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Combined burden and functional impact tests
for cancer driver discovery using DriverPower
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The discovery of driver mutations is one of the key motivations for cancer genome

sequencing. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG)

Consortium, which aggregated whole genome sequencing data from 2658 cancers across 38

tumour types, we describe DriverPower, a software package that uses mutational burden and

functional impact evidence to identify driver mutations in coding and non-coding sites within

cancer whole genomes. Using a total of 1373 genomic features derived from public sources,

DriverPower’s background mutation model explains up to 93% of the regional variance in the

mutation rate across multiple tumour types. By incorporating functional impact scores, we

are able to further increase the accuracy of driver discovery. Testing across a collection of

2583 cancer genomes from the PCAWG project, DriverPower identifies 217 coding and 95

non-coding driver candidates. Comparing to six published methods used by the PCAWG

Drivers and Functional Interpretation Working Group, DriverPower has the highest F1 score

for both coding and non-coding driver discovery. This demonstrates that DriverPower is an

effective framework for computational driver discovery.
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Cancer drivers are somatic genetic alterations that confer
selective advantages to tumour cells1,2. Identification of
cancer drivers is a crucial yet challenging task in cancer

genomics research3,4. There are multiple challenges. First, driver
mutations generally account for only a small fraction of the
somatic variations found in a typical tumour, the rest being
innocent bystander ‘passenger' mutations5. Second, there is sub-
stantial intra- and inter-tumoural heterogeneity in most cancers6.
Both across different tumour types and across different genomic
regions within the same tumour, the background mutation rate
(BMR) can vary over several orders of magnitude.

The advent of large-scale cancer whole-genome sequencing
(WGS) data has made it possible to explore the role of driver
events in non-coding regions. However, identifying non-coding
driver events in WGS creates new challenges. First, although the
functional impact of somatic mutations in the coding regions of
genes is fairly straightforward to predict, much less is known
about the effect of mutations on non-coding regions of the gen-
ome. Second, only ~1% of somatic mutations detected in PCAWG
WGS data are exonic, adding substantially more mutations and
regions to be tested and demanding more careful control of type I
and type II errors than WGS. At present, only a limited number of
non-coding drivers are known, the primary examples being the
TERT promoter for multiple tumour types and the TAL1 enhancer
for T-cell acute lymphoblastic leukaemia7,8.

Most state-of-the-art methods identify drivers by detecting
signals of positive selection either through mutational burden
tests, which compare the rate of mutations observed in a region of
the genome to what is expected from the BMR, or functional
impact tests, which identify putative driver mutations based on a
higher-than-expected rate of changes that are predicted to alter
the function of genomic elements3,6. Mutational burden tests
work best for calling frequently recurrent driver events and per-
form poorly when applied to rare driver events. In contrast,
functional impact tests fail to find drivers in genomic elements
that are poorly understood or annotated.

To maximise accuracy, we combined the two mutation sig-
nificance testing methods to develop DriverPower (Fig. 1a), a
framework for identification of coding and non-coding cancer
drivers using mutational burden and functional impact scores.
We first present the DriverPower method and describe the can-
didate driver mutations identified by applying the method to the
ICGC/TCGA Pan-Cancer Analysis of Whole Genomes
(PCAWG) data set. The PCAWG Consortium aggregated WGS
data from 2658 cancers across 38 tumour types generated by the
ICGC and TCGA projects. These sequencing data were re-
analysed with standardised, high-accuracy pipelines to align to
the human genome (reference build hs37d5) and identify germ-
line variants and somatically acquired mutations, as described in
ref. 9. Then we show that DriverPower outperforms several
published methods for both coding and non-coding driver dis-
covery and discuss some novel candidates identified by
DriverPower.

Results
Features predictive of BMR. To evaluate DriverPower, we took
WGS somatic variant data derived from 2583 high-quality donors
from the PCAWG project9. After removing hypermutated sam-
ples, 2514 donors with 24,715,214 somatic single nucleotide
variants (SNV) and small indels were used for driver element
identification. We analysed these data both as a single pan-cancer
data set, as well as a series of 29 tumour type-specific cohorts
(Supplementary Data 1).

Among all tumour cohorts, we observed substantial variability
in the observed mutation rate at the tissue, donor and locus levels

(Supplementary Figs. 1 and 2). Accurate driver detection requires
an accurate estimate of BMR across the tumour genome, taking
into account the extensive variability among tumour types,
donors and genomic regions. DriverPower tackles this issue by
modelling the BMR using numerous genomic features that co-
vary with the localised BMR. We collected 1373 features from
three public data portals (Supplementary Data 2): the ROAD-
MAP Epigenomics project, the ENCODE project and the UCSC
genome browser10–12. These features covered seven main
categories: conservation, DNA accessibility, epigenomic marks,
nucleotide contents, replication timing, RNA expression and
genome compartments. As expected, we found extensive multi-
collinearity among features. Most features (1368/1373) are
significantly (Spearman’s rho test q < 0.1) correlated with pan-
cancer genome-wide mutation rates (Supplementary Fig. 3).

BMR model. We investigated two algorithms for modelling the
BMR based on genomic features. The first algorithm was ran-
domised lasso followed by binomial generalised linear model
(GLM). The alternative algorithm was the gradient boosting
machine (GBM), which is a non-linear and non-parametric tree
ensemble algorithm13. To evaluate both BMR modelling algo-
rithms, we made non-overlapped 1 megabase pair (Mbp) auto-
somal elements (n= 2521) as well as training genomic elements
(n= 867,266) by sampling genomic coordinates randomly. The
number of mutations per element was then predicted with five-
fold cross validation (CV).

When evaluated using 1-Mbp autosomal elements, we found
that both algorithms could accurately predict the BMR (Supple-
mentary Figs. 4 and 5). In high mutational burden tumour
cohorts, we observed essentially no difference between two
algorithms, however GBM consistently outperformed GLM when
applied to low mutational burden tumour cohorts (Supplemen-
tary Fig. 6). When evaluated on the training element set, in which
the size of element varies from 100 bp to 1 Mbp, the prediction
accuracy drops due to higher BMR variability, especially for low
mutational burden tumour cohorts such as Myeloid-MPN and
CNS-PiloAstro (Supplementary Fig. 6). However, for large cohort
such as the pan-cancer set (N= 2253), ~ 93% of the mutation rate
variance on the training set is explained by either model (Fig. 1b).
The model still shows excellent performance when applied to the
test element set, explaining 83% of the mutation rate variance on
the pan-cancer cohort (Fig. 1c).

Both the randomised lasso algorithm and the GBM can be used
to rank feature importance in different ways. Feature selection
ranking from both methods confirmed that H3K9me3 (associated
with heterochromatin), replication timing and H3K27ac (or its
antagonistic histone mark H3K27me3) are the most important
groups of predictors for BMR (Supplementary Fig. 7 and
Supplementary Data 2)14. Consistent with previous results, we
found that features from tumour cell lines with similar cell-of-
origin to the primary tumour type are frequently selected15. For
example, replication timing from liver cancer cell line HepG2 was
selected as a feature for the BMR in hepatocellular carcinoma
(Liver-HCC), whereas replication timing in MCF7 (breast cancer)
and SK-N-SH (neuroblastoma) were selected for breast adeno-
carcinoma (Breast-AdenoCA) and glioblastoma (CNS-GBM),
respectively (Supplementary Fig. 8).

Functional adjustment. In most burden-based methods, muta-
tions are equally weighted. However, not all mutations have the
same functional consequences. To incorporate functional con-
sequence information, DriverPower implements a posterior
functional adjustment. The functional adjustment step up-
weights mutations with high predicted functional impact.
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Althyough the DriverPower framework can potentially work with
any functional scoring scheme, in the current implementation we
measured the functional impact using four published scoring
schemes: the CADD16, DANN17, EIGEN18 and LINSIGHT19

scores. Although different training data, assumptions and algo-
rithms are used by different scores, we found those scores to be
consistent at the element level (Supplementary Fig. 9). We used
the average weight of all four scores in the remainder of the
manuscript unless otherwise specified.

Candidate driver event discovery. To evaluate the DriverPower
algorithm, we first employed three simulated variant sets gener-
ated by the PCAWG Drivers and Functional Interpretation
Working Group (PDFIWG) to examine type I and type II errors.
We expected to identify no drivers as all three simulated data sets
are reshuffles of observed mutations. In general, we observed no
inflation or deflation in simulations and only eight significant hits
(DriverPower q < 0.1) were identified in ~ 11M statistical tests
(Supplementary Fig. 10). We then used the observed PCAWG
data set to discover drivers within multiple coding and non-
coding element sets identified by the PDFIWG, spanning 3.7%
(~ 113Mbp) of the human genome.

We benchmarked our results against reference driver element sets
and driver candidates called by six other published methods. Among
the six methods, ExInAtor20, ncdDetect21 and LARVA22 use only
mutational burden information; oncodriveFML23 uses only func-
tional biases; whereas MutSig24 and ActiveDriverWGS25 model both
mutational burden and functional consequence but not through

functional impact scores. Three reference driver element sets were
used: the COSMIC Cancer Gene Census (CGC)26,27, the PCAWG
raw integrated driver candidates (PCAWG-raw) and the PCAWG
consensus driver candidates (PCAWG-consensus). The CGC is a
catalogue of driver genes for which mutations have been causally
implicated in cancer and was used as the gold standard set (i.e., used
in the calculation of precision and recall) for coding and splice site
drivers. PCAWG-raw is an integration of driver elements called by
12 different driver detection methods on the same data we used
here. PCAWG-consensus is a conservative set derived from the
PCAWG-raw by applying multiple stringent filters to control the
false discovery rate; in particular, the majority of non-coding
candidates from lymphoid tumours and skin melanomas is excluded
from this set because of hyper-mutational processes in these tumour
types that create prominent mutational hotspots28–30. For the same
reason our analysis of non-coding regions for tumour-specific and
the pan-cancer cohorts excluded melanoma and lymphoma.

Overall, we observed well-calibrated p values in DriverPower’s
results with or without functional adjustment (Fig. 1d and
Supplementary Fig. 10) and a high accuracy for both coding and
non-coding driver discovery (Fig. 1e, Supplementary Data 3). For
protein-coding regions (CDS), DriverPower found 217 significant
(q < 0.1) driver candidates. As a gene (e.g., TP53) can be driver in
multiple cohorts, the unique number of genes was 131. The
precision of the algorithm’s driver calls was high. Among the
driver genes called by DriverPower, 82.5% (179/217) of all genes
were present within the CGC. For non-CGC genes, 27 and 3
genes were present within PCAWG-consensus and PCAWG-raw,
respectively. Thus, only 3.7% (8/217) coding driver candidates

Training elements
Cancer whole-genome

somatic mutations

Reference features
(n = 1373)

RNA expression

Compartments (Hi-C)
Conservation scores

DNA accessibility
Epigenomic marks

Nucleotide contents
Replication timing

Test elements

a

b c ed
217

43

23
14

5 4 4 2
0

50

543210

0.3

0.3
R2 = 0.8328R2 = 0.9332

0.2

0.2

0.1

0.1

0.0

0.0

0.41.00

1.00

0.75

0.75

0.50

0.50

0.25

0.25

0.00

0.00

0.4
15

Function-adapted

Raw

10

5

0

Test element
(n = 139,404)

Pan-cancer
(N = 2253)

Burden
test

Gradient boosting
machine

Randomized lasso +
generalized linear model

Potential
driver

elements

Significance
test

Functional adjustment
Weighting mutation count
for q < 0.25 elements by
functional impact scores

Background mutation rate
(BMR) model

Regions of interest

Randomized genomic
elements

Training element
(n = 867,266)

–log10(expected p)

–l
og

10
(o

bs
er

ve
d 

p)

Observed MRObserved MR

P
re

di
ct

ed
 M

R

P
re

di
ct

ed
 M

R

100

150

200

C
D

S

S
pl

ic
e 

si
te

P
ro

m
ot

er

5′
U

T
R

ln
cR

N
A

 p
ro

m
ot

er

E
nh

an
ce

r

ln
cR

N
A

3′
U

T
R

N
um

be
r 

of
 h

its

None
PCAWG–raw
PCAWG–consensus
CGC

0%

25%

50%

75%

100%

C
D

S
S

pl
ic

e 
si

te
P

ro
m

ot
er

5′
U

T
R

ln
cR

N
A

 p
ro

m
ot

er
E

nh
an

ce
r

ln
cR

N
A

3′
U

T
R

F
ra

ct
io

n 
of

 h
its

Fig. 1 Summary of method and results. a DriverPower overview. b, c For the training and test element sets, comparison of the predicted (Y axis) and
observed (X axis) mutation rate in the pan-cancer cohort. d The raw and function-adapted p value quantile-quantile (QQ)-plot for all test elements in the
pan-cancer cohort. Function-adapted p values are p values with the incorporation of functional impact scores. e Number and fraction of non-coding driver
candidates called by DriverPower contained within three reference driver sets (CGC, PCAWG-consensus or PCAWG-raw). For each element type, the
number of candidates is also shown above the bar.
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called by DriverPower were not contained within any reference
gene sets. As expected, incorporation of functional information
increased both precision and recall in coding driver discovery
(Fig. 2a and Supplementary Fig. 11). For example, in pancreatic
ductal adenocarcinoma (Panc-AdenoCA; N= 232), the addition
of functional adjustment to the algorithm resulted in a gain of
three additional drivers (ACVR1B, RBM10 and ZFP36L2) and the
loss of one likely false-positive genes (FAU) (Fig. 2a). Without the
use of functional information, the overall precision dropped to
74.6% (156/209) for CGC genes and 88.5% (185/209) for CGC/
PCAWG genes. When compared with six other methods using
the same 26 non-melanoma/lymphoma cohorts and CGC as the
gold standard set, DriverPower (precision= 0.84; recall= 0.79)
had the highest F1 score (0.81) (Fig. 2b, c). In our benchmark,
sensitivity was a bottleneck for most methods (4/7 with recall
< 0.5). When compared with the method with highest recall, the
widely used coding driver caller MutSig (precision= 0.80; recall=
0.80), DriverPower identified an additional 21 genes present in
CGC (23 for MutSig; Supplementary Fig. 12).

We next benchmarked DriverPower’s accuracy for non-coding
driver events. For the prediction of driver events affecting the
splice sites of coding genes, DriverPower called 47 significant (q <

0.1) candidates with 85.1% (40/47) within CGC. DriverPower
(F1= 0.91) also outperformed two recently published methods,
ncdDetect (F1= 0.65) and oncoDriverFML (F1= 0.32), for splice
site driver detection (Supplementary Fig. 13).

For the prediction of non-coding driver events in 3′-UTRs, 5′-
UTRs, promoters and enhancers, DriverPower identified 19
candidates in non-melanoma/lymphoma tumour cohorts and 24
candidates in the pan-cancer cohort. Benchmarking results showed
that DriverPower has the highest F1 score (0.79) among the six
methods evaluated (Fig. 2d, e). Promoter and 5′-UTR driver
candidates called by DriverPower were associated with a total of 17
unique genes. Of these, one gene (TERT) was in CGC, four genes
(WDR74, HES1, MTG2 and PTDSS1) were in PCAWG-consensus,
and six other genes were in PCAWG-raw. DriverPower also called
two 3′-UTR driver candidates in total, including TOB1 in pan-
cancer and ALB in Liver-HCC. Both candidates were present in the
PCAWG-consensus. For enhancer regions, DriverPower identified
two candidates: chr6:142,705,600-142,706,400 (linked to GPR126)
and chr7:86,865,600-86,866,400 (linked to TP53TG1). Both enhan-
cer elements were identified by PCAWG-raw; the TP53TG1
enhancer was the only enhancer for non-melanoma/lymphoma
tumours in the PCAWG-consensus set.
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For long non-coding RNA (lncRNA) genes and their
promoters, DriverPower found 9 candidates in total. Among
them, 6 and 3 were contained within PCAWG-consensus and
PCAWG-raw, respectively. These candidates targeted three
unique lncRNAs: RN7SK, RMRP and RPPH1. The promoter of
RMRP was significantly (q < 0.1) mutated in four cohorts (Breast-
AdenoCA, Liver-HCC, Stomach-AdenoCA and pan-cancer) and
has been nominated as a novel non-coding driver.

DriverPower-exclusive driver candidates overview. A total of 11
coding and 17 unique non-coding candidates were exclusively
identified by DriverPower (not present in either CGC or
PCAWG-consensus; Supplementary Data 4). We sought to
evaluate these exclusive driver candidates using literature evi-
dence and correlative orthogonal data such as the effect of the
variant on RNA-seq expression levels and the presence of somatic
copy number alterations (SCNAs) and somatic structural varia-
tions (SVs) covering the same regions. On this basis, we found
that many of the DriverPower-exclusive candidates are plausible
cancer drivers.

Among protein-coding genes, DriverPower identified EEF1A2
(eukaryotic translation elongation factor 1 alpha 2) in the
oesophageal adenocarcinoma cohort (Eso-AdenoCA; 7/95 sam-
ples). All seven observed mutations were missense (Supplemen-
tary Fig. 14a). Although no RNA-seq data are available for Eso-
AdenoCA samples, SCNA analysis indicated that EEF1A2 is
amplified in 69.5% (66/95) of Eso-AdenoCA samples (vs. 27.9%
of non-Eso-AdenoCA samples; Supplementary Fig. 14b), suggest-
ing a potential gain-of-function role in this cancer type. The
amplification of EEF1A2 (20q13.33) was also confirmed by the
GISTIC2.0 (q= 0.0006). The same 1-Mbp locus detected by
GISTIC2.0 was also amplified recurrently in other tumour types,
including 73.1% of colorectal adenocarcinoma, 64.7% of stomach
adenocarcinoma and 55.4% of ovarian adenocarcinoma. Support-
ing this hypothesis, previous studies have also demonstrated that
EEF1A2 is a putative oncogene in ovarian cancer and over-
expressed in various tumour types31–33.

Another protein-coding gene exclusively identified by Driver-
Power was MEF2B in B-cell non-Hodgkin’s leukaemia (Lymph-
BNHL; 8/105 samples). Among nine observed mutations, eight
mutations were missense and one was a frameshift deletion
(Supplementary Fig. 14c). RNA-seq data confirmed that mutated
samples overexpressed MEF2B (copy number corrected p=
0.011; Supplementary Fig. 14d). MEF2B (Myocyte enhancer
factor 2B) has been identified in multiple WES studies34–36, and a
previous study has also shown that MEF2B mutations can
dysregulate cell migration in non-Hodgkin lymphoma37.

One splice site candidate exclusively called by DriverPower is
SGK1 (serum/glucocorticoid regulated kinase 1) in Lymph-
BNHL. The same gene was also significant in DriverPower’s
CDS result for Lymph-BNHL (Supplementary Fig. 14e), resulting
in a total of 13.3% (14/105) Lymph-BNHL samples being affected
by non-synonymous or splice site mutations in SGK1. SGK1 is
present in PCAWG-raw but was filtered out owing to the large
number of AID-related variants in this tumour cohort. However,
differential expression analysis indicated that SGK1 is signifi-
cantly overexpressed in mutated Lymph-BNHL samples relative
to non-mutated samples (copy number corrected p= 3e-13 from
likelihood ratio test; Fig. 2f). SGK1 encodes a serine/threonine
protein kinase that has an important role in cellular stress
response and its CDS has been nominated as a driver in earlier
WES studies35,36. Another study has also demonstrated that the
administration of an SGK1 inhibitor induces apoptosis in
lymphoma cell lines38. Together these data support a potential
driver role for SGK1 in Lymph-BNHL.

The GPR126 (adhesion G protein-coupled receptor G6)
enhancer candidate was filtered out from the PCAWG-raw set
because of mutations in palindrome loops, which makes it unclear
whether mutations in the GPR126 enhancer are caused by
mutational mechanism associated with palindrome loops or
positive selection. We found that the GPR126 enhancer is
recurrently mutated in transitional cell carcinoma of the bladder
(Bladder-TCC; 14/23 samples) and breast adenocarcinoma
(Breast-AdenoCA; 8/195) (Supplementary Fig. 14f). GPR126 is
among the MammaPrint 70 gene panel used to predict the risk of
breast cancer metastasis39,40. A study also shows that knockdown
of GPR126 can inhibit the hypoxia-induced angiogenesis in model
organisms41. Differential expression analysis demonstrated that the
GPR126 is significantly downregulated in Bladder-TCC samples
with enhancer mutations (copy number corrected p= 0.012 from
likelihood ratio test; Fig. 2g) relative to those carrying the wild-type
enhancer, suggesting a functional role for these mutations.

Several somatically altered histone genes have been implicated
in human cancer, such as H3F3A (identified as a pan-cancer
driver in this study), H3F3B and HIST1H3B42–44. DriverPower
identified four histone genes as driver candidates in the pan-
cancer cohort, two of which were absent from CGC or PCAWG-
consensus: the 5′-UTR of HIST1H2AC and HIST1H2BD.
Previous studies have shown that the protein levels of the
replication-dependent histone H2A variant HIST1H2AC (encod-
ing histone H2A type 1-C) is decreased in chronic lymphocytic
leukaemia patients and bladder cancer cells45,46, and the siRNA
knockdown of HIST1H2AC increases cell proliferation and
promote oncogenesis46.

Several other driver candidates exclusively called by Driver-
Power are associated with genes that may have a role in cancer.
The highly expressed liver-specific gene ALB (albumin) is
significant (DriverPower q < 0.1) for somatic mutations affecting
its CDS, splice site, 3′-UTR and promoter in Liver-HCC; the
splice site and promoter (under CADD scores) were discovered
by DriverPower exclusively. Correlative evidence from gene
expression and copy number alterations suggested that loss-of-
function mutations in ALB are subject to positive selection in
Liver-HCC as described elsewhere47. The CDS of KAT8 (lysine
acetyltransferase 8) was called by DriverPower in Panc-AdenoCA
with 100% (5/5) missense mutations. As a histone modifier,
KAT8 has been shown to physically interact with MLL1 and
regulate known cancer drivers ATM and TP5348–51. Previous
studies have also shown that KAT8 is downregulated in
gastric cancer52 and KAT8 can suppress tumour progression
by inhibiting epithelial-to-mesenchymal transition53. The 5′-UTR
and promoter of SRSF9 (serine and arginine rich splicing factor 9)
was significant in DriverPower’s results for pan-cancer and not
present in any reference driver sets. The protein encoded by
SRSF9 is part of the spliceosome; a previous study indicates that
the proto-oncogene SRSF9 is overexpressed in multiple tumours
and that this overexpression can cause the accumulation of β-
Catenin54. The same study also showed that the depletion of
SRSF9 proteins could inhibit colon cancer cell proliferation.

In summary, 4/11 coding and 4/17 unique non-coding driver
candidates exclusively called by DriverPower had some form of
support from the literature or orthogonal evidence. If we assume
that all the exclusive candidates that lack such evidence are false
positives, then this puts an estimate of DriverPower’s false
discovery rate across the PCAWG data set at 3.2% (7/217) for
coding and 16.8% (16/95) for non-coding regions. However, this
assumption is probably invalid as most of these lack-of-evidence
candidates are also identified by other methods and present in
PCAWG-raw. We acknowledge that lack-of-evidence candidates
may contain false-positive calls, but they may also contain
previously unknown drivers. For example, the 5′-UTR of
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TBC1D12 in Breast-AdenoCA, which has been filtered out from
the PCAWG-raw owing to possible hypermutability, is called by
all but one driver discovery methods and is reported as a putative
cancer driver in previous studies because of two recurrent
mutations in the Kozak consensus sequence involving in the
initiation of protein translation23,55. Moreover, according to
another recent study, the same TBC1D12 candidate is still
statistically significant in breast cancer even after removing
hypermutations, but whether these mutations can alter protein
translation in cancer is still undetermined24. Some lack-of-
evidence candidates may also fit the mini-driver model of cancer
evolution56. Unlike classical drivers, mini-drivers can only weakly
promote and are not essential for tumour progression, hence
present at a lower frequency in cancer cohorts. Further
investigation is required to determine the role of lack-of-
evidence candidates in cancer.

DriverPower applied to WGS. To demonstrate the robustness of
DriverPower, we applied DriverPower to two public whole-exome
sequencing (WES) data sets (Supplementary Fig. 15). Both WES
data sets are processed differently than the PCAWG data and
contain samples not included in the PCAWG study. For liver
cancer, using models trained for Liver-HCC (N= 314), Driver-
Power identified 14 coding drivers from 364 TCGA-LIHC sam-
ples (53 shared with Liver-HCC). All but one driver candidates
were present within the CGC or PCAWG-consensus. For pan-
creatic adenocarcinoma, using models trained for Panc-AdenoCA
(N= 232), DriverPower identified six coding drivers from 180
TCGA-PAAD samples (no shared samples with the PCAWG
study) and all corresponded to known driver genes.

Discussion
Computational driver discovery is essential to distinguish driver
from passenger mutations in the coding and non-coding regions of
whole cancer genomes. Here we report DriverPower, a new fra-
mework for accurately identifying both types of driver mutation by
combining mutational burden and functional impact information.
The method takes advantage of the large somatic mutation sets
produced by WGS technology to build an accurate global BMR
model from more than a thousand genomic features. This con-
trasts with methods that build a local BMR model using selected or
flanking regions. One advantage of this is that the method is not
biased towards coding regions, but uses the same model for coding
and non-coding cancer driver discovery. Another advantage is the
method’s high degree of modularity. DriverPower can potentially
work with any types of genomic element (contiguous or disjoint,
coding or non-coding, proximate or distal to genes), any regression
algorithms for modelling BMR and any functional impact score
scheme. Although DriverPower is designed for WGS projects, it
performs robustly in WES strategies as well.

In comparison with the other driver discovery methods eval-
uated by the PCAWG Drivers and Functional Interpretation
Working Group, DriverPower provides the best balance of pre-
cision and recall, although is not always the top-ranked method
when either metric is considered independently (Fig. 2b, d). As
discussed in Supplementary Note 1, DriverPower is para-
meterised to allow for adjustment of the precision-recall trade-off;
in this study, we selected conservative parameters that prioritise
precision over recall especially for non-coding regions (Supple-
mentary Fig. 16).

There are several ways in which the accuracy of DriverPower
could be improved. One approach to improve recall is to take into
the account the potential presence of negative (purifying) selec-
tion in the functional regions selected for testing. When the BMR
model is trained, we use random genomic elements that are

predominantly under neutral selection. However, the functional
elements selected for testing are more likely to be under positive
and/or negative selection57. The observed mutation rate reflects
the balance between positive and negative selection, and negative
selection at one site in the element will diminish the signal of
positive selection at other sites, reducing the sensitivity of the
method as a whole. To our knowledge, no driver discovery tool
currently models the effect of negatively selected sites; future
work aims to take this mechanism into account.

The precision of the method can also be improved. False-positive
driver calls may be caused by technical errors such as variant-calling
artefacts that artificially increase the local mutation rate, or by
biological processes that are not captured by the BMR model such
as regional differences in activation-induced cytidine deaminase
(AID) activity. These can potentially be mitigated by incorporating
into the BMR model additional features relevant to the technical
and biological processes. For example, incorporating read-level
coverage, mapping and bias scores into the BMR could help correct
for regions prone to variant-calling artefacts, whereas features like
the number of palindrome loops and the fraction of mutations
caused by AID per element could be used to adjust for locally-acting
hypermutation processes.

When applied to the PCAWG data set, DriverPower called
nearly twice as many coding driver events as non-coding ones, a
ratio also observed by the PCAWG driver study, a ratio also
observed by the PCAWG driver study47. Although this unba-
lanced ratio may reflect cancer biology, there is also the possibility
that it reflects, at least in part, the technical challenge of
sequencing and interpreting non-coding regions. Potential arte-
facts include systematic undercalling of somatic variants in non-
coding regions24, a problem that could be rectified by deeper
coverage. For example, it is estimated that ~ 216 mutations in the
TERT promoter are likely to be missed in the PCAWG data set
owing to low detection sensitivity47. Another technical issue is
raised by the fact that several non-coding candidates are only
significant in the pan-cancer cohort, suggesting that the data set is
statistically underpowered. In fact, although we studied 2583
genomes here, many tumour types have a sample size fewer than
30. To overcome this issue, we could either sequence more gen-
omes or reduce the size of the set of test elements by narrowing it
to functional motifs or conserved bases58. Moreover, only ~ 3.7%
of the genome has been studied here. There may be more non-
coding drivers in other types of regulatory elements, which
demands more complete annotations for the non-coding part of
the human genome. At last, functional impact score schemes are
currently biased toward coding mutations; therefore, improved
functional scoring schemes will also help us identify more func-
tionally relevant non-coding cancer drivers in the future.

A comprehensive catalogue of coding and non-coding cancer
drivers will accelerate the clinical translation of cancer genomic
study to precision medicine. As more cancer genomes and more
cancer types are sequenced, a general and accurate framework for
computational driver discovery like DriverPower will become
increasingly useful.

Methods
Ethical review. Sequencing of human subjects tissue was performed by ICGC and
TCGA consortium members under a series of locally approved Institutional Review
Board (IRB) protocols as described in Hudson et al.59. Informed consent was
obtained from all human participants. Ethical review of the current data analysis
project was granted by the University of Toronto Research Ethics Board (REB)
under protocol #30278, ‘Pan-cancer Analysis of Whole Genomes: PCAWG'.

Generation of cancer whole-genome somatic mutations. All DNA somatic
SNVs and indels for 2583 donors were obtained from the PCAWG project (somatic
variant callset released October 2016)9. For our analysis, donors with hypermutated
signatures were excluded (n= 69, defined as > 30 mutations per Mb). Otherwise,
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we used the same type-specific (n= 29) and pan-cancer (all tumour samples except
Skin-Melanoma, Lymph-NOS, Lymph-CLL and Lymph-BNHL) sample cohorts as
the PCAWG Drivers and Functional Interpretation Working Group (PDFIWG;
Supplementary Data 1)47.

Generation of simulated somatic mutations. We used three simulated data sets
(Broad, DKFZ and Sanger simulations) from the PDFIWG (described in detail at
Rheinbay et al.47). These simulations were made to capture the variation of BMR
and remove the signal of positive selection through permutations of observed
somatic mutations.

Generation of test and training genomic elements. We define a genomic ele-
ment as the collection of genome coordinates that defines one specific functional
region of interest. For example, the CDS element of TP53 is the combination of all
protein-coding regions in TP53.

We used eight test element sets in our analysis, including the CDS (n= 20,185),
splice site (n= 18,729), 5′-UTR (n= 19,369), 3′-UTR (n= 19,188), promoter (n=
20,164), enhancer (n= 30,816), lncRNA (n= 5,580) and lncRNA promoter (n=
5373). All test element sets were obtained from the PCAWG project. GENCODE
v19 was used as the reference gene model when building those sets60. Non-coding
RNA annotations were collected from multiple sources as described.

We constructed genomic element training sets by randomly sampling genome
coordinates from hg19, the build used for PCAWG. The length of each training
element was sampled from the length distribution of test elements and multiplied
by a factor of 3. Training elements overlapping test elements were removed. In
total, 867,266 training elements were created and ~ 54% (1,545,491,997 bp) of the
genome was covered.

Collection and generation of features. We collected 1373 features in total. Details
including data sources can be found at Supplementary Data 2. Nucleotide content
features were calculated as the fraction of 2-mers and 3-mers in each genomic
element. The number of 2-mers and 3-mers was counted directly from genome
sequences (hg19). For raw features in bigwig format (typically genome-wide sig-
nals), we calculated the average signal strength of covered bases in each element
using the bigWigAverageOverBed (v2) utility from the UCSC genome browser61.
For raw features in BED format (typically narrow peaks of ChIP-seq data), we
calculated the percentage of bases intersecting BED for each element with the
BEDTools (v2.24.0)62. All missing values in features were filled with 0.

The DriverPower outline. The main steps of the DriverPower (v1.0.0) framework
are summarised below. Details of each step are described in following sections. The
difference between v1.0.0 and the version used in the PDFIWG data analysis freeze
(April 2017) is discussed in Supplementary Note 2 and Supplementary Fig. 17.

The first step of DriverPower is to scale features and/or filter out excluded
regions. The second step is to build the BMR model using the GBM, or randomised
lasso followed by binomial GLMs. The purpose of the BMR model is to estimate
the expected number of mutations (y^) for any genomic element. Namely, we want
to obtain y^i ¼ E yijXi; Lið Þ where Xi and Li are the feature vector and length for the
element i. The third step is to conduct burden test with observed (y) and predicted
(y^) mutation counts, and perform multiple testing correction. The fourth step is
to adjust observed mutation counts (y) based on functional impact scores for nearly
significant elements (q < 0.25). The last step is to re-assess the significance for
nearly significant elements with functional adjusted mutation counts followed by
multiple testing correction.

Scaling of features. Features were scaled with RobustScaler from scikit-learn
(version 0.18)63. Feature scaling was only conducted for randomised lasso
and GLMs.

Definition of excluded regions. In this study, all bases in the excluded regions
were removed before any analysis. The excluded region consists of three sets: (1) all
N bases and gaps in the hg19 genome (fetched from the UCSC table browser12); (2)
ENCODE consensus excludable regions (the DAC Blacklisted Regions track and
the Duke Excluded Regions track from the UCSC genome browser)64; (3) PCAWG
low mappability regions (data retrieved from the PCAWG variant group). PCAWG
low mappability regions are defined as regions callable in fewer than 556/1111 (~
50%) tumour-normal pairs. For each tumour-normal pair, a base is callable if there
are more than 14/8 high quality reads in tumour/normal WGS. In total,
2,806,377,226 bp, or 96.41% of the genome are defined as callable.

Feature selection with randomised lasso. To select features, we randomly sub-
sampled 10% of the training set 500 times. Then for the k-th subset with size Nk,
the following model was fitted65:

w^
k ¼ argmin

w

1
Nk

logit
y þ 1=2
N � L

� �
� Xw

����
����
2

2

þα
X1373
i¼1

jwij
bi

 !

where N is the total number of donors in the data set, X is the feature matrix, w is

the weight vector, α is the regularisation parameter, and bi is the scaling factor. The
regularisation parameter α was determined by a fivefold CV lasso with 33% of the
training data. For the k-th sub-sampling, the ith feature was selected if w^

ki � 0:001.
The final feature importance score was calculated as the fraction of times that a
feature was selected. Only features with score > 0.5 were used in the GLM
BMR model.

Prediction of the BMR with GLM. When using the GLM, we modelled the
observed mutations in each genomic element with a binomial distribution, that is

y � Bðn; pÞwith n ¼ N � L and p ¼ y^=ðN � LÞ
where y is the observed mutation count and y^ is the estimated mutation count.
We used the binomial GLM to obtain y^ with the logit link function, that is

ŷ
N � L ¼ E

y
N � L jX

select
� �

¼ logit�1ðXselectβÞ

where Xselect is the selected feature matrix and β is the regression coefficient vector.

Prediction of the BMR with GBM. We trained the GBM with XGBoost66. All
features were used in model training. The negative Poisson log-likelihood was
chosen as the objective function and lnðN � LÞ of elements were used as offset (i.e.,
base_margin in XGBoost). Other non-default parameters used in DriverPower
were as follows: eta= 0.05, max_depth= 8, subsample= 0.6, max_delta_step=
1.2, early_stop_rounds= 5 and nrounds= 5000. The feature importance for GBM
is measured by the improvement in accuracy brought by a feature across all trees.
XGBoost returns feature importance that sums up to 1 for all features. We also
normalised the importance to a [0, 1] scale (i.e., importance relative to the most
important feature).

Evaluation of two BMR models. We evaluated both models with 1Mb autosome
bins (n= 2521) and training genomic elements (n= 867,266) defined above. The 1
Mb elements have been used in many studies14,15,67. For both elements, we obtain
the predicted mutation rate by fivefold CV. For 1 Mb elements, we used fourfold
data for model training and onefold data for model evaluation. For training ele-
ments, we use 1-fold data to train the model and the rest to evaluate. As per
previous work, we used R2 score and Pearson’s r as evaluation metrics15. Standard
error of the mean (SEM) for R2 and r was calculated from fivefold CV.

Calculation of element functional impact scores. Four different functional scores
were used in this analysis16–19. For CDS, CADD (SNVs and indels, v1.3), DANN
(SNVs) and EIGEN (SNVs) scores were used. CADD indel scores were generated
with the CADD web interface for all observed indels in the PCAWG data set. For
splice site, CADD and DANN scores were used. For non-coding elements, the
CADD, DANN and LINSIGHT (SNVs and indels) score were used. Then the
following steps were used to calculate the functional impact score per genomic
element. First, raw scores were retrieved for all observed mutations in the data set.
Second, all raw scores were converted to phred-like scores by �10log10ðrank=NmÞ,
where Nm is the number of observed mutations having scores. Third, for each
genomic element, its functional score S was calculated as:

S ¼ 1
N

XN
i¼1

si

where N is the number of donors and si is the average functional impact score for
the ith donor.

Adjustment of the mutation count. To compensate for the unbalanced number of
mutations among samples, instead of using the mutation count per element
directly we used the geometric mean of mutation count and sample count. That is,
we use the balanced count yb ¼ ffiffiffiffiffiffiffiffiffiffiffi

y � ndp
instead of y directly for significance test,

where nd is the number of mutated donors. Based on the motivation that not all
mutations should be weighted the same, the balanced mutation count yb was then
adjusted for nearly significant elements (raw q value < 0.25) by a functional weight
w, that is yf ¼ w � yb , where yf is the functionally adjusted mutation count. For the
element j, the functional weight wj was calculated based on its functional score Sj
and a threshold score ST:

wj ¼
Sj
ST

¼ Sj
�10log10F

The threshold score ST is controlled by a single parameter F between 0 and 1,
and can be interpreted as the fraction of functionally relevant variants among all
observed variants. Parameter tuning of F can be found at Supplementary Note 1.

Assessment of the element significance. For each element, we calculated Pðyb �
y^Þ as the raw p value and Pðyf � y^Þ as the function-adapted p value. As over-
dispersion has been documented in burden-based methods and can affect the
driver discovery accuracy22, here we performed a regression-based overdispersion
test for each tumour cohort using the training set68. Based on the result of the

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13929-1 ARTICLE

NATURE COMMUNICATIONS |          (2020) 11:734 | https://doi.org/10.1038/s41467-019-13929-1 | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


overdispersion test, we calculated the raw and function-adpated p values by fol-
lowing a binomial distribution or a negative binomial distribution:

yb or yf � NBðy^; s � θÞ; if p � 0:01B N � L; y^

N � L
� ��

otherwise, where p and θ are the p value and dispersion parameter estimated from
the overdispersion test, and s is the scaling factor for θ used to accommodate the
discrepancy between test and training set in terms of the dispersion level. We used
s= 3 for lymphomas and s= 1 otherwise in this analysis.

Multiple testing correction. In all cases, q values were generated by the
Benjamini–Hochberg procedure69. We chose q < 0.1 as the significant level and q <
0.25 as the nearly significant level. For each element set, multiple testing correction
was performed for each tumour cohort (cohort q value) and across all tumour
cohorts (global q value). Cohort q values were used in functional adjustment and
global q values were used to define the final driver list.

Generation of reference cancer drivers. Reference cancer drivers were used to
benchmark the performance of DriverPower. Three reference sets were used: (1)
the COSMIC CGC (v82, n= 567); (2) the PCAWG consensus driver candidates
(PCAWG-consensus; n= 157 for coding and n= 26 for non-coding); (3) the
PCAWG raw integrated driver candidates (PCAWG-raw; n= 193 for coding and
n= 79 for non-coding). PCAWG-consensus (q value post-filtering < 0.1) is a set of
highly confident non-coding drivers and subjected to multiple stringent filters as
described. PCAWG-raw (q value pre-filtering < 0.1) is a superset of PCAWG-
consensus and includes non-coding drivers that were not subjected to the filtering
process. PCAWG-raw driver candidates that are mutated in fewer than three
samples were removed in this analysis. For promoter and 5′-UTR candidates in the
PCAWG consensus drivers, we reversed the filtering for overlapping elements (i.e.,
one element is selected over the overlapping element based on prior knowledge).
For example, we kept both the promoter and the overlapping 5′-UTR ofWDR74 in
this analysis; in the PCAWG consensus set, the WDR74 promoter is preferentially
selected over its 5′-UTR.

Benchmarking of DriverPower. We compared coding and non-coding driver
candidates called by DriverPower to driver candidates called by six other published
driver detection tools (ActiveDriverWGS25, ExInAtor20, LARVA22, MutSig24,
ncdDetect21 and oncodriveFML23). Driver calls for 26 single tumour cohorts (no
Skin-Melanoma, Lymph-CLL and Lymph-BNHL) were retrieved from the PCAWG
driver group. For each method, we removed driver candidates that are mutated in
fewer than three samples. We used precision (TP/(TP+ FP)), recall (TP/(TP+ FN))
and F1 score (2*Precision*Recall/(Precision+ Recall)) as performance metrics.

For CDS, we used the CGC gene set as the gold standard. For each method, true
positive genes were defined as genes presented in the gold standard set and the
precision was then calculated as the fraction of true positive genes among all called
genes. For recall, since we cannot accurately know the expected set of driver genes
that should be called for each tumour cohort in the data set, a lower-bound
approximation was used instead. The lower-bound approximation was estimated
by taking the union of all true positive genes identified by each method and the
recall was then calculated as the fraction of true positive genes called among the
lower-bound approximation.

For gene splice sites, the same gold standard gene set and benchmark method as
CDS were used. Owing to data availability, the comparison was only performed for
ncdDetect, oncodriveFML and DriverPower.

For promoters, enhancers, 3′-UTRs and 5′-UTRs, because the number of non-
coding driver candidates is small, four element sets were benchmarked together.
No data for ExInAtor is available for this comparison. For each tumour cohort, true
positive driver elements were defined as elements called by at least three methods.
The calculation of precision, recall and F1 score was then identical as for the CDS
and splice site.

Somatic copy number and SVs analysis. We used SCNA (including GISTIC2.0
results) and SV call sets released January 201770. The copy number status (loss,
neutral or gain) of a region is classified based on the difference between the
absolute copy number of the region and the genome-wide ploidy of the donor. For
gene-level SVs, we calculated the number of breakpoints per gene (including CDS,
splice sites, UTRs and promoters) per donor.

Differential expression analysis. We used the upper quartile normalised gene
expression (FPKM-UQ) released May 201671. When comparing the expression
difference between two groups of donors, we fitted the following quasi-Poisson
family GLM and then employed the likelihood ratio test to obtain p values for
mutational status: FPKM-UQ ~ MUT+ SCNA+ [Tissue], where MUT is the
mutational status (0 for unmutated donors and 1 for mutated donors), SCNA is the
somatic copy number status (−1, 0 or 1 for copy number loss, neutral or gain,
respectively) and Tissue is the tumour tissue type. The tissue type was only used for
pan-cancer comparison for the adjustment of tumour types.

WES data analysis. We obtained two WES data sets through the Genomic Data
Common (GDC)72: TCGA-PAAD (35,321 somatic mutations across 180 samples)
and TCGA-LIHA (56,208 somatic mutations across 364 samples). We chose public
MuTect2 variants from GDC. Variant coordinates were lifted from hg38 to hg19
with the UCSC liftOver tool. Only CADD scores were used to detect drivers. For
TCGA-PAAD, GBM models trained from Panc-AdenoCA of the PCAWG data
were used. For TCGA-LIHA, GBM models trained from Liver-HCC were used.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Code availability
The source code for DriverPower (written mainly in Python 3) is available at GitHub
[https://github.com/smshuai/DriverPower]. It is distributed under GNU General Public
License 3.0, which allows for reuse and redistribution. Other software packages and
bioinformatics tools used in this study are indicated in the corresponding method
sections. The core computational pipelines used by the PCAWG Consortium for
alignment, quality control and variant calling are available to the public at [https://
dockstore.org/search?search=pcawg] under the GNU General Public License v3.0, which
allows for reuse and distribution.

Data availability
The data sets underpinning the analyses in the paper are detailed in Supplementary
Table 1. Aligned sequencing data, as well as somatic and germline variant calls from
PCAWG tumours, including SNVs, indels, copy number alterations and structural
variants, are available for download at [https://dcc.icgc.org/releases/PCAWG].
Additional information on accessing the data, including raw read files, can be found at
[https://docs.icgc.org/pcawg/data/]. In accordance with the data access policies of the
ICGC and TCGA projects, most molecular, clinical and specimen data are in an open
tier, which does not require access approval. To access potentially identification
information, such as germline alleles and underlying sequencing data, researchers will
need to apply to the TCGA Data Access Committee (DAC) via dbGaP [https://dbgap.
ncbi.nlm.nih.gov/aa/wga.cgi?page=login] for access to the TCGA portion of the data set,
and to the ICGC Data Access Compliance Office (DACO; [https://icgc.org/daco]) for the
ICGC portion. In addition, to access somatic SNVs derived from TCGA donors,
researchers will also need to obtain dbGaP authorisation.

In addition, the analyses in this paper used several data sets that were derived from the
raw sequencing data and variant calls (Supplementary Table 1). The individual data sets
are available at Synapse (https://www.synapse.org/), and are denoted with synXXXXX
accession numbers (listed under Synapse ID); all these data sets are also mirrored at
https://dcc.icgc.org, with full links, filenames, accession numbers and descriptions
detailed in Supplementary Table 1. The data sets encompass: harmonised tumour
histopathology annotations using a standardised hierarchical ontology (syn10389164);
consensus somatic SNVs, MNVs and indels (syn7364923); gene expression profiles from
RNA-sequencing data (syn5553991); genomic intervals used in driver region calls
(syn5259890); driver region calls by each individual methods (syn7359546); consensus
gene-level somatic copy number calls (syn8239175); three simulation data sets for
somatic mutations (syn7187923, syn7436065 and syn7152699).
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