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We study critical spin systems and field theories using matrix product states, and formulate a scaling
hypothesis in terms of operators, eigenvalues of the transfer matrix, and lattice spacing in the case of field
theories. The critical point, exponents, and central charge are determined by optimizing them to obtain a
data collapse. We benchmark this method by studying critical Ising and Potts models, where we also obtain
a scaling Ansatz for the correlation length and entanglement entropy. The formulation of those scaling
functions turns out to be crucial for studying critical quantum field theories on the lattice. For the case of
λϕ4 with mass parameter μ2 and lattice spacing a, we demonstrate a double data collapse for the correlation
length δξðμ; λ; DÞ ¼ ξ̃ððα − αcÞðδ=aÞ−1=νÞ with D the bond dimension, δ the gap between eigenvalues of
the transfer matrix, and αc ¼ μ2R=λ the parameter which fixes the critical quantum field theory.
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Introduction.—Traditional numerical techniques for sim-
ulating extensive many-body systems such as Monte Carlo
sampling (MC) and exact diagonalization (ED) naturally
come with a dimensionful parameter that controls the level
of approximation: the system size L. One of the major
insights that has allowed the simulation of systems at or
near criticality has been the realization that, rather than
simply pushing L → ∞, the numerical results at different
system sizes can be combined using the concept of finite-
size scaling [1–3], changing the finite L from a weakness to
a strength. The crucial idea is that 1=L acts as a relevant
perturbation, and thus enters in the singular part of the free
energy. By invoking the scaling hypothesis, the latter is a
generalized homogeneous function

fðftig; 1=LÞ ¼ s−dfðfsαi tig; s=LÞ;

where s is a free parameter that parametrizes a scale
transformation, ftig is the set of coupling constants to
(relevant) perturbations in the theory, and fαig are their
corresponding scaling dimensions. This scaling hypothesis
can then be used to perform a collapse of numerical datasets
for different L and thereby obtain accurate estimates for
critical exponents and the location of a critical point.
Furthermore, in the context of quantum field theory
(QFT) lattice simulations, finite-size scaling ideas have
proven vital for reaching the continuum limit [4,5].
Here we consider the application of matrix product states

(MPS) methods [6–9] for simulating critical 1D quantum or
2D classical spin systems, including the continuum limit of
lattice descriptions for QFTs. Results extracted from MPS
calculations are affected by the finite bond dimension D of
the matrices, which is in fact a proxy for the finite amount
of entanglement in the simulated state. The traditional

approach to study phase transitions, and, relatedly, con-
tinuum limits of lattice field theories, with, e.g., the (finite)
density matrix renormalization group algorithm [6] has
been to extrapolate predictions for one or more order
parameters M0 ¼ limD→∞MðDÞ towards the limit of infin-
ite bond dimension D. A different approach emerged from
the realization that the finite bond dimension acts as a
relevant perturbation, similar to the finite system size, and
induces an additional length scale in the problem, which
results in crossover behavior between the two scales
[10,11]. Unlike MC and ED, MPS methods can work
directly in the thermodynamic limit and eliminate the finite
size scale. At criticality, only the length scale associated
with the finite bond dimensions remains, and this was
identified as the MPS correlation length ξðDÞ (as defined
below). This correlation length was shown to scale as
ξðDÞ ∼Dκ in the asymptotic limit of large D [12]. Here, a
new critical exponent κ was introduced, which is a function
of the central charge of the associated conformal field
theory (CFT) [11,13].
Proper finite-entanglement scaling Ansätze are para-

mount for the further development of the tensor network
framework for simulating (near) critical theories and QFTs.
This holds even more for higher dimensional systems
simulated with, e.g., projected entangled pair states
(PEPS) [14], for which the computational cost grows much
faster with increasing bond dimension D. The scaling
behavior in the discrete variable D only holds for suffi-
ciently large D and cannot be expected to be smooth or
homogeneous for small or intermediate values of D.
Instead, scaling Ansatz can be formulated directly in terms
of the finite correlation length ξðDÞ [15–18]. However, the
(inverse) correlation length 1=ξðDÞ only correctly quantifies
the strength of the relevant perturbation associated with the

PHYSICAL REVIEW LETTERS 123, 250604 (2019)

0031-9007=19=123(25)=250604(6) 250604-1 © 2019 American Physical Society

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/287940954?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.123.250604&domain=pdf&date_stamp=2019-12-18
https://doi.org/10.1103/PhysRevLett.123.250604
https://doi.org/10.1103/PhysRevLett.123.250604
https://doi.org/10.1103/PhysRevLett.123.250604
https://doi.org/10.1103/PhysRevLett.123.250604


finite entanglement approximation and tends to zero for
D → ∞, exactly at criticality.
In this Letter, we motivate and introduce the use of

entanglement scaling for translation invariant MPS in the
thermodynamic limit, based on a different (inverse) length
scale δ defined in terms of the gaps in the full spectrum of
(inverse) correlation lengths, as obtained from the (neg-
ative) logarithm of the eigenvalues of the transfer matrix
[19]. A careful study of the nature of the MPS approxi-
mation [19–21] indicates that these gaps are a direct
consequence of the finite bond dimension and go to zero
forD → ∞, regardless whether the system is gapped or not.
In particular, the correlation length ξðDÞ can itself be scaled
in terms of δ, as was first illustrated by Rams et al. for
gapped systems [22]. Combined with other relevant
perturbations, a full scaling Ansatz for the correlation
length itself can thus be formulated. We illustrate this
for the two-dimensional classical Ising and Potts models.
Understanding the resulting scaling functions is also of
crucial importance to simulate continuum limits of spin
systems in the form of QFTs. The continuum limit is
obtained by taking the limit of bond dimension going to
infinity and lattice spacing to zero, and we demonstrate that
this double scaling limit yields a double data collapse near
the critical point of (2þ 0)-dimensional λϕ4 theory.
Entanglement scaling hypothesis.—Throughout this

Letter, we use uniform MPS which depend on a single
tensor to parametrize translation-invariant states directly
in the thermodynamic limit. We point the reader to
Refs. [23–25] for details on methods that use MPS to
study classical spin systems. AnMPS provides a variational
approximation for low-energy states by truncating in the
entanglement spectrum, which has its repercussion on the
approximation of the physical properties of the system. In
particular, correlation functions are represented by a linear
combination of exponentially decaying functions, where
the spectrum of inverse correlation lengths ϵi is determined
by the eigenvalues of the MPS transfer matrix λi as

ϵi ¼ ξ−1i ¼ − log jλij; with ϵi ≤ ϵiþ1; ði¼ 0;…;D2 − 1Þ;

assuming the MPS is normalized such that ϵ0 ¼ 0. The
actual correlation length of the state is then identified as
ξ≡ ξ1. Close to a second order critical point, however, we
expect correlation functions to exhibit a power-law con-
tribution multiplied with the exponential decay, which can
be understood from the Källèn-Lehmann representation of
correlation functions as a linear combination of a con-
tinuum of exponentials [19]. The MPS transfer matrix thus
provides a discretized approximation to this continuous
spectrum of correlation length, and the spacing between
them is a reflection of an inverse system size. Indeed, by
interpreting the true state as resulting from an infinite
amount of imaginary-time evolution (i.e., the path-integral
representation), the discretization of the spectrum of

correlation lengths can be understood as resulting from
the compression of the infinite imaginary-time interval
inherent in the MPS approximation [20,21]. Hence, the
gaps in the transfer-matrix spectrum can be related to a
finite size in imaginary time.
Therefore we can build a finite-entanglement scaling

theory by quantifying the discreteness of the spectrum of
inverse correlation lengths, i.e., the gaps in the transfer-
matrix spectrum. The simplest definition is δ ¼ ϵ2 − ϵ1,
which was used in Ref. [22] to extrapolate the correlation
length itself. However, as also remarked in Ref. [22], the
spectrum can consist of different sectors and it can be
useful to consider a generalized definition

δ ¼
Xn
i¼1

ciϵi; with
X
i

ci ¼ 0;

with a finite number n sufficiently smaller than D2, such
that only the smallest eigenvalues ϵi are included. For any
choice of the coefficients ci such that

P
i ci ¼ 0, this

quantity should converge to zero forD → ∞. Evidently, the
ϵi, and thus also δ, transform as an inverse length under
scale transformations. Therefore, we can formulate the
scaling hypothesis for an order parameter m, thus

mðt; δÞ ¼ s−β=νmðs1=νt; sδÞ:

This yields the expression for a corresponding scaling
function m̃

δ−β=νmðt; δÞ ¼ mðδ−1=νt; 1Þ ¼ m̃ðδ−1=νtÞ:

From the scaling property of δ, it follows that the scaling
functions m̃ away from the origin exhibits a power-law
behavior with the correct exponent. However, unlike in
traditional finite-size scaling, where the finite size imposes
smoothness on the scaling function, the MPS scaling
function may be nonanalytic. Around such nonanalycities
the scaling function exhibits mean-field exponents, in
accordance with Ref. [26].
In a similar vein, we formulate a scaling hypothesis for

the correlation length

δξðt; δÞ ¼ ξðδ−1=νt; 1Þ ¼ ξ̃ðδ−1=νtÞ

in terms of a scaling function ξ̃. Crucially, this scaling
behavior justifies prior approaches where a scaling Ansatz
for m was formulated directly in terms of 1=ξ instead of δ.
But using δ, which objectively quantifies the perturbation
strength due to the finite bond dimension, the ability to also
scale the correlation length yields additional data points in
order to fit more accurately the location of the critical point
and the corresponding scaling exponents.
Finally, we can also extract the bipartite entanglement

entropy from the entanglement spectrum of a given MPS.
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From CFT calculations [27], we know that exp ½ð6=cÞS�
scales as a length, so we can write down a scaling
hypothesis of the form

exp

�
6

c
Sðt; δÞ

�
¼ s exp

�
6

c
Sðs−1=νt; sδÞ

�
;

where c is the central charge of the CFTassociated with the
critical point.
For a given set of data points at different MPS bond

dimensions, the critical properties of the model can now be
determined by optimizing a data collapse in terms of δ. In
principle, every δ built up from a set of ci should give the
right scaling behavior, but in order to improve the collapse,
the ci can also be treated as parameters. The cost function
that we optimize is the sum of the y direction distances of
all data points to a scaling function, which is itself para-
metrized by a set of parameters. We feed this in to a
standard nonlinear optimization algorithms for determining
these different parameters [28]. Note that there is no
consensus on an ultimate algorithm to perform finite size
scaling and data collapse, this remains an active area of
research [29–33].
Two-dimensional Ising and Potts models.—As a first

illustration of our method, we consider the classical Ising
model on the square lattice. We have computed a set of
MPS with D ranging between 10 and 200, for different
temperatures around the critical point Tc ¼ 2.269 185 314.
Here, we fix the ci by hand, defining δ ¼ ϵ4 − ϵ2, such that
we obtain a collapse of the data. In Fig. 1 we plot the
scaling functions for the order parameter, correlation
length, and entanglement entropy (as they were defined
above), using the known values of the critical temperature,
the exponents ν ¼ 1 and β ¼ 1=8, and the central charge
c ¼ 1=2. If we jointly optimize the collapse of order
parameter and correlation length we find a critical temper-
ature of TMPS

c ¼ 2.269 184 934 with critical exponents ν ¼
0.999 80 and β ¼ 0.125 34.
Second, we study the three-state Potts model. We have

used MPS with D ranging between 21 and 120, around the

critical point Tc ¼ 0.994 9728 61. Here, we have used
δ ¼ 5

2
ϵ2 − ϵ4 − ϵ5 − 1

2
ϵ6. In Fig. 2 we plot the three scaling

functions, using the known values for the critical data ν ¼
5=6 ≈ 0.833 and β ¼ 1=9 ≈ 0.111 and a central charge
c ¼ 4=5. If we jointly optimize the collapse of ξ and m for
this model, we find Tc ¼ 0.994 971 5, ν ¼ 0.8283, and
β ¼ 0.1086. The extracted critical exponents for both these
models were found with similar accuracy to alternative
tensor network methods [34,35]. Note that for both these
models we used a wide range of bond dimensions for
illustrating the robustness of the scaling hypothesis. Not
surprisingly we find that in general the collapse of the data
gets better for larger bond dimensions, similar to finite size
collapses that improve for larger system sizes. The guiding
principle is therefore to choose bond dimensions as large as
possible, while still being spaced wide enough to allow for
extracting the scaling in δ.
λϕ4 field theory.—Finally, as a more exotic application,

we look at a phase transition in a QFT described by the
following Lagrangian density of the real field ϕ:

LðϕÞ ¼ 1

2
∂μϕ∂μϕþ 1

2
μ2pϕ

2 þ 1

4
λpϕ

4: ð1Þ

The resulting Euclidean path integral can be discretized in a
standard way, e.g.: ∂1ϕðx; yÞ ¼ ðϕiþ1;j − ϕi;jÞ=a (with a
the lattice spacing) and converted into a tensor-network
form by truncating the ϕ fields in a suitable basis, see
Ref. [36]. In order to study the second-order QFT phase
transition from the Z2 unbroken phase hϕi ¼ 0 to the
broken phase hϕi ≠ 0 [37], we computed uniform-MPS
approximations of the fixed point of the path-integral
transfer operator. In addition to the entanglement scaling
δ → 0, we also have to consider the continuum scaling
a → 0. Rather than taking both limits separately, which up
until now has been the standard procedure for MPS
simulations of QFTs [38–40], we will show how one
can perform a double collapse on all the results for different
lattice spacings and bond dimensions into a single scaling
function.
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FIG. 1. Collapse plots for the Ising model, calculated with MPS of bond dimension 12,20,30,50,90, and 150, for 189 different
temperatures linearly spaced between T ¼ 2.2666 and T ¼ 2.2698. Left, magnetization; middle, correlation length; right, bipartite
entanglement entropy.
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We first consider the continuum scaling of the Euclidean
lattice path integral. The lattice action is defined in terms of
the lattice parameters λ ¼ λpa2 and μ2 ¼ μ2pa2. (We use the
subscript p for quantities in physical units, independent of
the lattice spacing a.) However, in the continuum limit, the
mass term receives a divergent one-loop correction, such
that the bare mass μp ¼ μ=a of the theory is parametrized
in terms of a renormalized mass parameter μp;R ¼ μR=a as

μ2 ¼ μ2R − 3λAðμ2RÞ;
where the one-loop contribution AðxÞ is given in, e.g.,
Ref. [36] and diverges as logðxÞ for small values of its
argument. The λϕ4 theory being superrenormalizable, this
is the only UV divergence and the IR behavior is then
completely characterized by the finite ratio α ¼ μ2p;R=λp ¼
μ2R=λ. In approaching the continuum limit, both the mass
term and interaction term get additional UV-finite correc-
tions. Rather than computing these in perturbation theory,
we parametrize general corrections and determine the
coefficients as part of the scaling analysis. Specifically,
we consider the following parametrization,

μ2 ¼ λg − 3λAðλgÞ;
α ¼ gþ λPðλ; gÞ;
a2 ¼ λþ λ2P0ðλ; gÞ;

with g a free parameter that tends to α in the continuum
limit λ → 0, and where P and P0 are multivariate poly-
nomials. The existence of a continuum limit then requires
that, e.g., the lattice correlation length ξðμ; λ; DÞ corre-
sponds to a physical correlation length ξp ¼ ξa that is only
a function of α and the gap in the physical spectrum of
inverse correlation lengths δp ¼ δ=a, giving rise to the
continuum scaling hypothesis

ξðμ; λ; DÞ ¼ 1

a
ξp

�
α;

δ

a

�

with μ, λ, and δ parameters in lattice units.

As the continuum theory exhibits itself a phase transition
at α¼αc, the scaling hypothesis for the field theory requires
that ξp, now parametrized in terms of Δα¼α−αc and
δp ¼ δ=a is a generalized homogeneous function

sξpðΔα; δpÞ ¼ ξpðs−1=νΔα; s−1δpÞ;

and thus δpξpðΔα; δpÞ ¼ ξ̃ðδ−1=νp ΔαÞ. Combining the IR
scaling hypothesis for the critical field theory with the
continuum scaling Ansatz, yields a double collapse for the
quantities of the lattice theory

δξðμ; λ; DÞ ¼ ξ̃

��
δ

a

�
−1=ν

Δα
�
:

For the double collapse equation of the order parameter hϕi
the steps are very similar, except that now we consider
multiplicative corrections to the wave-function renormal-
ization:

ϕ̃

�
Δα

�
δ

a

�
−1=ν

�
¼

�
δ

a

�
−β=ν

hϕiðμ; λ; DÞ½1þ λP00ðλ; gÞ�:

The phase transition in λϕ4 field theory has been studied
by lattice Monte Carlo simulations [41–43], Hamiltonian
truncation [44], and tensor-network methods [36,39,45],
where the most accurate estimates [39,43] agree on a
value for the critical point αc ≈ 11.05–11.07. We have
generated 701 data points with arbitrary lattice spacing
0.005 < a2 < 0.1, bond dimensions ranging from 50–150,
and couplings α around the critical point. Our scaling
approach allows us to transform those 701 data points
ðξ; hϕi; μ; λ; δÞwith the best guess of P, P0, and P00 to points
ðξ̃; ϕ̃; α; a; δÞ, plot them according to the above collapse
equations, and compare them to a scaling functions to
optimize the fit parameters, essentially the same as we did
for the Ising and Potts model. We fixed ν ¼ 1 and β ¼ 1=8
and optimized a fit using P’s of order 1, 2, and 3 in
λ and order 3, 4, and 5 in g and found, respectively,
1=αc¼11.06093, 1=αc¼11.06072, and 1=αc ¼ 11.068 86.
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FIG. 2. Collapse plots for the Potts model, calculated with MPS of bond dimension 21,31,42,50,60,81,99, and 120, for 96 different
temperatures linearly spaced between T ¼ 0.9939 and T ¼ 0.9954. Left, magnetization; middle, correlation length; right, bipartite
entanglement entropy.
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These should be compared to 1=αc ¼ 10.913ð56Þ, an
alternative tensor network based study of λϕ4 [36] and
1=αc ¼ 11.055ð14Þ, the leading MC study [43]. We show
the third order collapse plot in Fig. 3.
Conclusions.—We have formulated a finite scaling

hypothesis for MPS based simulations of transfer matrices
of classical spin systems near criticality. We have identified
a natural analog of the inverse system size 1=L in terms of a
scaling parameter δ ≃ 1=L that is a function of the
eigenvalues of the MPS transfer matrix. The viability of
our general scaling hypothesis was demonstrated explicitly
on d ¼ 2þ 0 Ising, Potts, and λϕ4, the latter case requiring
a double collapse both in δ and lattice spacing. An open
question here is whether a similar double collapse can be
obtained for the case of nonsuperrenormalizable field
theories. Notice also that our scaling hypothesis is not
specific for partition function methods, similar results
would be obtained for quantum Hamiltonians. Finally,
going to higher dimensions, for simulating 2þ 1 and
3þ 0 critical systems with PEPS, similar scaling ideas
give rise to two inverse length scales δ1 and δ2. This
situation is similar to a system on a L1 × L2 ×∞ cuboid,
for which we can borrow scaling ideas used in ED and MC,
to be reported elsewhere.
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