a second constraint. Thus a con-
strained multi-objective optimization problem is obtained: the fence design is
modified to minimize V while maximizing controllability, subject to moment
equilibrium and longitudinal static stability constraints.

x′ = arg minx′ {V (x′),−M ′(x′)} s.t.

{
Equations 1a,b,c

∂CM,pitch(x′)/∂α < 0
(3)

2.2 Parameterization

The parameters of the wing fence design are chosen such that every combi-
nation can easily be meshed in a structured manner as to avoid altering the
grid discretization error (see figure 2). The fence is defined as the wall between
structured mesh blocks, leading to a zero-thickness fence. It is believed by the
authors that the inclusion of the thickness of the fence leads to a larger dis-
placement effect. However, the effect of the aforementioned is of lesser impact
than for example position and height, which makes its inclusion undeserving
taking further into account the additional computational cost attributed to
the increased mesh complexity.
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Fig. 2: Mesh detail and parametrization of the wing fence

1. The spanwise position of the fence (s), ranging from the fuselage to the
tip.

2. The height of the fence perpendicular to the wing (h), expressed as a
percentage of the aerodynamic chord, ranging from 0 to 10%.

3. The length on the suction side of the wing (lup), measured from the leading
edge to the hinge point of the elevon, expressed as a percentage of the
constrained local chord, ranging from 0 to 100%. The length does not
extend to the trailing edge, because it was found that this introduces a
strong buffeting on the elevon [27].

4. The length on the pressure side of the wing (ldown), measured from the
leading edge to the hinge point of the elevon, expressed as a percentage of
the constrained local chord, ranging from 0 to 100%.

3 Methodology

3.1 Computational Fluid Dynamics

To model the transitional flow over the UAV we use the correlation-based
γ −Reθ model, which builds on the k− ω SST model, but distinguishes itself
through the addition of a supplementary transport equation for the intermit-
tency γ and the momentum thickness Reynolds number at transition Reθt.
The former represents the time fraction the flow is turbulent and allows tran-
sition to be spread in space. The latter assures that the model captures strong
variations of the turbulent intensity, that may occur due to turbulence decay,
the influence of the free-stream and the pressure gradient [22]. This model
was chosen over other transitional models based on a comperative study with
experimental data for high angle of attack behavior [36].
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All calculations are performed using the CFD-code ANSYS Fluent 16.2
with a second-order upwind discretization for convective terms, second-order
central for diffusive terms, least squares cell based gradient approximation, a
transient second-order implicit formulation and the SIMPLE pressure-velocity
coupling.

The mesh is created in a hybrid manner: a structured hexahedral mesh is
created in the close proximity of the body and extending in the wake through
the generation of blocks. Defining a wall between these blocks allows the cre-
ation of the wing fences. Outside of the structured region an unstructured
grid is created composed of tetrahedral cells. Roache’s grid convergence index
(GCI) is used to quantify the discretization error, corresponding to an esti-
mate of the relative error that would be obtained in case of grid doubling with
a second-order method, even if the former was not performed during the study
[29].

The refinement study has been performed on three levels for the residual
convergence, time-step size and mesh size. In the case of the meshes, two of
them make up the low (1.5 million cells) and high (11.5 million cells) fidelity
levels used during the optimization. One finer mesh has been added (24 mil-
lion cells) to establish whether the low and high fidelity mesh lie within the
asymptotic range such that the mesh is fine enough to resolve the physical
phenomena correctly enough, even on the low fidelity mesh. The meshes have
been assessed for the clean geometry at α = 15o, which approximately corre-
sponds to the stall angle. The functional that is evaluated is the lift coefficient,
CL. The low fidelity calculation with a time step size of 1× 10−5 has a GCI of
18.8% and takes approximately 500 core hours to finish, while the high fidelity
simulation has a GCI of 2.7% using the same settings and takes approximately
5000 core hours to finish.

3.2 Surrogate Modeling

Expensive high fidelity simulations are needed to correctly resolve the pro-
gression of separation on the surface of the UAV in the vicinity of the stall
angle. However, confronted with the staggering computational cost of a single
evaluation, an efficient methodology is sought to find the optimal set of design
parameters. An established methodology to answer the problem at hand is
found in the field of surrogate modeling, which is actively used for aerospace
optimization problems [38,4,32]. This implies that, after defining the objec-
tive function and the design space, a design of experiments (DoE) is set up to
select samples in the design space, for which the objective function is subse-
quently calculated and of which a surrogate is defined. This cheap to evaluate
surrogate or meta-model can subsequently be sampled to define the entire
characteristics in function of the geometric design variables.

For the DoE we use a Latin-Hypercube Sampling (LHS) approach [21]
and make use of Morris and Mitchell’s maximin distance φq to quantify the
space-filling property, optimized by simulated annealing [23].
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The surrogate model used is Kriging, which can be seen as the sum of a
trend function and Gaussian process: Y (x) = f(x)Tβ+Z(x) with E[Z(x)] = 0
and f(x) = [fi(x), i = 1, ...,m] the vector of basis functions, β the vec-
tor of coefficients and Z(x) a Gaussian process GP(0, cov(y(i),y(j))), with
zero mean and fully described by the covariance function cov(y(i),y(j)) =
σ2cor(y(i),y(j)), where σ is the process variance and cor(y(i),y(j)) is the cor-
relation function between two objectives and is noted for being a function of
their inputs and typically written as ψ(xi,xj). Here the Matérn covariance
function is used with ν = 3/2. The trend is typically the solution of a regres-
sion problem and the Gaussian process captures the variation on this trend to
exactly interpolate the evaluated data.

In order to determine the parameters of the covariance function, typically
referred to as hyperparameters, we maximize the likelihood, L, that given
the aforementioned surrogate can reproduce the evaluated data [34]. Solving
the maximum likelihood estimation (MLE) problem, we can define the Best
Linear Unbiased Prediction (BLUP), which allows the prediction of unsampled
locations x′ with respectively the predicted mean and predicted variance:

µ(x′) = f(x′)Tβ +ψ(x′)TΨ−1(y − Fβ) (4)

s2(x′) = σ2
(

1−ψ(x′)TΨ−1ψ(x) +
(
FTΨ−1ψ(x′)− f(x′)

)T
(
FTΨ−1F

)−1 (
FTΨ−1ψ(x′)− f(x′)

))
(5)

with F the model matrix: Fi,j = fi(x
j) and Ψ the correlation matrix: Ψi,j =

ψ(xi,xj), ψ(x′) = [ψ(x1,x′), .., ψ(xn,x′)] and the MLE of the coefficient
vector and the process variance defined by: β = (FΨ−1F)−1FTΨ−1y and
σ2 = 1

n (y − Fβ)TΨ−1(y − Fβ). Furthermore, an analytic expression of the
partial derivatives of the surrogate to its input parameters can be derived [10,
11], given by:

∂µ(x′)

∂xi
=
∂f(x′)

∂xi

T

β +
∂ψ(x′)

∂xi
Ψ−1(y − Fβ) (6)

The idea of the gradient predictor is related to gradient-enhanced Kriging [10,
11]. But, in contrast to the aforementioned model, here the correlation function
has to be only differentiable once since we do not need the second derivative
of the correlation function to build the covariance matrix.

The accuracy of the surrogate can be significantly enhanced for the same
computational budget if multiple fidelity models or grid levels are available [7,
15,33]. Co-Kriging can be considered a powerful correction process which uses
the correlation between cheap and expensive data to enhance the prediction
accuracy. We refer to the most accurate expensive data values ye at points
Xe and the less accurate cheap data yc at points Xc. Conform the notion of
correction processes, the co-Kriging formulation presents the surrogate of the
expensive model Ye as the sum of the surrogate Yc, of the cheap data (Xc,yc)
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and the surrogate Yd, of the residuals (Xe,ye−ρdµc(Xe)), with ρd the scaling
factor. The construction of the model occurs similar to the manner by which
it was defined above: with a sequential construction of the two surrogates,
where the scaling factor is determined through MLE along with the second
surrogate.

The filtering of noise (e.g. due to discretization errors) can be achieved
through the introduction of a regression constant λ that is added to the diag-
onal of the covariance matrix Ψ [6]. Consequently, the data is not interpolated
as for |x(i) − x| → 0, the correlation becomes cor(x(i),x) = 1 + λ. The re-
gression constant λ is determined using maximum likelihood estimation in a
similar manner as the other model parameters.

The construction of the Kriging model is performed using an open-source
toolbox ooDACE (object-orientated Design and Analysis of Computer Exper-
iments) [3]. The maximization of the concentrated log likelihood function is
performed through a multi-start sequential quadratic programming method-
ology.

The stochastic nature of Kriging allows for the assessment of the uncer-
tainty in the prediction. This can be used to define the expected improvement,
which balances exploration (minimization of the uncertainty in the prediction)
and exploitation (minimization of the objective). This infill criteria forms the
basis of the well known efficient global optimization (EGO) algorithm by Jones
et al. [13]. Keane et al. presented a multi-objective formulation of the expected
improvement for two objectives based on the Euclidean distance and often re-
ferred to as such [14].

When dealing with a constrained optimization problem EI should decrease
to zero when the constraint is violated. Given the surrogate of the constraint,
we can calculate the probability of the prediction not violating the constraint
limit, i.e. the probability that the constraint is met, P [F (x)], where F is
the measure of feasibility. Under the assumption of uncorrelated objectives
and constraints, it is straightforward to reformulate the expected improve-
ment such that it accounts for the probability of feasibility E[I(x) ∩ F (x)] =
E[I(x)]P [F (x)]. This implies that at a given point in the design space, while
the predicted constraint might be violated, the predicted errors in the con-
straint models are different from zero and as such the expectation of improve-
ment will be low, but not zero, since there is a finite possibility that a full
evaluation of the constraints may actually reveal a feasible design. This allows
design space exploration in the early stages of the optimization methodology,
but ensures convergence to the exact constrained optimum [8,30,39].

3.3 Optimization Framework

Combining all the aforementioned, we can create a surrogate based optimiza-
tion methodology (Figure 3). First, a LHS of 10d points (with d the dimension-
ality of the problem, equal to 6: 4 design parameters and 2 operating param-
eters, α and δ) is created to be evaluated by the low fidelity model and from
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this LHS a space-filling subset of 3d points is selected to be evaluated by the
high fidelity model. The selection of samples follows the guidelines from Toal
et al. [33], Loeppky et al. [19] and Marrel et al. [20]. Therefore it is expected
that the influence of another LHS on the outcome of the optimization would
be small. However, this was not verified due to the high computational cost of
the optimization. Furthermore, the boundariescornerpoints of the design space
are also evaluated by both the low and high fidelity models.

The evaluation of the design sets through URANS simulations using the
γ −Reθ model performed at a fixed velocity2 close to the stall speed gives us
CL(x), CD(x), CM,pitch(x) and CM,roll(x). The former two can be plugged in
the horizontal and vertical equilibrium equations to determine the minimum
V along with the corresponding T .

From the obtained Vmin(x), CM,pitch(x) and CM,roll(x), surrogates can be
constructed that are cheap to evaluate and can produce the partial derivatives
to the different design parameters. This allows the evaluation of the objec-
tives for every parameter set combination. Furthermore, two constraints can
be evaluated: P [CM,pitch(x) = 0] which corresponds to the momentum equilib-
rium equation and P [∂CM,pitch(x)/∂α < 0] which corresponds to longitudinal
static stability, and thus absence of the nose-up pitching moment attributed
to tip stall. Through the introduction of surrogates, which allow a direct an-
alytic evaluation of their gradients, we avoid the need to perform adjoint or
costly finite difference approaches to determine both the second objective and
constraint, which leads to a very efficient optimization framework.

The error in the prediction attributed to the descent speed is directly ob-
tained from the surrogate. However, for the controllability coefficient it is
calculated indirectly through the use of error propagation formulas:

s2M ′(x′) = M ′(x′)2

[(
scM,roll

(x′)

cM,roll(x′)

)2

+

(
2V (x′)sV (x′)

V (x′)2

)2
]

(7)

with scM,roll
and sV respectively the standard deviation of the prediction of

the surrogate of the roll moment coefficient cM,roll and the velocity sV .

While this introduces a correlation between the objective functions, we
further assume them to be uncorrelated and use the multi-objective expected
improvement formula multiplied with the two constraints. To determine the
next infill point, we maximize this MOEI with a multistart SQP algorithm to
ensure a global optimum of the multi-model objective, which is then evaluated
using the high fidelity model. This optimization procedure is then repeated
until convergence, EInorm

3< 1%, or until the calculation budget runs out,
corresponding to an additional 40 calculation, corresponding with an infill to
DoE ratio of roughly 1 : 2.

2 We assume at this point that the variations in Re during the optimization are small
enough to be negligible

3 The constrained expected improvement is divided by the Euclidean distance of the two
points farthest from each other in de objective space.
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Conventional optimization techniques that optimize a design for a number
of operation conditions (multipoint) take a weighted sum of their objective
function [24,16]. However, this only moves the problem further downstream:
what weight is attributed to which condition? Furthermore, operation con-
ditions such as stall are not known in advance and should be determined
iteratively. By adding the operations variables to the optimization problem,
the aforementioned limitations can be overcome. The continuity of alpha and
delta results in a continuous optimization The continuity of α and δ results in
a continuous optimization. Thus, changing α for every fence design results in
a new δ (to obtain CM,pitch = 0), CL and CD and consequently a changing V
and M ′. Every fence introduces thus by itself a Pareto front4: decreasing the
α leads to a higher V and higher M ′. The Pareto front of the entire design
space is thus a summation of Pareto fronts of fences.

4 Results and Discussion

4.1 Optimization Convergence

To illustrate the convergence of the optimization methodology, the first six
iterations after the DoE are displayed below (figure 4). In blue we see the
unconstrained predicted Pareto front, determined by the objective functions.
The red line represents the constraint predicted Pareto front, of which the
design are characterized by CM,pitch = 0 and ∂CM,pitch/∂α < 0. The black
line represents the initial design, noted for its complete absence of a fence. The
green line represents the Pareto front made up out of evaluated points that
meet the constraints. It is the objective to bring the latter as close as possible to
the predicted constrained Pareto front. The light blue dots indicate the Pareto
front of evaluated points which are either characterized by CM,pitch 6= 0 and/or
∂CM,pitch∂α > 0. The purple dot presents the next infill point with maximum
constrained MOEI. All the predicted Pareto fronts are found using NSGA-ii.

A first observation that can be drawn when comparing the first six itera-
tions and the final Pareto front (figure 4g) is how the unconstrained Pareto
front shows little movement. This indicates that the surrogates of velocity
and controllability are already fairly accurate after the DoE. Secondly, the
constrained Pareto front shows strong movement, indicating the early inaccu-
racy of the pitching moment surrogate. This can also be derived from the fact
that the evaluated Pareto front does not change in the first four iterations,
indicating that the new infill points did not meet the constraints. A third ob-
servation to be drawn is how the evaluated points move around. This is caused
by the fact that the controllability coefficient is obtained indirectly through
the surrogate as opposed to the velocity.

4 The Pareto front is the front defined in the objective space by the Pareto optimal points
for which one cannot improve on one without deteriorating on the others.
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Fig. 3: Flowchart of the optimization framework
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To illustrate the convergence of the optimization methodology, the change
of the normalized hypervolumes56 of the unconstrained, constrained and clean
wing Pareto front after the DoE are illustrated below along with the stopping
criterion (Figure 4h). The predicted Pareto fronts are presented here instead
of the evaluated onces because we are using a regression model under the as-
sumption that with the addition of infills the surrogate will become correcter
than the CFD simulations, which are subjected to a discretization error. It can
be observed that the unconstrained Pareto fronts and the initial design stay
fairly constant during the optimization. This is conform earlier observations.
Furthermore, the inital design stabilized at iteration 15 and the unconstrained
Pareto front stabilizes at iteration 30, at which point the expected improve-
ment decreases to nearly zero. On the other hand, the constrained Pareto front
upholds a fluctuating behavior, indicating that the surrogate of the pitching
moment is still moving around and that additional infill points are required.
This indicates that caution is in order when using the normalized constrained
expected improvement as stopping criterion.

4.2 Optimal Fences: Pareto Front

A first observation that can be drawn when examining the Pareto fronts after
the final iteration (figure 4g) is the limited decrease in the descent speed that
can be obtained, while on the other hand a noteworthy increase of controlla-
bility is more attainable. The limited speed gain corresponds to the findings
of Das [31]. Haines attributed the significant lift increase attainable to the
presence of a leading edge vortex [9], which is absent altogether on the UAV
examined here.

An assessment of three different fence geometries that have been evaluated
and meet the constraints is presented below: on one end of the Pareto front,
the fence with which the lowest descent speed is obtainable, to which we will
refer as minimal speed design (MSD), on the other end of the Pareto front,
the fence with which the highest controllability is obtainable, to which we
will refer as the maximal controllability design (MCD), and a fence which
outperforms both objectives in comparison with the initial design, to which
we will refer as the overall better design (OBD). Since every fence design,
and thus also the absence of a fence, leads to a Pareto front, we refer to the
condition of maximum controllability in the absence of a fence as the maximal
controllability initial design (MCID) and the condition of minimum descent
speed as the minimal speed initial design (MSID). The parameters of the
respective designs are presented in table 1 and figure 5.

5 The hyperholume is the Lebesgue measure contained by the attainment surface and a
chosen reference points. The attainment surface was defined by Fonseca & Fleming [5] as
“the boundary in the objective space separating those points which are dominated by or
equal to at least one of the data points, from those which no data points dominates or
equals” and thus corresponds to the Pareto front.

6 The Pareto fronts are rescaled to a 1-on-1 box. This is done such that the influence of
both objectives on the hypervolume is nearly equally significant.
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Fig. 4: Convergence of the optimization algorithm.
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Moving along the constrained predicted Pareto front from minimal speed
to maximal controllability, a decrease of angle of attack is to be observed, along
with an increase of elevon deflection, inward movement (away from the tip) of
the fence, a decrease of the height and both an increase of length on suction
and pressure side. The decrease of α leads to a lower CL and thus higher V
and higher M ′. The decrease of s leads to a bigger region of attached flow at
the tip, thus requires a larger δ to uphold pitching equilibrium, which in turn
reduces CL but increases the effectiveness of the elevons and thus increases M ′.
A decrease of the length on the suction side requires an increase of the height
to maintain the same effectiveness. A shorter fence length on the suction side
leads to a later separation on the inboard side and a higher CL thus lower
V and corresponding lower M ′. An increase of the length of the fence on the
pressure side leads to a redirection of the flow on the pressure side towards
the elevon and increases its effectiveness, thus increasing M ′.

Table 1: Optimal fence designs

Design α δ s h lup ldown V M ′

[o] [o] [%] [%] [%] [%] [m/s] [m2/s2]

MSID 14.6 3.607 − − − − 13.58 7.4186
MCID 10.0 3.056 − − − − 18.32 10.00
MSD 15.445 3.662 54.30 80.43 5.45 5.19 12.59 8.09
OBD 15.185 5.008 48.85 79.13 7.13 13.50 12.87 13.36
MCD 14.856 6.215 47.82 74.52 11.04 85.54 13.70 20.16

XY

Z

Fig. 5: Optimal fence designs (MSD in red, OBD in blue and MCD in green)
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5 Conclusion

In this paper a multi-objective multi-fidelity surrogate based optimization of
the stall characteristics of an unmanned aerial vehicle through the addition of
a wing fence was performed. The UAV under consideration is characterized
by the appearance of tip stall, leading to a nose up pitching moment and loss
of control. The introduction of a wing fence, a small plate placed on top of
the wing aligned with the flow, alters the stall behavior by moving the point
of separation away from the tip to the inboard side of the fence. With the
objective of minimizing the descent speed and maximizing the controllabil-
ity, defined as the roll moment initiated through an elevon deflection around
its pitching moment equilibrium, the wing fence, parameterized by location,
height and length on both pressure and suction side, was adapted. Further-
more, the angle of attack and elevon deflection were added as parameters,
resulting in a continuous optimization. In addition to the objectives, a con-
straint to obtain the pitching moment equilibrium and a constraint to ensure
longitudinal static stability, which goes hand in hand with the absence of tip
stall, were introduced.

A framework was built around regressive universal co-Kriging combining
two fidelity levels based on grid size and using regression rather than inter-
polation to account for the appearance of discretization and averaging errors.
By building surrogates for both the objectives and constraints, a trustwor-
thy, but relatively inexpensive optimization was obtained. The constraint of
stability and objective of controllability correspond to gradients from CFD
output and are calculated analytically using the surrogates, effectively avoid-
ing the need to determining the gradients using CFD which can be both hard
(using adjoints) or costly (using finite difference schemes). Assessment of the
hypervolumes and infill criterion convergence has shown the importance of
defining a correct stopping criterion when dealing with constrained problems
using surrogate-derived gradients.

The result is a Pareto front of fence designs and angle of attack and elevon
settings that may outperform the initial design in either obtaining a slower
descent speed or higher controllability or both.
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Replication of Results

The framework, written in bash, linking together mesh generation (Gambit),
simulation (ANSYS Fluent) and optimization (Matlab), that performs the grid
convergence study and optimization has been made available as supplementary
material on the SMDO website.
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Developments in Boundary Layer Control, pp. 563–586. Pergamon (1959). DOI
10.1016/B978-1-4831-9833-0.50005-0

32. Shi, R., Liu, L., Long, T., Wu, Y., Wang, G.G.: Multidisciplinary modeling and surro-
gate assisted optimization for satellite constellation systems. Structural and Multidis-
ciplinary Optimization (5), 2173–2188 (2018). DOI 10.1007/s00158-018-2032-1

33. Toal, D.J.J.: Some considerations regarding the use of multi-fidelity kriging in
the construction of surrogate models. Structural and Multidisciplinary Op-
timization 51(6), 1223–1245 (2015). DOI 10.1007/s00158-014-1209-5. URL
https://doi.org/10.1007/s00158-014-1209-5

34. Toal, D.J.J.: A study into the potential of gpus for the efficient construction and eval-
uation of kriging models. Engineering with Computers 32(3), 377–404 (2016). DOI
10.1007/s00366-015-0421-2. URL https://doi.org/10.1007/s00366-015-0421-2

35. Wauters, J., Degroote, J.: On the study of transitional low-reynolds number flows
over airfoils operating at high angles of attack and their prediction using transi-
tional turbulence models. Progress in Aerospace Sciences 103, 52 – 68 (2018). DOI
10.1016/j.paerosci.2018.10.004

36. Wauters, J., Degroote, J., Vierendeels, J.: Comparative study of transition models for
high-angle-of-attack behavior. AIAA Journal pp. 1–16 (2019). DOI 10.2514/1.J057249



MOO of the Stall Characteristics of a UAV using Surrogate-Derived Gradients 19

37. Williams, M.D., Reeder, M.F., Maple, R.C., Solfelt, D.A.: Modeling, simulation, and
flight tests for a t-38 talon with wing fences. Journal of Aircraft 47(2), 423–433 (2010).
DOI 10.2514/1.46122

38. Wu, X., Zhang, W., Song, S.: Robust aerodynamic shape design based on an adap-
tive stochastic optimization framework. Structural and Multidisciplinary Optimization
57(2), 639–651 (2018). DOI 10.1007/s00158-017-1766-5

39. Zhang, K.S., Han, Z.H., Gao, Z.J., Wang, Y.: Constraint aggregation for large num-
ber of constraints in wing surrogate-based optimization. Structural and Multidisci-
plinary Optimization 59(2), 421–438 (2019). DOI 10.1007/s00158-018-2074-4. URL
10.1007/s00158-018-2074-4

40. Zhang, Q., Liu, W., Tsang, E., Virginas, B.: Expensive multiobjective optimization by
moea/d with gaussian process model. IEEE Transactions on Evolutionary Computation
14(3), 456–474 (2010). DOI 10.1109/TEVC.2009.2033671


