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Abstract 

The behavior of composite materials under out-of-plane loads is strongly affected by the presence of 

transverse ply cracks. The cracks perturb the distribution of stresses leading to large out-of-plane 

shear stiffness reductions. It is crucial to include these effects in the damage material models to 

improve their accuracy. Therefore, the stress transfer and stiffness reduction in cracked laminates 15 

have been studied with a mesoscale finite element model (FEM) under general in-plane, out-of-plane 

normal and shear loads. A symmetric laminate containing ply cracks in a single orientation has been 

considered under the hypothesis of periodicity using a novel relaxed three-dimensional formulation of 

Periodic Boundary Conditions (PBCs). The local stresses have been verified versus different 

analytical and numerical methods. In addition, the degraded effective thermo-elastic constants 20 

involving out-of-plane properties have been calculated as a function of crack density. Both uniform 

and non-uniform distributions of cracks have been considered for different lay-ups including angle-

ply and unbalanced laminates. The effect of contact between the crack surfaces has been studied for 

specific loading conditions. It is shown that a single formulation based on three-dimensional periodic 

boundary conditions is sufficient to determine the interfacial stresses and the complete thermo-elastic 25 

constants under in-plane and out-of-plane loads accurately. 

Key words: Cracked laminate; Transverse ply cracks; Out-of-plane load; Finite Elements; Periodic 

Boundary Conditions 

1 Introduction 

Accurate damage models of fiber-reinforced composite materials must be developed to design better 30 

composite structures avoiding too many expensive and time-consuming experiments. The complex 

damage behavior of composite laminates is generally described by four damage modes: debonding 

between fiber and matrix, transverse ply cracking, delamination at the interface between the plies and 

fiber fracture [1,2]. The evolution of damage depends on the laminate architecture and loading 

conditions. Moreover, the four damage modes are coupled and can trigger or suppress each other 35 

while the composite structure is loaded [3,4].  However, ply cracking is typically the first ply level 

damage mode which can lead to large stiffness reductions and trigger other damage modes.  
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When ply cracks appear in a laminate, both the in-plane and out-of-plane material properties of the 

laminate degrade [5–8]. Also, the large stress gradients at the tips of ply cracks can initiate more 

detrimental damage modes like delamination and fiber breakage [6,9,10]. There are many applications 40 

of laminates under in-plane loads, however, out-of-plane normal and shear loads can also be found for 

example within bolted joints and pressure vessels. Also, out-of-plane deformations can be found near 

the free edges of a laminate. Therefore, it is important to evaluate the stress transfer in cracked 

laminates under both the in-plane and out-of-plane normal and shear loads. 

The local stresses can be evaluated using a multiscale approach for which the cracked laminate is 45 

described with a Representative Unit Cell (RUC) with a specific crack density. Different analytical 

and numerical methods have been developed to report the local stresses in a laminate under in-plane 

loads [4,11–16] or flexural loads, bending and torsion [6,17–21]. Analytically, the local stresses in a 

cracked laminate under out-of-plane normal loads can be predicted [11]. However, the stress transfer 

due to out-of-plane shear load has only been studied recently using a Variational Approach (VA) [8]. 50 

Although the local stresses in a cracked laminate under out-of-plane loads have been less studied in 

the literature, they have quite important effects on the stiffness reduction and damage evolution. 

The present paper describes novel results about the local stresses in a cracked laminate under general 

out-of-plane and in-plane loads using a Finite Element Model (FEM) of the RUC while the effects of 

thermally induced residual stresses are taken into account. The out-of-plane shear loads have been 55 

included using a novel relaxed implementation of the three-dimensional (3D) formulation of Periodic 

Boundary Conditions (PBCs) where the relative displacement normal to the top and bottom surfaces 

is released. The relaxed 3D PBCs have been verified comparing the local stresses under in-plane loads 

with the results obtained from different analytical and numerical methods [17,22,23]. Then, new 

results of local stresses under out-of-plane load have been reported.  60 

In addition, the degradation of all relevant thermo-elastic constants is considered including the normal 

and shear out of plane properties. The effects of contact between the crack surfaces on the local 

stresses and thermo-elastic constants have been studied.  

Finally, the effect of the non-uniform distribution of cracks has been studied. Novel results of local 

stresses and stiffness reductions under out-of-plane loads have been reported for a symmetric laminate 65 

containing non-uniformly distributed ply cracks. The results show that the new formulation of relaxed 

3D PBCs is the best approach to account for the out-of-plane degraded properties, without modifying 

the results for the in-plane properties. 

2 Finite Element Model 

An arbitrary symmetric multilayered laminate has been modeled using Finite Elements (FE). A 70 

rectangular Cartesian coordinate is located at the center of the laminate.  The x-axis specifies the in-

plane axial direction while the y-axis defines the in-plane transverse direction and z-axis defines the 

through-thickness direction, see Figure 1. The considered laminate geometries, material properties 

and boundary conditions are described in the next sections. 
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2.1 Geometry and Mesh 75 

A Representative Unit Cell (RUC) is used to describe the full laminate with a certain number of plies.  

Each ply is a part of the geometry which has the ply properties oriented with its local coordinate 

system. They are numbered from bottom to top and symmetry about the middle plane is preserved. 

The dimensions of the RUC are lx in the axial direction, ly along the in-plane transverse direction and 

lz through the thickness.  80 

Cracks are introduced at the 90o plies keeping the symmetry about the middle plane. This is not a 

limitation because general loading conditions are considered and if cracks appear in another 

orientation, the laminate and the applied stresses can rotate so that the crack planes are again parallel 

to the fibers in a 900 ply. The vertical cracks which run through the thickness of the ply are located at 

the middle of the axial length lx. Therefore, lx is defined as the inverse of the crack density, ρ=1/ lx. 85 

The thickness of the plies is constant tply, and then the laminate thickness lz is calculated multiplying 

the number of plies by their thickness. In the coordinate system where cracks are in 900 plies, the 

depth of the laminate ly does not play any role, and its effect is evaluated with a parametric study. 

 

Figure 1. Finite element geometry of the RUC for a symmetric cracked laminate, [90/0]s. Cracks are located in 90 
the 90o plies at the middle of the length of the RUC. The three control points are represented with their active 

components in the formulation of relaxed 3D PBCs. 

The geometry is discretized with hexahedral finite elements to build a conformal mesh. The 8-node 

elements with full integration have been used in the simulations (C3D8 in Abaqus notation [24]). The 

cracks have been introduced in the model by duplicating the nodes at the crack surface except for the 95 

nodes at the crack tip. Therefore, new elements are created on both sides of the crack plane. They are 

called seam cracks. This approach allows to include contact between the crack surfaces to avoid 

interpenetration. For each simulation, it is mentioned whenever the contact algorithm is activated or 

not. 

2.2 Material 100 

Uniform homogenized ply properties in the linear elastic regime are used in this study. This 

simplification dismisses the microstructure of the unidirectional plies, where the random distribution 

of fibers introduces local effects such as stress concentrations. Therefore, the results must be 
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understood in the framework of a mesoscale laminate model with homogenized linear elastic ply 

properties. 105 

Six linear elastic material models have been used to represent the general behavior of glass and 

carbon fiber reinforced plies. Table 1 shows the transversely isotropic material properties of the ply 

for each material system and the ply thickness. 

Table 1. Elastic properties of each ply. CFRP = Carbon fiber reinforced polymer; GFRP = Glass fiber 

reinforced polymer; E11 = In-plane axial modulus; E22 = In-plane transverse modulus; E33 = Out-of-plane 110 
normal modulus; ν12 and  ν13 = In-plane Poisson´s ratio; ν23 = Transverse Poisson´s ratio; G12 and G13 = In-

plane shear elastic modulus; G23 = E22/(1+ν23) Out-of-plane shear elastic modulus; α11 = Longitudinal 

coefficient of thermal expansion; α22 = Transverse coefficient of thermal expansion. 

Material Sets E11 

(GPa) 

E22=E33 

(GPa) 

ν12=ν13 

(-) 

ν23 

(-) 

G12=G13 

(GPa) 

α11  

10-6(1/K) 

α22= α33  

10-6(1/K) 

tply 

(mm) 

CFRP1 [25] Set-1 134 9.8 0.3 0.361 5.5 -0.9 28.8 0.144 
GFRP1 [26] Set-2 44.7 12.7 0.297 0.411 5.8 8.43 18.44 0.144 

GFRP2 [22] Set-3 46.0 13.0 0.3 0.42 5.0 - - 0.5 

GFRP3 [27] Set-4 41.7 13.0 0.3 0.42 3.4 6.72 29.3 0.203 

GFRP4 [17] Set-5 45.6 16.2 0.278 0.4 5.83 8.6 26.4 0.127 
GFRP5 [14] Set-6 43 13 0.3 0.42 3.4 - - 0.61 

2.3 Boundary conditions 

1st order Periodic Boundary Conditions (PBC) have been implemented in the three directions of the 115 

global coordinate system (3D PBCs). Relative displacements between counterpart nodes located on 

opposite surfaces of the RUC are described by, 

 𝑢𝑗
𝑖+ + 𝑢𝑗

𝑖− = 𝜀𝑖𝑗𝑙𝑗 with 𝑖, 𝑗 = 𝑥, 𝑦, 𝑧  (1) 

where εij is the macro-strain applied on the laminate and lj is the length of the RUC in j direction. The 

superscripts i+ and i- indicate the opposite surfaces perpendicular to the i-direction. 

The implementation of PBCs avoids the redundant constraints between the nodes located at the edges 120 

of the RUC. First, the kinematic equations (1) are written between all the nodes in the surface y- and 

their counterpart nodes in y+. Then, the equations between the nodes in the surface x- and their 

counterpart nodes in x+ are established excluding the nodes at the edges where both surfaces (x-, x+) 

join the surface y+. Finally, the equations between the nodes in the surface z- and their counterpart 

nodes in z+ are written excluding all the nodes at the edges of both surfaces. More detail about the 125 

equations of the implementation is reported in Ref. [28]. It is worth mentioning that this 

implementation of PBCs distinguishes the overlap nodes introduced by the discrete cracks. Therefore, 

each overlap node on one surface is related to its counterpart node on the opposite surface. 

The load conditions are introduced through the displacements of three control nodes, uj
RPi with i,j = 

x,y,z, see Figure 1. The macro-strains of the laminate are related to these displacements as follows: 130 

 𝜀𝑖𝑗𝑙𝑗 = 𝑢𝑗
𝑅𝑃𝑖  with 𝑖, 𝑗 = 𝑥, 𝑦, 𝑧 (2) 

The three control nodes do not belong to the mesh, but they are included in the model via kinematic 

equations. Because they are points of the model, displacements or concentrated loads can be applied 

to each component. If no displacement is applied in one component, the solver interprets that the 
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concentrated force is zero in this component and it adds the necessary equation of equilibrium. 

Initially, the formulation allows to introduce the full macro-strain tensor with 9 independent 135 

components as input. To fulfill the equilibrium of the RUC, three kinematic constraints link the 

transverse displacements of control nodes keeping the symmetry of the shear macro-strains, εij = εji. 

 𝑢𝑗
𝑅𝑃𝑖

𝑙𝑗
=

𝑢𝑖
𝑅𝑃𝑗

𝑙𝑖
 with 𝑖, 𝑗 = 𝑥, 𝑦, 𝑧 (3) 

The 3D PBCs have been relaxed by releasing the constraint in the normal direction between the nodes 

at top and bottom surfaces. Therefore, the equations (1) between the top and bottom surfaces (𝑖 = 𝑧) 

are only applied in the shear components (𝑗 = 𝑥, 𝑦). 140 

The relaxed 3D PBCs can introduce the in-plane normal and shear loads, as well as the out-of-plane 

shear load conditions. A uniform normal stress has been applied on the top and bottom surfaces to 

study the out-of-plane normal behavior. 

Finally, a thermal load can be included using an initial and final predefined uniform field of 

temperature in degrees Celsius. 145 

2.4 Homogenization 

After the analysis of the RUC with the imposed macro-strains, the average stresses �̃�𝑖𝑗 must be 

computed. Usually, the average stresses can be computed evaluating the volume integral of local 

stresses 𝜎𝑖𝑗, but it is computationally efficient to simplify it using the kinematic PBC between macro-

strains and concentrated forces in the control nodes [29]. Therefore, the external forces at the control 150 

nodes, 𝑓𝑗
𝑅𝑃𝑖 , are the only ones to contribute to the external power. Considering the Hill-Mandel 

principle, the external power of the RUC (meso-scale) must be equal to the internal power of the 

macro-scale. Then, the average or resultant forces can be computed from the external forces on the 

control nodes. This approach has been used by several authors for a RUC containing continuous or 

discrete damage, such as cracks [6,30,31]. 155 

The average stresses can be noted as 

 �̃�𝑥𝑥 =
𝑓𝑥

𝑅𝑃𝑥

𝑙𝑦𝑙𝑧
; �̃�𝑥𝑦 =

𝑓𝑦
𝑅𝑃𝑥

𝑙𝑦𝑙𝑧
; �̃�𝑥𝑧 =

𝑓𝑧
𝑅𝑃𝑥

𝑙𝑦𝑙𝑧
; �̃�𝑦𝑦 =

𝑓𝑦
𝑅𝑃𝑦

𝑙𝑥𝑙𝑧
; �̃�𝑦𝑧 =

𝑓𝑧
𝑅𝑃𝑦

𝑙𝑥𝑙𝑧
; �̃�𝑧𝑧 =

𝑓𝑧
𝑅𝑃𝑧

𝑙𝑥𝑙𝑦
 

 

(4) 

Note that there are no concentrated forces which contribute to the symmetric shear stresses �̃�𝑦𝑥, �̃�𝑧𝑥  

or �̃�𝑧𝑦 because the shear macro-strains are kinematically restricted to fulfil the equilibrium of the 

RUC. Using 3D PBCs, any load or combination can be introduced as concentrated forces on the 

control nodes. Then, the average strains are obtained from the displacements of the control nodes 160 

using equation (2). 

 In the case of relaxed 3D PBCs, the normal stress along the z-direction cannot be introduced as a 

concentrated force. As mentioned before, when using relaxed 3D PBCs, the out-of-plane normal load 

is introduced with uniform stresses on the top and bottom surfaces. The Hill-Mandel condition is still 

valid under uniform traction boundary conditions [29,32]; therefore, the out-of-plane normal relative 165 
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displacement 𝑢𝑧
𝑅𝑃𝑧  is evaluated as the average of the relative displacements between the counterpart 

nodes at the top and bottom surfaces. Then, the average strain is calculated as 𝜀𝑧𝑧 = 𝑢𝑧
𝑅𝑃𝑧/𝑙𝑧. 

The cross-section forces are described as the average stresses multiplied by the thickness of the 

laminate, 𝑁𝑖𝑗 = �̃�𝑖𝑗𝑙𝑧. 

In this study, the thermo-elastic constants have been calculated imposing six loading states, three axial 170 

and three shear loads. Each state has a unique nonzero component, and then the compliance matrix 

coefficients are obtained from the average retrieved strains when there is no increment of temperature, 

ΔT. 

 

[
 
 
 
 
 
𝜀𝑥𝑥

𝜀𝑦𝑦

𝜀𝑧𝑧

2𝜀𝑦𝑧

2𝜀𝑥𝑧

2𝜀𝑥𝑦]
 
 
 
 
 

=

[
 
 
 
 
 
𝑆11 𝑆12 𝑆13 𝑆14 𝑆15 𝑆16

𝑆21 𝑆22 𝑆23 𝑆24 𝑆25 𝑆26

𝑆31 𝑆32 𝑆33 𝑆34 𝑆35 𝑆36

𝑆41 𝑆42 𝑆43 𝑆44 𝑆45 𝑆46

𝑆51 𝑆52 𝑆53 𝑆54 𝑆55 𝑆56

𝑆61 𝑆62 𝑆63 𝑆64 𝑆65 𝑆66]
 
 
 
 
 

[
 
 
 
 
 
 
�̃�𝑥𝑥

�̃�𝑦𝑦

�̃�𝑧𝑧

�̃�𝑦𝑧

�̃�𝑥𝑧

�̃�𝑥𝑦]
 
 
 
 
 
 

+

[
 
 
 
 
 
𝛼𝑥𝑥

𝛼𝑦𝑦

𝛼𝑧𝑧

𝛼𝑦𝑧

𝛼𝑥𝑧

𝛼𝑥𝑦]
 
 
 
 
 

Δ𝑇  (5) 

The coefficients of thermal expansion (TEC) are obtained with one load state more, where all the 

concentrated forces are zero while a ΔT is applied. 175 

Although no initial hypotheses have been made about the coefficients of the compliance matrix, it is 

expected to obtain a symmetric matrix, 𝑆𝑖𝑗 = 𝑆𝑗𝑖 . This condition is checked in the numerical software 

and turned out to be true for all assumed input values. 

The effective engineering properties are defined as 

 

𝐸𝐴 = 1/𝑆11, 𝐸𝑇 = 1/𝑆22, 𝐸𝑡 = 1/𝑆33, 𝐺𝐴 = 1/𝑆66, 𝐺𝑡 = 1/𝑆44, 𝐺𝑎 = 1/𝑆55,  

𝜈𝐴 = −𝑆12/𝑆11, 𝜈𝑡 = −𝑆23/𝑆22, 𝜈𝑎 = −𝑆13/𝑆11,  

𝜆𝑥 = −𝑆16/𝑆11, 𝜆𝑦 = −𝑆26/𝑆11, 𝜆𝑧 = −𝑆36/𝑆11, 𝜆𝑆 = −𝑆45/𝑆55,  

𝛼𝐴 = 𝛼𝑥𝑥, 𝛼𝑇 = 𝛼𝑦𝑦, 𝛼𝑡 = 𝛼𝑧𝑧, 𝛼𝑆 = 𝛼𝑥𝑦  

(6) 

 180 

𝐸𝐴, 𝐸𝑇 and 𝐸𝑡 are, respectively, the axial, transverse and through-thickness Young’s modulus of the 

laminate. 𝐺𝐴, 𝐺𝑡 and 𝐺𝑎 are, respectively, the in-plane, transverse out-of-plane and axial out-of-plane 

shear modulus of the laminate.  Similarly, 𝜈𝐴, 𝜈𝑡  and 𝜈𝑎 are the Poisson’s ratios. 𝜆𝑥, 𝜆𝑦 and 𝜆𝑧 are the 

coupling coefficients between normal and in-plane shear load along the three directions, while 𝜆𝑆 is 

the coupling coefficient between out-of-plane shear loads. 𝛼𝐴, 𝛼𝑇, 𝛼𝑡 and 𝛼𝑆 are the in-plane axial, 185 

transverse, through-thickness and shear thermal expansion coefficients (TEC), respectively.  

It is noteworthy that the homogenized coefficients have been calculated without considering contact 

between the crack surfaces. It is assumed that the cracks are always open. Nevertheless, the difference 

between the stress fields with and without contacts have been studied for specific load cases in section 

3.1.5. 190 
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3 Results for laminates with uniform distribution of cracks 

In this section, the local stress fields and stiffness reduction in symmetric cracked laminates are 

studied. Firstly, the local stresses along different planes are described. Results with the in-plane loads 

are compared with those obtained from other methods, and the local stresses due to out-of-plane loads 

are reported. In addition, the effect of contact between the crack surfaces has been studied for specific 195 

cases. Then, stiffness reduction is calculated as a function of the crack density for different laminates. 

The predicted in-plane laminate thermo-elastic constants have been compared with experiments and 

other analytical and numerical methods. Finally, the reduction of out-of-plane shear stiffness is 

reported for different laminates including angle-ply laminates.  

3.1 Local stress analysis 200 

Figure 2 shows the deformation and local stress field for the six loading states and the thermal load on 

the [90/0]s laminate made of GFRP1 (Set-2) and crack density of 2/mm. The relaxed 3D PBC have 

been used and the contact between crack surfaces has not been considered. The normal and shear 

average stresses have been set to 1 MPa, �̃�𝑖𝑗 = 1 MPa (𝑁𝑖𝑗 = 0.576 N/mm). The normal loads, �̃�𝑥𝑥, 

�̃�𝑦𝑦 and �̃�𝑧𝑧 , open the crack surfaces and create a stress singularity at the crack tips. Also, the in-plane 205 

shear load �̃�𝑥𝑦 and the out-of-plane shear load �̃�𝑥𝑧 slide the crack surfaces leading to stress 

singularities located at the crack tips. For balanced laminates with cracks in the 900 plies, the shear 

load �̃�𝑦𝑧 does not open the crack surfaces and the results are the same as an intact laminate with 

constant shear stresses. Finally, the temperature difference ∆𝑇 = −1 K opens the cracks and 

introduces stress singularities at the crack tips. In all the load cases, the stress fields are constant along 210 

the y-direction and the stresses are continuous between opposite faces in x- and z-directions. 

 

Figure 2. Deformation modes and local stresses of the 6 load cases under normalized average stress σ̃ij = 1 

MPa (Nij = 0.576 N/mm) and temperature difference ∆T = −1 K. [90/0]s laminate with crack density 2/mm 

made of GFRP1 (Set-2). The deformation has a scale factor of 750, stress units are in MPa. 215 
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It is noted that for a displacement-based FE formulation, the stress is usually described inside each 

element with one or several integration points. Therefore, the stress values at singularities (crack tip) 

or free surfaces depend on the element size. A convergence study has been performed to describe the 

singularity at the crack tip and the traction free condition on the free surfaces with high accuracy.  

3.1.1 Mesh convergence of relaxed 3D PBC 220 

A mesh convergence study has been done for a cross-ply laminate [90/0]s made of CFRP1 (Set-1) 

with a crack density of 2/mm. A structured mesh with full integration elements has been used. First, 

the convergence of a uniform mesh has been checked decreasing the size of all elements. Then, a 

mesh refinement has been performed at the elements around the crack tip and next to the free surfaces 

(top and bottom) keeping a uniform mesh around. The size of the elements has been controlled using 225 

a global seed parameter and a refined element size. 

Figure 3 (a) shows the axial distribution of shear stress 𝜎𝑥𝑧 along the interface 90/0 from the crack tip. 

Out-of-plane average stress �̃�𝑥𝑧 = 1 MPa (𝑁𝑥𝑧 = 0.576 N/mm) has been used as a loading condition 

using relaxed 3D PBCs. The stress singularity is better described when the element size of the mesh 

decreases. Results with a uniform mesh decreasing the global element size from 0.03 to 0.005 mm are 230 

represented in Figure 3 (a) (Uniform seed). Above these results, the convergence study of a mesh with 

a fixed global seed of 0.01 mm and refined element from 0.005 to 0.0002 mm has been added 

(Refined seed). It has been found that the stress behavior of the uniform mesh and the refined one is 

the same when the size of the elements around the crack tip is equal for both meshes. The maximum 

stress difference close to the crack tip is lower than 6 % when the uniform mesh with a global seed of 235 

0.005 mm compares with the refined mesh with global seed 0.01 mm and refinement size of 0.005 

mm. It is worth mentioning that the approach with refined mesh is computationally more efficient. 

Mesh convergence has been found with a refined mesh of 0.001 mm. Figure 3 (a) shows that the local 

stress overlap using refined seeds of 0.001 and 0.0002 mm. In addition, the shear modulus 𝐺𝑎 has also 

been calculated in the convergence study. When the element size decreases, the value 𝐺𝑎 decreases 240 

and approaches the constant value of 3610 MPa, see Figure 3 (b). The difference between the 

predicted values of 𝐺𝑎 using seeds of 0.001 and 0.0002 mm is only 2 MPa. 

The same conclusions have been obtained in a convergence study using GFRP1 (Set-2). Therefore, 

the global seed used in almost all simulations is 0.01 mm with refinement elements around the tip and 

close to the free surfaces with a size of 0.001 mm. It is important to mention that, for the RUCs which 245 

represent higher crack densities, the global size has been always decreased until having more than 20 

elements along the x-direction. 
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(a) 

 

(b) 

Figure 3. (a) Local shear stress 𝜎𝑥𝑧 along the interface 90/0 for different element sizes and refinements at the 

crack tip. It is worth mentioning that all the refined results agree far from the crack tip when x>0.1 mm. (b) 250 
Shear modulus 𝐺𝑎 as a function of the element size for uniform and refined seeds. [90/0]s laminate with crack 

density 2/mm made of CFRP1 (Set-1) under shear load �̃�𝑥𝑧 = 1 MPa (𝑁𝑥𝑧 = 0.576 N/mm) using relaxed 3D 

PBCs. 

The stress singularity at the crack tip increases when the size of the elements decreases, because 

homogenized linear elastic ply properties have been assumed in this study. Note that the size of the 255 

refined elements is smaller than the diameter of the reinforcement fibers. Therefore, local effects due 

to the microstructure of each ply are not considered in the local stresses calculated with this mesoscale 

model. 

3.1.2 Local stress fields under in-plane axial loads. Comparison with analytical and numerical 

models. 260 

A comparison with published numerical data has been performed to validate the predicted local stress 

distributions. A symmetric [0/90/-45/45]s laminate with crack density 0.2/mm in 90o plies made of 

GFRP2 (Set-3) is considered under normal in-plane load, σ̃xx = 50 MPa (Nxx = 200 N/mm). This 

laminate has been already studied by Tong et al. [22] and McCartney [17] using Finite Elements and 

the Generalized Plane Strain approach (the NPL model), respectively. In this section, the local stresses 265 

have been calculated via FE with relaxed 3D PBCs and the Variational Approach (VA) described in 

[33]. Figure 4 (a) shows the local stress 𝜎𝑥𝑥 along the thickness of the laminate at the plane that 

contains the cracks. There is a good correlation between the published numerical results and the new 

results using the FE model with relaxed 3D PBCs and the VA. The variational approach is applied 

using a ply refinement technique to ensure having accurate converged results. To do so, each ply in 270 

the laminate is first divided into five ply elements of equal thicknesses. Further, ply elements adjacent 

to interfaces are subdivided in half, two times. All of them show that 𝜎𝑥𝑥 reaches a singularity at the 

interfaces 90/45 and 0/90. In addition, the local stress 𝜎𝑥𝑧 along the interface 0/90 has been 

represented in Figure 4 (b). Again, the results of all methods match notably. It is important to remark 

that the hypothesis of Generalized Plane Strain used in the previous studies is compatible with the 275 

imposed PBCs in transverse direction for this symmetric laminate. 
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(a) 

 

(b) 

Figure 4. (a) Axial stress 𝜎𝑥𝑥 through the thickness at the plane which contains the crack, (b) shear stress 𝜎𝑥𝑧 at 

the interface 0/90 of the 90 ply. [0/90/-45/45]s laminate with crack density 0.2/mm made of GFRP2 (Set-3) 

under axial load with average stress �̃�𝑥𝑥 = 50 MPa (𝑁𝑥𝑥 = 200 N/mm) 

3.1.3 Local stress field due to in-plane shear load and uniform out-of-plane normal load. 280 

Comparison between FE and VA methods. 

Although there are results for local stresses in symmetric laminates under in-plane shear load [12], 

they have never been reported with high accuracy around the crack tips. In this section, the local stress 

along the thickness and along the interface 30/90 of the [30/908/300.5]s laminate have been reported. 

The [30/908/300.5]s laminate made of GFRP1 (Set-2) with a crack density of 1/mm has been loaded 285 

under in-plane shear σ̃xy = 30 MPa (𝑁𝑥𝑦 = 82.08 N/mm) and out-of-plane normal σ̃zz = 10 MPa 

(𝑁𝑧𝑧 = 27.36 N/mm). The out-of-plane normal stress has been introduced as a uniform stress for both 

methods, FE with relaxed 3D PBCs and VA. This load condition can be representative of a composite 

pressure vessel under torsion. 

Figure 5 (a) shows the normal stress 𝜎𝑧𝑧  and shear stresses 𝜎𝑥𝑦 and 𝜎𝑦𝑧 across the thickness at x = 0, 290 

which is the plane that contains the cracks. As expected, 𝜎𝑥𝑦 is zero at the crack surfaces and there are 

singularities at the crack tips. In Figure 5 (b), the same stresses, 𝜎𝑧𝑧 , 𝜎𝑥𝑧 and 𝜎𝑦𝑧, are represented 

along the 30/90 interface of the 90o ply. 𝜎𝑧𝑧  is symmetric with respect to the crack plane (x=0) while 

𝜎𝑥𝑧 and 𝜎𝑦𝑧 are anti-symmetric. There is perfect accordance between the FE and VA methods in 

Figure 5, where the FE results are represented by solid lines while VA results by dots. 295 
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(a) 

 

(b) 

Figure 5 (a) Local axial and shear stresses through the thickness at the plane which contains the crack, (b) 

local stresses at the interface 30/90 of the 90o ply. [30/908/300.5]s laminate with crack density 1/mm made of 

GFRP1 (Set-2) under shear and axial loads, �̃�𝑥𝑦 = 30 MPa and �̃�𝑧𝑧 = 10 MPa (𝑁𝑥𝑦 = 82.08 N/mm and 

𝑁𝑧𝑧 = 27.36 N/mm). 300 

3.1.4 Local stress field due to out-of-plane shear load �̃�𝒙𝒛 

In this section, the capabilities of the FE model with relaxed 3D PBCs are shown when the out-of-

plane shear load 𝑁𝑥𝑧 is applied to the RUC. The [90/0]s laminate with crack density 2/mm made of 

GFRP1 (Set-2) is considered in this example. The out-of-plane shear load has been introduced as 

concentrated forces in the control points. 305 

Figure 6 (a) shows the important stresses along the plane which contains the crack when the [90/0]s 

laminate is loaded with �̃�𝑥𝑧 = 1.736 MPa (𝑁𝑥𝑧 = 1 N/mm). Although the shear stress 𝜎𝑥𝑧 is zero at 

the crack surfaces, the transverse stress  𝜎𝑦𝑦 and normal stress 𝜎𝑧𝑧  stresses are notable at the crack 

planes. In Figure 6 (b), the results along the 90/0 interface in the 90o ply show that the normal stresses 

are anti-symmetric with respect to the crack plane and they are only important at the singularities. 310 

 

(a) 

 

(b) 

Figure 6. (a) Stresses through the thickness at the crack plane, (b) stresses at the interface 90/0 in the 90o ply. 

[90/0]s laminate with crack density 2/mm made of GFRP1 (Set-2) under shear load �̃�𝑥𝑧 = 1.736 MPa (𝑁𝑥𝑧 = 1 

N/mm). 

The normal and transverse displacements 𝑢𝑥  and 𝑢𝑧  along the plane that contains the cracks are 

reported in Figure 7 (a) for the same load condition �̃�𝑥𝑧 = 1.736 MPa (𝑁𝑥𝑧 = 1 N/ mm). The 315 
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displacements of the nodes for the left and right surfaces of the crack are distinguished. While 𝑢𝑥  is 

the same for both crack surfaces, 𝑢𝑧  shows the slipping behavior at the crack surfaces. In Figure 7 (b), 

the normal and transverse displacements 𝑢𝑥  and 𝑢𝑧 , and the shear stress 𝜎𝑥𝑧 are shown along the top 

surface. When relaxed 3D PBCs are applied, the stress 𝜎𝑥𝑧 is not uniform between cracks as expected. 

The authors are aware about the limitation of representing stresses at surfaces using FE analysis based 320 

on displacement method. Therefore, a refined mesh close to the free surfaces has been considered in 

the current study. The transverse displacement 𝑢𝑥  of the nodes at the top surface is constant, while the 

normal displacement 𝑢𝑧  has a discontinuity at the crack plane. 

 

(a) 

 

(b) 

Figure 7. (a) Normal and transverse displacements 𝑢𝑥 and 𝑢𝑧 along the plane which contains the crack surfaces 

where the left and right faces are distinguished. (b) Normal and transverse displacements 𝑢𝑥 and 𝑢𝑧, and shear 325 
stress 𝜎𝑥𝑧  at the top surface. [90/0]s laminate with crack density 2/mm made of GFRP1 (Set-2) under shear 

load �̃�𝑥𝑧 = 1.736 MPa (𝑁𝑥𝑧 = 1 N/mm) using relaxed 3D PBCs. 

3.1.5 Local stress field of angle-ply laminates [90/𝜽] with and without contact between crack 

planes 

Previous results have been calculated without considering the possible contact between the crack 330 

surfaces under certain load conditions. This assumption is usually proposed within models that 

represent the cracked laminates. However, when angle-ply laminates are studied, the effects due to the 

contact between the crack surfaces must be analyzed. For the sake of clarity, the [90/45]s laminate 

with crack density 2/mm in 90o plies made of GFRP1 (Set-2) has been studied under in-plane shear 

load �̃�𝑥𝑦 = 1.736 MPa (𝑁𝑥𝑦 = 1 N/mm). Contact between the crack surfaces is considered with 335 

friction. Therefore, a hard contact model with isotropic friction based on the penalty method has been 

added at the crack surfaces using a default friction coefficient of 0.4. Figure 8 (a) shows the contact 

pressure at the crack surfaces, which has a singularity at the crack tip. It is noteworthy that, away from 

the crack tip, the contact pressure has a minimum value of 0.6 MPa which is 1/3 of the imposed load.  

To evaluate the local effect of the contact, the stresses along the 90/45 interface in the 90o ply have 340 

been calculated for both the models with and without contact. It can be seen in Figure 8 (b) that the 

𝜎𝑥𝑥, 𝜎𝑥𝑦, 𝜎𝑧𝑥  and 𝜎𝑦𝑧 stresses show slightly different distributions when the contact between crack 

surfaces is considered. When contact is considered, the stress singularities are less pronounced 

affecting a smaller area close to the crack tip and, therefore, the homogenized stresses are reduced. 

These qualitative results with contact lead to a non-conservative solution. In addition, the same load 345 
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case with frictionless contact has been studied. The local stresses 𝜎𝑥𝑥 and 𝜎𝑧𝑥  remain the same with 

and without friction, while the local stresses 𝜎𝑥𝑦 and 𝜎𝑦𝑧 are different when the friction coefficient is 

changed. It is noteworthy that calculated local stresses are under the hypothesis of homogenized linear 

elastic ply properties. 

 350 

 

(a) 

 

(b) 

Figure 8. (a) Contact pressure at the crack surfaces of the deformed RUC with a scale factor of 750. (b) 

Stresses at the interface 90/45 in the 90o ply when contact between crack planes is considered or not. [90/45]s 

laminate with crack density 2/mm made of GFRP1 (Set-2) under shear load �̃�𝑥𝑦 = 1.736 MPa (𝑁𝑥𝑦 = 1 N/mm). 

The contact between crack surfaces does not notably affect the results under other loads such as axial 

loads and out-of-plane shear loads. The relevant load cases for a selected laminate can be identified 355 

looking at the homogenized behavior of the laminate when it is retrieved with and without contact. 

For the [90/45]s laminate, the homogenized properties 𝐺𝐴 and 𝜆𝑥 show differences larger than 4% 

when contact between crack planes is considered. This indicates that there are only notable 

differences in the local stresses under in-plane shear 𝑁𝑥𝑦. It is noted that when contact with friction 

between crack surfaces is used, the laminate stiffness depends on the applied stress level. However, 360 

for the case without friction, the stiffness terms remain constant using a perturbation stress level 

below 1 MPa because the same portion of cracked surfaces is in contact. 

As a conclusion, the contact between crack surfaces must be only considered in some specific cases, 

where the closing of the crack modifies the local stresses and the homogenized properties. 

Conservatively, the cracks can always be considered open, and therefore, the simulations can be 365 

performed without considering the contact leading to larger stiffness reductions. In the following 

sections, the simulations are done without considering contact unless the opposite is mentioned. 

3.2 Stiffness reduction 

In this section, degradation of the effective laminate thermo-elastic properties due to uniform ply 

cracking is reported. First, the FE model has been verified and validated with published data. Then, 370 

degraded effective properties including the ones related to out-of-plane loads are reported. Finally, the 

results for cross-ply and angle-ply laminates are discussed. 
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3.2.1 In-plane stiffness reduction. Comparison with analytical, numerical and experimental 

data. 

Figure 9 (a) and (b) show the reduction of the normalized axial modulus (𝐸𝐴) as a function of the 375 

crack density, ρ, for two different laminates: (i) the [0/908/00.5]s laminate made of GFRP1 (Set-2) 

containing cracks in the 900 plies; (ii) and the [0/45]s laminate made of GFRP5 (Set-6) containing 

cracks in the 450 plies. First, the FE model with relaxed 3D PBCs has been verified with the analytical 

model based on VA and published numerical results. Then, the results are validated versus 

experimental data. 380 

The verification of the FE model with relaxed 3D PBCs has been done comparing the results with 

converged results using the VA. Figure 9 (a) shows good agreement between the results of the 

proposed FE model and the converged results using VA [33]. In addition, the calculated normalized 

𝐸𝐴  have also been compared with published FE results [6,13] which are not included in Figure 9 (a) 

for the sake of clearness. The differences are lower than 1.5% when published data is compared to the 385 

current FE implementation with relaxed 3D PBCs. 

Figure 9 (a) also includes the results of the FE model with 3D PBCs formulation (FE 3D PBCs) in 

which the periodicity of the normal displacement between top and bottom is incorporated. As 

expected, the FE model with 3D PBCs gives stiffer values of the axial modulus (𝐸𝐴) due to the 

restriction of the displacements between the top and bottom surfaces. As a conclusion, relaxed 3D 390 

PBCs are needed to retrieve correctly the in-plane behavior of the laminate while out-of-plane shear 

loads can be applied using only one implementation of PBCs. 

It is observed that the numerical results follow the trend of the experimental ones [26], but they 

overestimate the stiffness reduction, see Figure 9 (a). These discrepancies were studied by Barulich et 

al. [6] who explained that these differences are due to the non-uniform distribution of the transverse 395 

cracks along the plies. This explanation is in agreement with other studies [23] and also with the 

results presented in section 4.2. 

Figure 9 (b) shows the result for the [0/45]s laminate with cracks in the 45o plies. Therefore, FE 

calculations with the current model have been done for a [45/90]s laminate with cracks in the 90o 

plies. Then, the stiffness matrix has been rotated -45 degrees to get the material properties of the 400 

initial laminate [0/45]s. There is good agreement between the FE relaxed 3D PBCs and VA. The 

numerical results are also in good agreement with the experimental data, although it is observed in the 

experiments that the cracks are non-uniform. The differences between experiments and numerical 

results at high crack density are commented by Katerelos et al. [34] guessing a non-linear matrix 

behavior. 405 
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(a) 

 

(b) 

Figure 9. (a) Normalized axial stiffness as a function of the crack density 𝜌 for the [0/908/00.5]s laminate made of 

GFRP1 (Set-2), cracks in the 90o plies. (b) Normalized axial stiffness as a function of the crack density 𝜌 (x-

direction) for the [0/45]s laminate made of GFRP5 (Set-6), cracks in the 45o plies. 

3.2.2 Out-of-plane stiffness reduction. Comparison with numerical data. 

To the best knowledge of the authors, there are no experimental data available to make a verification 410 

of the numerical models when out-of-plane shear stiffness terms are concerned. The current FE model 

with relaxed 3D PBCs implementation has been verified with numerical results based on a FE 

analysis [5]. The main difference is that the published FE analysis uses a 3D formulation without 

relaxing the condition at the free surfaces, top and bottom. The published results in [5] are performed 

for a [0/90/45/-45]s laminate made of GFRP3 (Set-4) with cracks in the 45o plies. Therefore, FE 415 

calculations have been performed for a [45/-45/90/0]s laminate with cracks in the 90o plies. Then, the 

stiffness matrix has been rotated -45 degrees to get the effective properties of the initial laminate 

[0/90/45/-45]s. 

Figure 10 (a) shows the normalized in-plane and out-of-plane effective engineering properties, 𝐸𝐴, 𝐸𝑇, 

𝐺𝐴, 𝐺𝑡, 𝐺𝑎, 𝜈𝑡  and 𝜈𝑎 for a [0/90/45/-45]s laminate made of GFRP3 (Set-4) with symmetric cracks in 420 

the 45o plies. The normalized properties are presented as a function of the normalized crack density 

(45o ply) with the ply thickness (0.2 mm). The published properties calculated via FE [5] and the 

current FE simulation with relaxed 3D PBCs are in good agreement. Note that the published data is 

only available for normalized crack densities from 0 to 2 (corresponding to crack densities from 0 to 

10 /mm). It is noteworthy that, in the [0/90/45/-45]s laminate, 𝐸𝐴 = 𝐸𝑇, 𝐺𝑡 = 𝐺𝑎 and 𝜈𝑡 = 𝜈𝑎 because 425 

the cracks are in the 45o ply. It has been checked that 𝐺𝑡 remains constant in cross-ply laminates as in 

the case of the [90/0]s laminate with cracks in the 90o plies, see section 3.1. In the latter laminate, the 

cracks do not affect the shear load 𝑁𝑦𝑧 and, therefore, the behavior is as an intact laminate under this 

load condition. Finally, to provide a data set for future benchmarks the effective engineering 

properties as a function of crack density have been reported in a large range of normalized crack 430 

densities from 0 to 100. It is remarkable that the out-of-plane properties degrade more than the in-

plane properties and approach to zero for large crack densities. In addition, the normalized out-of-

plane Poisson’s ratio 𝜈𝑡 = 𝜈𝑎  degrades up to 20 % of its original value when the crack density 

increases. 
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Figure 10 (b) also shows good agreement between published and current results for the coupling ratios 435 

(𝜆𝑥, 𝜆𝑦, 𝜆𝑧, and 𝜆𝑆). Note that λz
∗
= λz S11/S33 is the coupling coefficient used in [5]. The studied 

range of coupling coefficients has been extended until a normalized crack density of 100 to provide 

more data for future benchmarks. The in-plane and out-of-plane coupling coefficients decrease from 

zero when the crack density increases. As expected, the shear components are completely coupled 

(𝜆𝑆 = −1) at high crack density because the laminate becomes unbalanced following the ply-discount 440 

solution. 

 

(a) 

 

(b) 

Figure 10. (a) Normalized axial, shear stiffness and Poisson’s ratio, and (b) coupling coefficients ratios as a 

function of the normalized crack density with the ply thickness, 𝜌45 𝑡𝑝𝑙𝑦. [0/90/45/-45]s laminate made of 

GFRP3 with symmetric cracks in the 45o ply. Note that 𝜆𝑧
∗ = 𝜆𝑧 𝑆11/𝑆33. 

As a conclusion, the reduction of the out-of-plane properties should certainly be taken into account. 445 

3.2.3 Reduction of the effective engineering properties of cross-ply and angle-ply laminates. 

The effective engineering properties of different cracked laminates [90/θ]s and [θ /908/θ0.5]s with crack 

density 2/mm in 900 plies have been calculated applying relaxed 3D PBCs. Table 2 and Table 3 show 

the normalized effective engineering properties for laminates made of GFRP1 (Set-2) and CRFP1 

(Set-1), respectively. The normalization of the properties was done using the absolute value of the 450 

effective engineering properties obtained from the intact laminate (without cracks). The intact values 

λz and αS are negative for all the studied laminates and materials. Also, the intact value of αT is 

negative for [45/908/450.5]s and [60/908/600.5]s laminates made of CFRP1 (Set-1). For laminates with 

thicker 90o plies, e.g. [θ /908/θ0.5]s, the reduction of the properties is more pronounced. The laminates 

made of CFRP1 (Set-1) show more influence in the thermal expansion coefficients. 455 

Table 2. Normalized engineering properties with respect to the absolute intact properties for different laminates 

made of GFRP1 (Set-2) with 2/mm crack density. Note that the intact properties 𝜆𝑧 and 𝛼𝑆 are negative. 

Relaxed 3D PBCs have been used. 

 [90/0]s [90/30]s [90/45]s [90/60]s [0/908/00.5]s [30/908/300.5]s [45/908/450.5]s [60/908/600.5]s 

𝐸𝐴 0.86 0.66 0.71 0.68 0.46 0.33 0.28 0.25 

𝐸𝑇 1.00 0.40 1.00 0.99 1.00 1.00 1.00 0.99 

𝐸𝑡 0.98 1.26 0.99 1.00 0.98 0.98 0.99 1.00 

𝐺𝐴 0.80 0.75 0.82 0.84 0.31 0.35 0.38 0.39 

𝐺𝑡 1.00 1.14 1.00 1.00 1.00 1.00 1.00 1.00 

𝐺𝑎  0.84 1.00 0.85 0.85 0.31 0.30 0.30 0.30 
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𝜈𝐴 0.67 1.76 0.72 0.72 0.24 0.30 0.31 0.30 

𝜈𝑡  0.96 1.05 1.02 1.02 0.94 1.00 1.03 1.03 

𝜈𝑎  0.67 0.70 0.66 0.65 0.23 0.23 0.22 0.22 

𝜆𝑥 - 0.57 1.21 1.36 - 2.60 2.58 3.15 

𝜆𝑦 - 1.15 0.80 0.78 - 1.03 0.61 0.59 

𝜆𝑧 - -0.49 -0.77 -0.77 - -0.58 -0.55 -0.58 

𝜆𝑆 - 0.52 0.85 0.85 - 0.30 0.30 0.30 

𝛼𝐴 0.89 1.08 0.95 0.97 0.70 0.80 0.87 0.94 

𝛼𝑇 0.98 6.67 1.01 1.01 0.98 1.00 1.01 1.01 

𝛼𝑡 0.97 0.57 0.99 1.00 0.96 0.98 0.99 0.99 

𝛼𝑆 - -0.34 -1.08 -1.14 - -1.77 -1.97 -2.33 

 

Table 3. Normalized engineering properties with respect to the absolute intact properties for different laminates 460 
of CFRP1 (Set-1) with 2/mm crack density. Note that the intact properties 𝜆𝑧 and 𝛼𝑆 are negative. Relaxed 3D 

PBCs have been used. 

 [90/0]s [90/30]s [90/45]s [90/60]s [0/908/00.5]s [30/908/300.5]s [45/908/450.5]s [60/908/600.5]s 

𝐸𝐴 0.96 0.77 0.72 0.68 0.75 0.36 0.29 0.26 

𝐸𝑇 1.00 1.00 1.00 0.99 1.00 1.00 1.00 0.98 

𝐸𝑡 0.97 0.98 0.99 1.00 0.94 0.96 0.98 0.99 

𝐺𝐴 0.79 0.77 0.78 0.84 0.31 0.32 0.37 0.45 

𝐺𝑡 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

𝐺𝑎  0.83 0.84 0.84 0.84 0.30 0.29 0.29 0.29 

𝜈𝐴 0.68 0.69 0.69 0.70 0.24 0.29 0.29 0.30 

𝜈𝑡  0.93 0.99 1.05 1.07 0.86 1.00 1.12 1.14 

𝜈𝑎  0.70 0.67 0.66 0.66 0.25 0.23 0.23 0.23 

𝜆𝑥 - 1.08 1.08 1.14 - 1.75 1.65 1.87 

𝜆𝑦 - 1.00 0.78 0.74 - 1.09 0.47 0.43 

𝜆𝑧 - -0.72 -0.71 -0.72 - -0.39 -0.37 -0.40 

𝜆𝑆 - 0.84 0.84 0.84 - 0.29 0.29 0.29 

𝛼𝐴 0.50 0.84 0.91 0.95 0.19 0.60 0.76 0.88 

𝛼𝑇 0.87 0.99 1.17 1.62 0.50 1.03 0.86 -0.01 

𝛼𝑡 0.93 0.96 0.98 0.99 0.86 0.91 0.95 0.98 

𝛼𝑆 - -0.93 -0.98 -1.05 - -1.10 -1.26 -1.56 

 

It is worth mentioning that the reduction of some out-of-plane properties is as large as the in-plane 

ones for all the laminates and materials studied. The shear stiffness 𝐺𝑎 decreases as much as the in-465 

plane shear stiffness 𝐺𝐴. Also, the Poisson’s ratio 𝜈𝑎 changes as much as 𝜈𝐴. However, the reduction 

of through-thickness properties 𝐸𝑡 and 𝛼𝑡 are only notable for the cross-ply laminates. In the case of 

angle-ply laminates with 𝜃 > 0, the coupling coefficients (𝜆𝑥, 𝜆𝑦, 𝜆𝑧, and 𝜆𝑆) and the shear thermal 

expansion 𝛼𝑆 become important.  

When θ increases, the axial stiffness 𝐸𝐴 decreases and the axial thermal expansion coefficient 𝛼𝐴 470 

increases as expected for both laminates and materials, however, the other engineering properties do 

not change significantly. Small changes are observed in the shear stiffness 𝐺𝐴 and the shear thermal 

expansion coefficient 𝛼𝑆. It is important to mention that 𝛼𝑇 shows an important relative change in the 

case of CFRP1 (Set-1) when 𝜃 increases, see Table 3, but the intact values of these laminates are 

smaller than the intact values of 𝛼𝐴. Therefore, the absolute changes of 𝛼𝑇 are not as relevant as other 475 

properties. 
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Finally, it is important to mention that contact between the crack planes has not been considered in 

these simulations and, therefore, conservative values of the effective engineering properties have been 

reported. 

4 Results for laminate with non-uniform distribution of cracks 480 

The uniform distribution of cracks studied in the previous section is an idealized crack pattern. In 

reality, a non-uniform distribution of cracks is expected due to the presence of manufacturing defects. 

When the crack spacing is non-uniform, the local stress between cracks is different leading to a 

different stiffness reduction. Different studies which consider the distribution of cracks show that 

axial stiffness degrades more when the cracks have a uniform distribution.  485 

In order to study in detail a laminate with non-uniform distribution of cracks, a fixed geometry with a 

random distribution of cracks has been studied. The main goal of this section is to evaluate the local 

stresses and stiffness reduction under in-plane and out-of-plane loads in the presence of a non-uniform 

distribution of ply cracks. First, the local stresses in a laminate with non-uniform distribution of 

cracks are compared with the one containing uniformly spaced ply cracks. Then, all relevant thermo-490 

elastic constants of the laminate involving out-of-plane properties with non-uniform distribution of 

cracks are compared with that of the laminate with uniform cracks. 

4.1 Local stress analysis 

A [45/902]s laminate made of GFRP4 (Set-5) with a crack density of 2/mm has been used in the 

present study with a random distribution of cracks. Six cracks are located with non-uniform 495 

distribution along the x-axis following the case study in reference [23]. Their location is given by 𝑥 =

0.09, 0.3, 1.08, 1.5, 1.62, 2.43 mm. First, the local stresses are verified versus the VA results under in-

plane axial load 𝑁𝑥𝑥. Then, the local stresses are reported when the out-of-plane shear load 𝑁𝑥𝑧 is 

applied.   

4.1.1 Local stress field due to axial load. Benchmark with published VA data. 500 

The [45/902]s laminate is loaded under 𝑁𝑥𝑥 = 1 N/mm (�̃�𝑥𝑥 = 1.312  MPa) using the relaxed 3D 

PBCs. Figure 11 (a) shows the local stresses (𝜎𝑥𝑥 , 𝜎𝑥𝑦 , 𝜎𝑥𝑧) along the x-direction at the middle plane 

of the uncracked 45 ply. The positions of the cracks are indicated with the vertical dashed lines. The 

stresses are in good agreement with the results based on VA reported in Figures 5,6,7 in [23], 

although there is a 3.5% difference at the maximum values. The local stress 𝜎𝑥𝑥 is compared with the 505 

same stress at the middle plane when there is a uniform distribution of cracks, see 𝜎𝑥𝑥 (uniform) in 

Figure 11 (a). Although the mean stress value is the same for the non-uniform and uniform 

distribution of cracks, the non-uniform distribution has higher maximum local stresses when two 

cracks are close. Figure 11 (b) shows the local stresses (𝜎𝑥𝑥 , 𝜎𝑧𝑧 , 𝜎𝑥𝑧) at the interface 45/90 in the 90o 

plies. The crack positions are revealed by the stress singularities. The local stress 𝜎𝑥𝑧 changes its 510 

value between two cracks from negative to positive being zero at the middle point. 
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(a) 

 

(b) 

Figure 11.(a) Stresses at the middle plane of the 45o ply, and (b) stresses at the interface 45/90 in the 90o ply. 

[45/902 ]s laminate made of GFRP4 (Set-5) with non-uniform distribution of 6 cracks, crack density 2/mm, 

under normalized axial load 𝑁𝑥𝑥 = 1 N/mm (�̃�𝑥𝑥 = 1.312  MPa). 

Figure 12 (a) shows 𝜎𝑥𝑥 in the deformed transversal plane of the [45/902]s laminate. Note that a scale 515 

factor of 750 has been used to visualize the displacements. As expected, all the cracks are open due to 

the axial load, and the stress singularities interfere with each other when the distance between two 

cracks is short. 

 
(a) 

 
(b) 

Figure 12. (a) Stress field 𝜎𝑥𝑥 under axial load 𝑁𝑥𝑥 = 1 N/mm, and (b) stress field 𝜎𝑥𝑧 under out-of-plane shear 

load 𝑁𝑥𝑧 = 1 N/mm (�̃�𝑥𝑥 = 1.312  MPa). [45/902 ]s laminate made of GFRP4 with non-uniform distribution of 520 
6 cracks, crack density 2/mm. The deformation has a scale factor of 750. 
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4.1.2 Local stress field due to an out-of-plane shear load. Future benchmarks. 

In this section, the [45/902]s laminate with non-uniform distributed cracks is studied under out-of-

plane shear load 𝑁𝑥𝑧 = 1 N/mm (�̃�𝑥𝑧 = 1.312  MPa). The relaxed 3D PBCs formulation allows to 

impose easily this load condition. Figure 12 (b) shows the stress field 𝜎𝑥𝑧 in the transversal plane of 525 

the [45/902]s laminate. All the cracks are mainly closed with a slip displacement between their 

surfaces. However, when two cracks are in a short distance, the cracks are a little bit open around one 

of the tips. Note that a scale factor of 750 has been used to represent the displacement in Figure 12 

(b). It can be observed again that the stress singularities at the crack tips interfere with each other 

when the two cracks are in a short distance. 530 

The local stresses 𝜎𝑥𝑥 , 𝜎𝑧𝑧, 𝜎𝑥𝑧, and 𝜎𝑥𝑦 have been studied in detail at the middle plane of the 45 ply 

and at the interface 45/90 in the 90o ply along the axial direction. Figure 13 (a) shows the local 

stresses at the middle plane of 45 ply under out-of-plane shear load 𝑁𝑥𝑧 = 1 N/mm (�̃�𝑥𝑧 = 1.312  

MPa). The important stresses at the middle plane of the 45o ply are 𝜎𝑥𝑥 and 𝜎𝑥𝑧, see Figure 13 (a). 

The positions of the cracks are located at the maximum values of the out-of-plane shear stress 𝜎𝑥𝑧. 535 

This shear stress 𝜎𝑥𝑧 with the non-uniform distribution of cracks reaches higher values than the case 

with a uniform distribution of cracks, see 𝜎𝑥𝑧 (uniform) in Figure 13 (a).  

Figure 13 (b) shows the local stresses along the interface 45/90 in the 90o ply when the laminate is 

under out-of-plane shear load 𝑁𝑥𝑧 = 1 N/mm (�̃�𝑥𝑧 = 1.312  MPa).  The stress singularities of 𝜎𝑧𝑧  and 

𝜎𝑥𝑧 at the interface are important because they will trigger delamination under mode I and II. It can be 540 

observed that the stress 𝜎𝑧𝑧  changes from negative to positive values between two cracks, when the 

laminate is under out-of-plane shear load. It can also be observed that normal out-of-plane 

perturbation stresses will be zero far from the cracks. 

 

(a) 

 

(b) 

Figure 13. (a) Stresses at the middle plane of the 45o ply, and (b) stresses at the interface 45/90 in the 90 o ply. 

[45/902]s laminate made of GFRP4 with non-uniform distribution of 6 cracks, crack density 2/mm, under 545 
normalized out-of-plane shear load 𝑁𝑥𝑧 = 1 N/ mm (�̃�𝑥𝑧 = 1.312  MPa). 

Finally, the same [45/902]s laminate under the same out-of-plane shear load has been studied with 

contact between the crack planes. The results are similar to the case without contact. Therefore, it can 

be concluded that the contact does not affect this laminate with the studied load case. 
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4.2 Stiffness reduction analysis 550 

To have a global view of the stiffness reduction, the effective engineering properties for the [45/902]s 

laminate with 6 randomly distributed cracks are compared with the properties for the case with 

uniform distribution of cracks and same crack density. Table 4 shows the normalized effective 

engineering properties with respect to the value of an intact laminate. Normalized effective 

engineering properties using relaxed 3D PBCs have been calculated for two cases, one with uniform 555 

and the other one with the non-uniform crack distribution. As expected, the case with uniform crack 

distribution overestimates the stiffness reduction, then the axial and shear stiffness (𝐸𝐴, 𝐸𝑇, 𝐺𝐴) 

decrease around 4% with respect to the non-uniform crack distribution case. In addition, the coupling 

coefficients (𝜆𝑥, 𝜆𝑦, 𝜆𝑧) and thermo-expansion coefficients (𝛼𝐴, 𝛼𝑆) are also overestimated with 

differences of 4%. 560 

Table 4. Normalized effective engineering properties for the uniform and non-uniform symmetric cracked 

[45/902]s laminates with crack density 2/mm using relaxed 3D PBCs. 

 Uniform Non-uniform 

𝐸𝐴 0.49 0.53 

𝐸𝑇 0.99 1.00 

𝐸𝑡 0.99 0.99 

𝐺𝐴 0.68 0.71 

𝐺𝑡 1.00 1.00 

𝐺𝑎  0.67 0.65 

𝜈𝐴 0.57 0.60 

𝜈𝑡  1.03 1.03 

𝜈𝑎  0.44 0.48 

𝜆𝑥 1.51 1.48 

𝜆𝑦 0.62 0.64 

𝜆𝑧 0.62 0.65 

𝜆𝑆 0.67 0.65 

𝛼𝐴 0.90 0.91 

𝛼𝑇 1.02 1.02 

𝛼𝑡 0.99 0.99 

𝛼𝑆 1.26 1.23 

5 Conclusions 

A Finite Element (FE) mesoscale model has been developed to study the behavior of a symmetric 

cracked laminate using a Representative Unit Cell (RUC). Local stresses and effective laminate 565 

thermo-elastic constants have been calculated under in-plane and out-of-plane loads. In addition, the 

contact between crack surfaces and the non-uniform distribution of cracks have been discussed. 

Out-of-plane load conditions have been introduced using a relaxed formulation of the three-

dimensional Periodic Boundary Conditions (relaxed 3D PBCs). This novel formulation allows to 

combine out-of-plane shear load with in-plane loads keeping free the normal displacement of the top 570 

and bottom surfaces. This formulation has been combined with a uniform normal stress applied on the 

top and bottom surfaces to study the out-of-plane normal behavior. The local stresses at different 

planes have been compared with analytical and numerical methods showing good agreement. New 

results under out-of-plane shear load have been reported for future benchmarks.  
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To conclude, in order to obtain the in-plane and out-of-plane effective thermo-elastic constants of a 575 

symmetric cracked laminate, the novel relaxed 3D PBCs are convenient and efficient. The results of 

stiffness reduction have been compared with analytical and numerical methods showing good 

agreement. The approach calculates both the in-plane and out-of-plane effective properties in an 

accurate way using the same formulation. The calculated in-plane axial stiffness has been compared 

and validated with experimental data. 580 

The contact between cracks becomes important for specific laminates and load conditions, for 

example, unbalanced laminates under in-plane shear load. Qualitative local stresses have been 

compared between the models with and without contact. On the contrary, the hypothesis of open 

cracks (no contact) can be used when effective material properties are calculated because they give 

more conservative values. 585 

Finally, the non-uniform distribution of cracks introduces different local stresses between cracks 

which differ from the uniform case leading to different stiffness reductions. These local effects must 

be considered together with the stress concentrations due to the local microstructure in the 

development of new damage models for delamination. 
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