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Abstract—Millimeter-wave radar is currently the most effec-
tive automotive sensor capable of all-weather perception. In
order to detect Vulnerable Road Users (VRUs) in cluttered
radar data, it is necessary to model the time-frequency signal
patterns of human motion, i.e. the micro-Doppler signature.
In this paper we propose a spatio-temporal Convolutional
Neural Network (CNN) capable of detecting VRUs in cluttered
radar data. The main contribution is a weakly supervised
training method which uses abundant, automatically generated
labels from camera and lidar for training the model. The
input to the network is a tensor of temporally concatenated
range-azimuth-Doppler arrays, while the ground truth is an
occupancy grid formed by objects detected jointly in-camera
images and lidar. Lidar provides accurate ranging ground truth,
while camera information helps distinguish between VRUs
and background. Experimental evaluation shows that the CNN
model has superior detection performance compared to classical
techniques. Moreover, the model trained with imperfect, weak
supervision labels outperforms the one trained with a limited
number of perfect, hand-annotated labels. Finally, the proposed
method has excellent scalability due to the low cost of automatic
annotation.

Index Terms—deep learning,radar, weakly supervised, VRU
detection

I. INTRODUCTION

Frequency modulated continuous wave (FMCW) radar has
the capability to directly measure an object’s range and
radial velocity. Owning to these unique properties, radars
have been installed in numerous land, maritime and airborne
platforms for the tasks of object detection and tracking. While
classical signal processing can be applied efficiently to detect
large objects, discriminating people (referred to as VRUs
throughout the paper) from clutter in traffic environments
remains a difficult task. This is manly due to the fact that
VRUs are poor radar energy reflectors and they move slowly
relative to the static environment. Additionally, the effects
of multipath propagation of radar signals are difficult to
model explicitly due to the unknown and ever changing scene
geometry. Yet, detecting moving people in radar data can
be performed based on the unique pattern of motion of the
human body. Specifically, a pedestrian or a cyclist exhibits an
oscillatory motion of the limbs which is commonly referred
to as a micro-Doppler signature. It is therefore possible to fit
a model of the kinematics of the human gait to measured data

and distinguish a person from other objects. However, radar
signal is often distorted by the phenomenon of multi-path
propagation, i.e. returns from multiple sources interfering
with the signal reflected from the object of interest. Without
prior knowledge of the scene geometry, detecting objects
of interest becomes very difficult using classical forward
models. The scientific community agrees that radar signal
processing has to be extended to concepts from machine
learning and pattern recognition in order to keep radar in
the leading edge of remote sensing [1].

A deep Convoltuional Neural Network (CNN) acts as a
universal function approximator with the capability to learn
any function given enough training evidence. This makes
the VRU detection problem inherently suitable for deep
learning since the complexity of the input space is difficult to
interpret, but capturing large amounts of radar measurements
is relatively easy. Unfortunately, annotated raw radar datasets
are currently not publicly available and expert knowledge for
making manual annotations is not readily available. In this
paper we propose to train a radar CNN for VRU detection
by weak supervision from calibrated camera and lidar. By
removing the human expert from the annotation loop we are
able to completely automate the training process. The radar
CNN parameters are thus optimized using object positions
and their existence uncertainties in a weighted cross-entropy
loss function. Essentially, we train the radar network to
perform both object detection with lidar ranging precision
and classification at camera-level accuracy. The trained model
can then be deployed on a robot that operates without the
need for an expensive lidar. Although our automatically
generated labels are imperfect, we experimentally show that
this strategy has great benefits for cost-effective training,
resulting in a significantly better detection rates. By utilizing
the abundance of automatically labeled data, we were able to
train a model with performance beyond what is practically
achievable using manual annotations.

The remaining of the paper is organized as follows: a brief
overview of the relevant literature is given in section §II,
where we point to the fact that several deep learning methods
for detecting various objects in Radar data already exist. In
section §III we present details about the main contribution
while in section §IV we present the experimental evidence



from training networks of the same architecture in a fully
supervised and weakly supervised manner. Finally, in sec-
tion §V we present some remarks about the limitations
of the proposed method and make suggestions for further
improvements.

II. RELATED WORK

Classical methods such as the Constant False Alarm Rate
(CFAR)[2] perform moving target detection in radar signal
by determining whether a target exists in the clutter or
noise background. Existing CFAR detection procedures are
commonly performed using sliding windows, from which,
the parameters of the hypothesized model are estimated, and
the data available in the reference window are employed to
compute the decision threshold. CFAR offers reliable detec-
tion of moving targets, however, further processing on these
detections is needed for classification. In [3], the authors
present one typical example of detecting the motion of people
using hand crafted range and Doppler features. Their method
is built on analyzing the radar waveform design, i.e. the
expected characteristics of the return signal given the known
radiation pattern and the most likely object motion features.
A comparative study [4] analyses the performance between
random forests and LSTM, see [5], network for classification
of cars, pedestrians, groups, bikes and trucks. Backed by
large scale experiments, their conclusion is that the dif-
ference between LSTM and random forest is surprisingly
small (0.884 vs. 0.871 F1 score). They also found that the
performance of the LSTM network, in particular, is highly
sensitive to the amount of training samples, a motivation
which drives us towards training with large dataset and weak
supervision.

A semantical radar grid building algorithm is presented
in [6]. Authors rely on 4 radars, whose observations are
first registered, to classify regions containing cars and other
objects. In this paper a shallow fully convolutional neural
network was used to classify input occupancy grid cells
into classes of objects. In contrast to this approach, we’re
interested in instantaneous VRU detection and operate on a
short time window of only 5 consecutive radar measurements
which are not registered. In [7], authors present a semi-
supervised deep radar detector operating on 4D dense radar
data. The method splits the input dimensions by applying
two independent CNNs that process in the range-Doppler
and elevation-azimuth dimensions respectively. A weakness
of this method is that radar dimensions are only combined
in late feature space, thus the potential of inter-dimensional
dependencies is lost from the start. Since we are only
interested in detecting VRUs, we can discard any unnecessary
Doppler data by pre-processing steps, and retain a complete
4D radar space as input. Authors of the paper [8] propose
a CNN object detection and 3D estimation based on the
U-Net architecture. They use a coupled Radar and Camera
sensor to prepare a set of training samples for a radar CNN
which determines the presence or absence of a car in the
radar signal. This method uses a 3D network architecture,
where the input tensor consists of radar range, velocity and
receiver channel information, and the output consists of 3

Figure 1. Diagram of the proposed radar detector. Radar arrays are pre-
processed and fed into a multi-resolution segmentation CNN producing a
probability of occupancy grid. The networks optimizes a weighted cross-
entropy function between it’s output and automatically generated ground
truth from camera and lidar.

layers: a binary probability of occupancy and two image
plane coordinates. The main drawback of this method is that
its training protocol is limited to cars in the image plane and
the authors do not provide extensive evaluation for cluttered
environments.

In [9] authors propose a hybrid radar detection system
consisting of initial target detection by classical processing
followed by radar target classification network. The network
operates on cropped range-azimuth-Doppler radar tensors
extracted around the initial radar targets and outputs a class
label and score for the categories car, person and cyclist. Fi-
nally, they apply clustering in order to group similarly classi-
fied targets into complete objects. This method was evaluated
on a real-world dataset using automatically annotated ground
truth from matched camera and stereo-depth sensors. Even
though authors report promising results, this method relies
on single time integration radar cubes, therefore overlooking
important micro-Doppler cues needed for classifying VRUs.

Finally, a comprehensive analysis of applying deep learn-
ing to radar signals is presented in [10]. The authors of this
paper propose a deep learning method for vehicle detection
in bird’s eye view using Range-Azimuth-Doppler tensors.
Interestingly, the method doesn’t truly work with the full
3D radar data, rather it computes three image-like inputs
by collapsing each radar dimension respectively. This pa-
per also proposes a semi-automated annotation framework
based on a 64 beam lidar sensor, however manual human
correction was needed to obtain ground truth. As a result of
an ablation study, the following conclusions were reached:
best performance is achieved by operating in the native polar
coordinates and applying a Cartesian transformation on the
latent features , second: incorporating Doppler information
using their proposed model has marginal benefits and third:
exploiting the temporal dependency with a LSTM cell has
marginal benefits . A potential weakness of this method is
the recurring loss of micro-Doppler information due to the
collapse of dimensions in the pre-processing.



III. PROPOSED METHOD

Our goal is to train a radar neural network for VRU
detection on the ground plane using weakly supervised deep
learning. To that end, an abundance of imperfect training
samples will be provided by automatically matching camera
and lidar objects. The radar network will therefore be trained
to both classify and estimate the position of VRUs at the same
time. Formally, the radar CNN model fCNN () computes an
estimate Y of the occupancy grid of the environment M ,
given series of consecutive, pre-processed, radar measure-
ments Zr, Y = fCNN (fpre (Zr)). Each cell of the output
grid yρ,θ, figure 1- top right, contains the probability that the
region is occupied by a VRU. Weak supervision is provided
from camera and lidar sensor measurements: Zc, Zl which we
transform into a ground truth estimate M̂ , figure 1- bottom
right. Finally, detection of object’s centers is easily performed
by estimating local peaks in the output occupancy grid Y .

A. Pre-processing

Typical radar data streams are usually represented as
dense 3D arrays containing time integrated Range-Azimuth-
Doppler signals, or 4D arrays if the radar also measures
elevation. Since most of the radar contains little informa-
tion, feeding the complete array to a CNN is sub-optimal
and computationally expensive. We therefore develop a pre-
processing algorithm fpre () built on domain specific knowl-
edge which results in data reduction at no loss of information.
Knowing that the mean frequency of human gait is around to
1Hz, while recreational cyclists on average pedal at a cadence
of roughly 60RPM, we deem that only a half-period of this
motion is sufficient to extract its characteristic patterns. We
therefore concatenate radar measurements spanning the time
period from 500ms in the past until the present. At time t = 0
we have the current and past radar arrays (range-azimuth-
Doppler cubes) Zr = {R−4,R−3,R−2,R−1,R0} where each
one is captured at an interval of 100ms.

In order to reduce the effect of range dependent signal
decay, we apply a standard pre-processing step from classical
CFAR [11], i.e. estimation of the normalized power P.
This has the effect that newly computed values are distance
independent and proportional to the local signal to noise
characteristics. The underlying structure is therefore easier
to interpret by the neural network. The normalized power for
a one dimensional signal can be computed as:

P (i) = R(i)
2

[
1

2N

G+N∑
l=G+1

R (i+ l)
2
+R (i− l)2

]−1
,

(1)
where N is the number of cells used for estimating the

noise floor and G is the number of guard cells which are
skipped in order to avoid sampling the object under test.
The procedure can easily be extended in 3D and efficiently
computed by a 3D convolution.

In moving radar systems, a typical artifact is the apparent
shift of structure proportional to the ego-velocity −vego and
the cosine of the azimuth. We remove this velocity vector

from the captured data by transforming it into a new, ego-
velocity independent space. Theoretically, ego-velocity can
be estimated from the Doppler velocity of static objects in
front of the radar. This comes from the simple fact that the
perceived radial velocity of static objects along longitudinal
axis is directly proportional to the ego-velocity. However,
in practice the objects right in front of the radar are rarely
static which causes such ego-velocity estimation to fail. Thus,
we estimate the ego-velocity by approximating it from the
radial velocities in the circular sector θ0 ∈ [−30°, 30°]
which is more likely to contain static objects. The ego
velocity estimate v̂ego then is the velocity of the Doppler
slice containing the highest normalized power in this circular
sector:

v̂ego = − argmax
v

ρmax∑
ρ=0

30◦∑
θ=−30◦

Pρ,θ,v. (2)

Each individual radar cube is thus corrected for ego-motion
by shifting along the Doppler dimension so that the data is
centered around the estimated bin: Pρ,θ,v ← Pρ,θ,v−v̂ego .
Lastly, Doppler slices of velocities that far exceed normal
VRU velocities are also removed. We make sure that dis-
carding Doppler slices will not impact detection performance
by taking a wide margin of ±3ms−1, knowing that people’s
body parts do not move much faster than their mean velocity.
This helps us reduce the size of the CNN input Pρ,θ,v and
thus lessen the load on the GPU for training.

B. Radar CNN architecture

The task of detecting moving VRUs practically consists of
localization and classification. While localization can be done
relatively effectively using single-frame processing, VRU
classification in radar necessitates the use of temporal in-
formation. A joint detector-classifier therefore requires both a
wide spatial receptive field, as well as significant depth in the
time-Doppler dimension. The former is needed for learning to
separate targets from each other and from multi-path reflec-
tions, while the later is essential for gait classification. The
combination of spatial layers and memory modules has the
disadvantage of costly training, where data sequences must be
processed as time series and GPU resources cannot be fully
utilized. We therefore choose to concatenate five consecutive
radar cubes along a common time-Doppler dimension and use
a 2D U-Net architecture.

Following pre-processing, our information dense tensor is
fed to the contracting head of the U-Net where a series of
convolutions and max-pooling operators reduce the spatial
information into a more dense feature space. The bridge of
the network, containing two Fully Connected (FC) layers,
then classifies the presence of moving VRUs. Up-sampling
is performed in expansion blocks using the dense FC fea-
tures and high resolution information from the contracting
blocks via skip and concatenation layers. Finally, a sigmoid
activation function is used to map the network output to
predict the probability for occupancy of a VRU at each range-
azimuth cell. For training, we use a per-sample and per-class
weighted, two-class cross-entropy loss function. Per-sample
weights account for the varying confidence in our weakly



Figure 2. Automatic label generation for weakly supervised training of radar CNN. A: instance segmentation masks from lidar projected on the camera
image are matched to Faster R-CNN BBs, B: 3D scene visualization of the input sensor data and the computed weak supervision training labels.

supervised ground truth at the specific cell, while per-class
weights adjust the desired sensitivity of the output.

C. Automatic annotation using Camera and Lidar

Annotating data is a labor intensive and expensive process.
This task is especially difficult when labeling raw radar data
which is non-intuitive to the untrained eye. In order to reduce
the costs for obtaining a dataset adequate for deep learning,
in this section we will show how to automatically compute a
ground truth estimate M̂ using external sensor measurements,
namely camera Zc and lidar Zl. The proposed estimates can
be used as weak training labels in the in the form of an
occupancy grid map estimates as defined in [12].

Formally, our weak supervision grid M̂ is an estimate
of the true occupancy grid M defined by the conditional
probability of occupancy of cell mρ,θ given the positions of
true VRUs p (mρ,θ |X ) ; X : {x1 ,x2 ,...,xk} ; 0 ≤ k; xi =[
ρi θi

]T
. We compute this estimate as the conditional

probability of occupancy p (m̂ρ,θ |Zc, Zl ) , using the inverse
sensor model given sensor observations Zc and Zl. On the
image plane, we compute the set Zc consisting of n Bounding
Boxes (BB) by running the Faster R-CNN object detector
[13], Zc = {c1 ,c2 , ...,ci}. The output of the detector is a
vector of center image coordinates, BB width and height
and detection score: ci =

[
ri ci wi hi si

]T
. The

lidar observation Zl is a set of objects which we compute
by segmenting the point cloud into disjoint objects, Zl =
{l1 ,l2 , ...,lj} using [14]. Each object is a vector consisting
of its ground plane center and a unique instance identifier:
lj =

[
ρj θj ID

]T
.

Assuming that no grid cell can be occupied by more than
one VRU, the true map M can be approximated from the set
of true VRU positions X using a kernel density function in
2-D space. For simplicity, we use the 2-D Dirac delta:

M =

∫∫
p (mρ,θ |X ) dρdθ ≈

|X|∑
i=1

δ (ρ− ρi, θ − θi) . (3)

Our weak training supervisor uses a set of estimated object
positions (labels): X̂ : {x̂1 ,x̂2 , ...,x̂m}, each representing a

VRU xi by its ground position
[
ρi θi

]T
and the belief

of it’s existence si. The weak supervision mask M̂ can thus
be expressed through the probability that a ground plane cell
m̂xy is occupied by object x̂i:

M̂ =

∫∫
p (m̂xy |x̂i ) dρdθ; x̂i ∈ X̂ = fmatch (Zc, Zl) ,

(4)

where each object x̂i is computed by matching detections
in the camera and lidar. In practice, finding likely correspon-
dences between BBs in Zc and lidar objects in Zl is not
trivial. From the example on figure 2 it is clear that a one-to-
one mapping between BBs and instance segmentation masks
can be ambiguous i.e. the matching task fmatch : Zc → Zr
is non-injective and non-surjective. A BB can often contain
instance segmentation masks from multiple lidar objects,
and there are many lidar objects that are not VRUs. One
way to cope with this complexity is to limit the matching
only to lidar objects projected within the boundaries of the
camera bounding box under test ci. The simplest solution
for estimating the position of x̂i is to match the bounding
box ci with the most likely lidar segment lMLE. Thus each
object x̂i in (4) will be defined by the range and azimuth of
the maximum likelihood estimate (MLE) lidar object and the
camera object score si. For a single, non-occluded person we
model the position of x̂i as the uni-modal distribution:

x̂i ∼

{
δ (ρ− ρMLE, θ − θMLE) , if si ≥ τ,
0 otherwise,

(5)

where δ is the Dirac delta function expressed in polar
coordinates. The existence score si, as provided by Faster
R-CNN, is used as a latent variable controlling the existence
of this PDF. For notational simplicity we will assume that
each object x̂i is always existent skipping the degenerate
case in the remainder of the analysis. Practically, the most
likely lidar object lMLE within a BB ci is the one with the
highest overlap:

lMLE = argmax
j

[
IoU

(
ci , l

′
j

)]
, (6)



by means of the Jaccard Index between the BB and image
projections l′j of lj .

Even though the MLE solution can be used as training
supervision, see (IV-A), it fails to account for the tails of the
distribution which are especially heavy in ambiguous cases
of uncertain matching. We therefore propose a more robust
solution of computing M̂ through the use of a soft association
function fmatch : Zc → Zr which allows each BB to be
matched to multiple lidar blobs and vice versa. The effect
of this soft association is that the PDF of each VRU can be
spread over multiple modes relative to the quality of camera
and lidar matching. We consider each object’s x̂i probability
density function to be multi-modal and localized at discrete
ground plane cells. Thus, this PDF is a weighted sum of L
peaks located at the centers of mass of each lidar segment lj
that is visible within the BB ci :

x̂i ∼
|Zl|∑
j=1

wjδ (ρ− ρj , θ − θj) , (7)

with weights wji proportional to the matching quality:

wji =
IoU

(
ci , l

′
j

)
∑l′j∈ci

j IoU
(
ci , l′j

) , (8)

where the weights are normalized by the total IoU score
for all segmentation masks within the respective bounding
box. BBs dominated by a single segmentation mask (e.g. the
large, central, purple segment in figure 2) will be modeled
as a single peak in the occupancy map. On the other hand,
ambiguous objects such as the person in the BB on the right
in figure 2 are modeled by a multi-modal PDF with peaks
proportional to the uncertainty of detection and matching.
The plot B on figure 2 shows these computed PDFs as red
circles where a bigger radius is proportional to a higher
certainty about the peak’s position. By plugging (7) into (4)
we arrive at the final form of our approximated occupancy
map M̂ used during training:

M̂ =

|X̂|∑
i=1

|Zl|∑
j=1

wijδ (ρ− ρij , θ − θij) . (9)

It is clear that the quality of M̂ will be influenced by
two factors: firstly, the performance of the image object
detector, i.e. how well si explains the existence of a VRU,
thus dictating the cardinality of the set X̂ , and secondly, the
quality of matching IoU

(
ci , l

′
j

)
which measures how well

the camera and lidar are calibrated, synchronized and how
much occlusion is present in the area.

D. Loss function and regularization

We perform training of the CNN parameters by weak
supervision from the estimated occupancy grid M̂ using a
per-sample and per-class weighted cross-entropy function.
Specifically, we use two categorical class labels (C = 2), one
encoding the empty space, and the other the space occupied

by VRUs. Thus, the loss function between a network output
Y and ground truth label M̂ is defined as the weighted sum:

loss
(
Y, M̂

)
=
∑
ρ

∑
θ

wρ,θl (yρ,θ, m̂ρ,θ) , (10)

where l() is the cross-entropy

l (p, q) = −
C∑
i=1

p (i) log q (i) , (11)

and the weights wρ,θ incorporate the object detection score
si from Faster R-CNN:

wρ,θ =

{
αpossi ∀x̂i : [ρ, θ] = [ρi, θi] ,

αneg otherwise.

and use the parameters {αpos, αneg} to adjust the de-
tector specificity by reducing class imbalance. In practice,
αpos/αneg � 1 which heavily penalizes errors in grid cells
containing people compared to errors in empty cells. Also,
due to si, (10) penalizes more heavily errors in cells which
are believed to contain VRUs. The effect of this weighting
scheme is two-fold: firstly, network coefficients will adapt
to produce strong activations at grid cells matched to highly
confident detections from Faster R-CNN, and secondly: there
will be strong activations at grid locations with high quality
matching between the camera and lidar objects.

We use three different regularization techniques which help
with parameter stability and minimize over-fitting. Firstly,
the network architecture design itself includes dropout and
batch-normalization layers. Regularized network parameters
become more robust to perturbations in the input data and
are able to converge faster due to the reduction of internal
covariance shift [15]. Secondly, we apply a multi-epoch
training protocol using the (Adaptive Moment Estimation)
ADAM optimizer [16] and apply weight decay of 5 ·10−3 to
all network parameters. We reduce the global learning rate
by a factor of 10−1 every 10 epochs starting from 10−3.
Lastly, we apply a realistic data augmentation technique
which randomly flips and rotates the input tensor along
the longitudinal axis. Each radar field is flipped along its
longitudinal axis, θ = 0, according to the Bernoulli dis-
tribution: θ′ ∼ −1kθ; p (k) = 0.5, and random rotation
4θ is applied along the vertical Z-axis (ρ = 0) such that:
θ′′ = θ′ + 4θ;4θ ∼ N (θ′, 64) . These 2D rotations and
reflections are Euclidean plane isometries and thus preserve
geometrical properties such as lengths and reflection angles.
Augmenting the dataset in this way creates an abundance
of new realistic samples that retain the effects of multi-path
propagation, the very same artifact we want our network to
learn to suppress.

IV. EXPERIMENTS AND IMPLEMENTATION DETAILS

A. Dataset and evaluation protocol

For the purpose of evaluating the proposed method, we
captured and annotated a real-world dataset containing mul-
tiple scenarios with various traffic conditions and complexity.



Table I
PERFORMANCE EVALUATION RESULTS OF RADAR DETECTORS ON A

CONTENT-INDEPENDENT TEST SET OF 489 FRAMES AND 1292 VRUS.

Method AP
Recall
at 0.5
prec.

Training
information

RADAR raw 0.150 0% Empirically
optimizedRADAR non-static 0.302 26%

CFAR (NMS on P) 0.439 53%

CNN-manual 0.513 57% Supervised: 1351
frames, 3917 VRUs

CNN-auto * 0.556 61%

Weakly supervised:
MLE(5):

6955 frames,
7781 VRUs.

CNN-auto ** 0.600 69%

Weakly supervised:
multi-modal(7):

6955 frames, 30452
VRUs

In these experiments, the ego-vehicle is driving on pub-
lic roads in a dense European city center, where multiple
VRUs are encountered on the sidewalks and on marked
and unmarked crossing zones. The data covers situations
from poorly lit environments (20% of the data) to well
lit sequences captured in daylight. The data capturing ego-
vehicle is equipped with a calibrated and synchronized sensor
array consisting of an RGB camera (GoPro Hero 6 Black),
a 77GHz FMCW radar (Texas Instruments AWR1243) and
a 3D lidar (Velodyne VLP-16). Data was captured and
timestamped on a Linux laptop on board the ego-vehicle.

In order to avoid cross-contamination of training and test
data, we split the recording into two content-independent
parts by selecting data captured at different time and in dif-
ferent parts of the city. Four human annotators were tasked to
label both the training and testing part, creating high quality
labels by looking for people visible in both the RGB image
and the lidar point cloud. The human annotators were able to
accurately label 1840 frames generating 4988 VRU positions
which took them about 30 hours to complete. At the same
time, by running our fully automated annotation tool over the
training part we labeled a total of 6955 frames containing
30452 VRUs that will be used for weak supervision training.
Note that the high amount of auto-labels stems from the
multi-modal definition in (7). Labels consist of the 2D ground
plane position of each person, relative to the ego-vehicle
origin. Due to the limited resolution of the available VLP-
16 lidar, the areas beyond 20m and outside of the view of
the camera are considered as “don’t care” regions where we
ignore detections.

In a series of experiments we applied different supervision
learning methods to train the same CNN architecture. Firstly,
by using supervision from human annotated labels and then
using labels computed automatically. Our hypothesis is that
even though the auto-labels are imperfect, their abundance
can be beneficial for training a better performing detector.
In that regard, the control control CNN (CNN-manual) was
trained using annotations from the 10 hand labeled train-
ing training sequences. Then, a weakly supervised CNN
(CNN-auto *) was trained using the MLE solutions from
equation (5) computed from the training part of the dataset,

Figure 3. Precision-recall curves for the test set (higher area under curve is
better). The results of the proposed method “CNN auto” are compared with a
control network “CNN manual” and other classical peak finding techniques.

and finally, we trained a second weakly supervised CNN
(CNN-auto **) using the multi-modal formulation from
equation (7). After a fixed number of training epochs, each
model was evaluated on the content-independent test set.
We measure detection performance by varying the detection
threshold and computing the proportion of true positive, false
positive and false negative samples. To that end, a non-
maximum suppression (NMS) algorithm finds peaks in the
raw radar signal or the CNN output, which we then match
to annotated objects. We use a 5× 7 neighborhood of range-
azimuth cells which equates to an area of 1.46m× 7.04deg
in the physical world. A detection is considered true positive
if falls within a gate of 3m around a ground truth object,
while multiple matches within the same gate are not allowed.
Based on these statistics, a precision and recall curve is
generated for each detector. Finally, we computed the average
precision (AP) by taking the mean of the precision sampled
at uniformly spaced recall points.

We present a summary of the results in table I and the
computed precision-recall plots on figure 3. The detection
performance of the proposed method (in shades of blue)
is compared to four other algorithms (yellow, orange and
red lines). The weakly supervised CNN-Auto** significantly
outperforms all other methods in terms of Average Precision
(AP). We report an increase of 8.7% AP over the control
CNN which was trained using manually annotated training
data. Moreover, by allowing our method to learn the uncer-
tainties about detection and matching in the automatically
generated labels, equation (7), brings additional performance
benefit of 4.4% over training by using the most likely
camera-lidar matches, equation (5). Finally, compared to
classical peak finding, the proposed CNN-auto** outperforms
CFAR (yellow curve in figure 3) by 16.1%. Naïve detection
algorithms, such as peak finding in the raw signal and in the



Figure 4. Example frames comparing the qualitative difference of the input radar signal (left column) and the CNN output (right column). A: suppression
of clutter from vehicles; B: spatial separation of VRUs in close proximity; C: suppression of clutter from infrastructure; D: suppression of moving vehicles.

moving data, compare unfavorably on our dataset. On figure 4
we present typical cases of operation of the proposed method
where we compare the input tensor (left column) to the CNN
output (right column). In order to visualize the 280 channels
of the input tensor, we collapse it to a 2D array by taking
the maximum along the time-Doppler dimension and project
it on the respective camera frame. On the right we project
the CNN output on the camera image, i.e. the probability of
occupancy of a VRU. From these typical examples it is clear
that the network output dramatically reduces false positives
while at the same time improving the object localization.

B. Implementation details

A FMCW radar frame representing signal strength over
range-azimuth-Doppler space is represented as a dense 3-D
array. We set the programmable sampling frequency of the TI
AWR1243 radar to 10Hz. Range and Doppler information is
encoded in 128 equally spaced bins spanning 0m to 46.72m
and ±13.8m/s respectively, while azimuth is encoded in
16 equally spaced bins over the range of ±π/2. Power-
normalization, (1), is performed by computing the local
Signal to Noise Ratio (SNR) T [11] using a 3-D convolution
of the input radar array R with a 3D filter mask. We used
a mask with support size of [15, 11, 1] and a guard size of
[5, 3, 0] for range, azimuth and velocity respectively. After

estimating and correcting for ego-motion, from the original
128 Doppler bins, we discard 5 Doppler bins encoding low
velocities: |v| ≤ vego+2Km/h and 34 high velocity Doppler
bins: |v| ≥ vego + 23Km/h. Each training tensor is created
by concatenating 5 pre-processed radar arrays that span over
a time interval of 500ms by skipping every other frame. The
final CNN input tensor consisting of 280 time-Doppler slices.

The network architecture is a U-Net [17] with 5 contraction
blocks, a Fully Connected (FC) bridge and 5 expansion
blocks. The network outputs a 2D occupancy grid in polar
coordinates with spatial resolution matching the one from
the input data. Every contraction block applies 3 groups of
convolution, batch-normalization (BN), ReLU and a dropout
layer followed by a max pooling operator at the end. At
the bridge, the input tensor is reduced to spatial resolution
1 × 1 and 512 dimensional feature space which is input
to two fully connected layers. The expansion blocks are
built as inverse convolutions (ConvT) initialized to perform
up-sampling with linear interpolation, followed by BN and
ReLu. In order to preserve high resolution details, up-
sampled results are concatenated with feature maps from
the respective contracting blocks. Expansion blocks are ex-
empt from dropouts since their task is data unpacking and
mixing. Fastest convergence was achieved by training both



CNN-manual and CNN-auto using weighted cross-entropy
loss in conjunction with the ADAM optimizer. In all our
experiments, we apply early stopping, i.e. we terminate the
training once the validation loss starts increasing. Generally,
we observed model convergence after ∼ 15 epochs or after
110K back-propagations. We used variable training batch size
(BS) starting from BS = 1 in the first epoch to BS = 16
for the remaining. All of these design choices have a direct
impact on either the convergence speed or the loss value at
convergence. We note that each hyper-parameter value has
been chosen meticulously by running control experiments
which are outside of the scope of this analysis.

V. CONCLUSION

In this paper we presented a spatio-temporal CNN for
detection of VRUs from a moving FMCW radar. By using
a U-Net with a wide spatial receptive field and deep time-
frequency feature space, our approach is able to accurately
detect and classify moving VRUs against clutter in traf-
fic environments. As a result of the proposed robust pre-
processing, our input tensor has a minimal footprint and is
invariant to ego-motion. We propose to use objects detected
in camera and lidar as weak supervision for training the
network parameters. A control network, trained in a fully
supervised way using a small set of high quality hand labeled
data was used as baseline. We evaluated both models on
a content-independent test-set where we observed that the
weakly supervised model has a significant edge over the
control in terms of average precision. This is not a surprising
finding since the weakly supervised model was trained with
five times more samples. Even though the weak supervision
has an intrinsic uncertainty attached to the labels, we were
able to train a more accurate model by incorporating this
uncertainty into the loss function. Furthermore, we showed
that, regardless of the training regimen, both CNN models
outperform classical signal processing algorithms by a wide
margin. We suspect that this performance increase comes
from the complex CNN model, which was able to extract
spatial and micro-Doppler information stemming from VRU
motion patterns.

The main weakness of the proposed method is that it
relies on supervision from imperfect sensors with known
failure modes. It is easily conceivable that training cannot
be performed using nighttime recordings since most camera
object detectors perform poorly in such circumstances. More-
over, matching camera and lidar detections in the presence
of occlusion is ambiguous and results in non-informative
training labels. We’re currently investigating into better lidar
segmentation techniques which would reduce the effect of
occlusion by integrating measurements from the past and the
future.

The aim of our further research is to improve the per-
formance and robustness of VRU detection by increasing
the span and quality of the training dataset. This should be
facilitated by firstly capturing sequences in various weather
conditions, and secondly by using a higher density lidar and
better image object detector for computing training labels.
We hope that by making our radar dataset and annotations

available1 we would stimulate the development of better
classical and learning based methods for VRU detection.
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