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A B S T R A C T

Recent advances in computational reinforcement learning suggest that humans and animals can learn from
different types of reinforcers in a hierarchically organised fashion. According to this theoretical framework, while
humans learn to coordinate subroutines based on external reinforcers such as food rewards, simple actions within
those subroutines are reinforced by an internal reinforcer called a pseudo-reward. Although the neural mecha-
nisms underlying these processes are unknown, recent empirical evidence suggests that the medial prefrontal
cortex (MPFC) is involved. To elucidate this issue, we measured a component of the human event-related brain
potential, called the reward positivity, that is said to reflect a reward prediction error signal generated in the
MPFC. Using a task paradigm involving reinforcers at two levels of hierarchy, we show that reward positivity
amplitude is sensitive to the valence of low-level pseudo-rewards but, contrary to our expectation, is not
modulated by high-level rewards. Further, reward positivity amplitude to low-level feedback is modulated by the
goals of the higher level. These results, which were further replicated in a control experiment, suggest that the
MPFC is involved in the processing of rewards at multiple levels of hierarchy.
1. Introduction

Principles of computational reinforcement learning (RL) have suc-
cessfully accounted for a wide range of behavioral, single cell recordings,
lesion and neuroimaging data (Niv, 2009). RL methods are particularly
suitable for addressing simple problems characterized by relatively few
states and limited numbers of possible actions (Sutton and Barto, 1998).
However, many problems faced in real, uncertain environments are
much more complex. In particular, humans and other animals typically
act in environments associated with a large state-space, which renders
many important problems intractable to standard RL algorithms (Botvi-
nick et al., 2009).

Recent developments in RL theory suggest that hierarchical repre-
sentations can provide a heuristic solution to the problem of scalability
(Sutton et al., 1998). Hierarchical representations separate goal-directed
behaviors into collections of related sub-goals, each of which is achieved
through specific action policies. In this way, the hierarchy of goal and
sub-goals corresponds to the hierarchy of tasks and sub-tasks. Note that
the question of whether behaviors are represented hierarchically is in-
dependent of whether they are also “model-based”, which concerns the
ability to predict upcoming rewards based on a probabilistic model of the
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task's state-space (Daw, Gershman, Seymour, Dayan,&Dolan, 2011). The
link between model-based and hierarchical behaviors has been exten-
sively discussed elsewhere (Botvinick and Weinstein, 2014; Le Heron,
Holroyd, Salamone, & Husain, submitted).

The options framework provides a parsimonious solution for hierar-
chical problems that is relatively similar to existing (flat) RL algorithms.
By contrast to flat RL algorithms, which depend only on information
about primary rewards, hierarchical reinforcement learning (HRL) en-
tails learning about rewards at multiple levels of abstraction. In the op-
tions framework, primary rewards are used to train the system to
coordinate sub-tasks in order to achieve a high-level goal (maximizing
primary reward), whereas pseudo-rewards are used to select individual
actions according to the specific sub-task being executed. For example,
given the high-level goal of making a delicious breakfast, the feedback
“everything tastes great” to a chef would constitute a primary reward. By
contrast, the feedback “you successfully preheated the oven” would
constitute a pseudo-reward, as this sub-task is not necessarily rewarding
in and of itself.

Option-specific action policies can be learned using standard RL. In
these algorithms, unexpected rewards elicit a prediction error signal
called a temporal difference error or reward prediction error (RPE)
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(Sutton and Barto, 1998). In the options framework, the same algorithm
utilizes “pseudo-rewards” related to sub-goals in order to generate
pseudo-reward prediction errors (pRPEs), which are utilized to optimize
action policies that maximize pseudo-reward.

Although the neural mechanisms of RL have been well-studied in
recent years (Niv, 2009), the neural correlates of HRL have been rela-
tively less explored. Notably, Botvinick et al. (2009) proposed that the
brain regions located in the prefrontal cortex (PFC) enable hierarchical
learning. Based on this proposal, orbitofrontal cortex (OFC) and the
ventral striatum (VS) evaluate both pseudo-reward and reward infor-
mation and the dorsolateral striatum (DLS) selects between actions and
options accordingly.

To our knowledge, only two studies have addressed this proposal. In a
pioneering experiment, Ribas-Fernandes et al. (2011) utilized functional
magnetic resonance imaging (fMRI) and the electroencephalogram (EEG)
to investigate the neural mechanisms of pseudo-reward learning. In this
study, participants used a joystick to play a video game in which they first
achieved a sub-task on each trial (by acquiring a package from a specified
screen location) and then completed the overall task (by delivering the
package to a final destination). Crucially, on some trials the package
unexpectedly appeared at a new location during the sub-task phase. This
made the sub-goal either harder or easier to achieve without changing
the overall difficulty of the primary goal. In this way, the experiment
varied the size of pRPEs (elicited by changes in distance to the sub-goal)
while simultaneously controlling for the size of the RPEs (elicited by
changes in the distance to the goal). The results showed that a region of
medial prefrontal cortex (MPFC) called anterior midcingulate cortex
(aMCC) was sensitive to pRPEs.

More recently, Diuk et al. (2013) looked at the hemodynamic corre-
lates of learning simultaneously, from different levels of hierarchy, in a
computerized casino task. On each trial participants first selected be-
tween two casinos (the higher-level choice), and then serially selected
two out of four slot machines within that casino (the lower-level choices).
Each slot choice was followed by a feedback stimulus indicating the
number of points associated with that choice (constituting the
pseudo-rewards). Crucially, the second slot-level feedback stimulus was
simultaneously shown with another feedback stimulus indicating money
won or lost (constituting the primary reward). Subjects were instructed
to discover the optimal sequence of choices that would result in
maximum monetary gain. The lower-level feedback depended on the
sequence of lower-level choices and the higher-level feedback depended
on the higher-level choices, which encouraged participants to adapt their
behavior according to both levels of feedback. Yet contrary to the study
by Ribas-Fernandes et al. (2011), the results failed to reveal pRPEs in the
MPFC. Rather, they found only one brain region, the VS, to be involved in
both types of learning.

Notably, Holroyd and Yeung (2012) developed a theory of aMCC
function that was partly inspired by findings from lesion studies in
humans and other animals. They proposed that the aMCC lies at the apex
of this hierarchical action selection mechanism. On this view, the MPFC
utilizes RPE signals to learn option values, as opposed to the values of the
primary actions that comprise the options (Holroyd and McClure, 2015;
Holroyd and Umemoto, 2016). Consistent with this idea, Zarr and Brown
(2016) found that the MPFC responds to feedback at different levels of
hierarchy along its rostro-caudal extent. In this fMRI study, participants
learned from feedback whether a rule at a certain level of hierarchy had
changed. The results showed that the activity of the rostral parts of the
MPFC are modulated by higher-level feedback and the activity of the
caudal parts are modulated by lower-level feedback. Although the in-
formation conveyed by the feedback used in this study does not map
directly onto the feedback used in studies concerning economical deci-
sion making, it does point to the involvement of the MPFC in processing
different kinds of lower-level information in hierarchically-organized
tasks.

While the hierarchical theory of MPFC has helped elucidate the re-
sults of several recent empirical studies (Balaguer et al., 2016; Umemoto
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et al., 2017), strong evidence for this mechanism is lacking. Further,
while Holroyd and Yeung (2012) suggest that MPFC learns option values
based on (high-level) RPEs, Ribas-Fernandes et al. (2011) observed that
MPFC produces (low-level) pRPEs. The role of the MPFC in HRL, and
specifically whether or not the MPFC is sensitive to pRPEs and/or RPEs
across different task manipulations remains unclear.

To investigate this issue, we recorded EEG from participants engaged
in a computerized casino task (see also Krigolson and Holroyd, 2006;
Krigolson et al., 2008; Umemoto et al., 2017). The task was inspired by
Diuk et al.’s (2013) casino paradigm and evaluated the amplitude of the
reward positivity (RewP) to different feedback events. The RewP is a
component of the event-related brain potential (ERP) said to reflect RPE
signals carried via dopamine projections to the MPFC (Holroyd & Coles,
2002, 2008). A variety of empirical studies have supported this idea. For
example, RewP amplitude is sensitive to the probability of rewarding
stimuli and is also evoked by stimuli that predict rewarding outcomes
(Holroyd and Coles, 2002; for reviews see Holroyd and Umemoto, 2016;
Walsh and Anderson, 2012; Sambrook and Goslin, 2015).

In the current study, we asked whether RewP amplitude is sensitive to
RPE signals, pRPE signals, or both. Following the experimental paradigm
of Diuk et al. (2013), the task featured three consecutive choices (one
casino choice followed by two slot choices) and three feedback stimuli (2
outcomes presented as game points followed by 1 monetary outcome) on
each trial. The participants were instructed that through trial and error
they should find the sequence of choices that would maximize their
monetary gain. The task was structured to encourage participants to
perceive the first two feedback stimuli on each trial (the slot-level point
outcomes) as conveying pseudo-reward information, and the third
feedback stimulus (the casino-level monetary outcome) as conveying
reward information. Crucially, the reward contingencies were coded
such that the first lower-level feedback stimulus on each trial was
probabilistically less indicative of higher-level feedback relative to the
second lower-level feedback. Moreover, on approximately half of the
trials the higher-level feedback was not determined by the lower-level
outcomes that preceded it, allowing for the production of (non-zero)
high-level prediction errors.

We considered three possible conclusions regarding the overall
outcome of the task. First, both low-level feedback and high-level feed-
back would elicit the RewP. In line with a flat RL account, the RewP
would reflect an RPE to primary rewards where the higher-level feedback
constitutes the reward. Here, the casino level feedback (wins vs. losses)
would elicit a RewP. Further, given that the lower-level feedback is
predictive of the higher-level feedback, the RewP should “propagate back
in time” during the course of the experiment, as past literature has shown
that stimulus cues that predict reward elicit the RewP (Holroyd et al.,
2011). Further, because the first slot outcome is less predictive than the
second slot outcome of the casino outcome, the second slot outcome
should elicit a larger RewP than the first slot outcome (Fig. 1, first row).
By contrast, and in line with an HRL account, the RewP could reflect both
pRPEs to low-level feedback and RPEs to high-level feedback. In this case,
all feedback events would elicit a RewP, and the sizes of RewP to the first
and second lower-level feedback stimuli would be comparable (Fig. 1,
second row). This possibility differs from the flat RL account in that it
predicts a larger RewP to the first slot-machine outcomes.

Second, only the high-level reward, and not the low-level reward,
could elicit the RewP (Fig. 1, third row). This possibility is inconsistent
with a flat RL account, which predicts that the slot feedback would also
come to elicit the RewP (see above). By contrast, this possibility is
consistent with an HRL account on the assumption that low-level rewards
are processed by a different neural system.

Third, only the low-level reward, and not the high-level reward,
would elicit the RewP (Fig. 1, fourth row). This possibility is consistent
with both flat RL and HRL accounts. On the flat account, low-level
feedback would elicit the RewP if subjects ignored the monetary win/
loss feedback and instead viewed the points feedback as intrinsically
rewarding, as can occur in video games, for example. Here the slot-level



Fig. 1. Possible reward positivity (RewP) results and their compatibility with
different hypotheses of hierarchical processing. The lightning symbol represents
the RewP to feedback information, with relative size indicating relative RewP
amplitude. “Hier-Both Levels” refer to the hypothesis that RewP is sensitive to
feedback at both levels of hierarchy. “Hier-Money” refers to the hypothesis that
the RewP is only sensitive to high-level feedback. “Flat-Point” and “Hier-Point”
refer to the hypotheses that RewP is sensitive to low-level feedback in a flat or
hierarchical manner, respectively.
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feedback would effectively serve as the primary reward, despite explicit
task instructions that frame the task as a hierarchical problem, the goal of
which is to win money. Similarly, with a HRL account, the RewP would
reflect pRPEs to the first and second slot-machine feedback, which would
elicit RewPs of comparable size. However, the casino outcome would fail
to elicit a RewP, presumably because the high-level rewards are pro-
cessed by a different brain area.

We predicted that if subjects frame the problem hierarchically, then
their choice behavior should be sensitive to positive vs. negative out-
comes at both levels of feedback. Nevertheless, these behavioral adjust-
ments might or might not be associated with RewP amplitude, given
observed dissociations between RewP amplitude and learning (Holroyd
and Umemoto, 2016). As described below, we first conducted a primary
experiment (Experiment 1) to investigate this question, and then con-
ducted a second “control” experiment (Experiment 2) to verify the
results.

2. Experiment 1

2.1. Method

2.1.1. Participants
25 participants (20 female; 22 right-handed; aged 18–26, M¼ 20.8,

SD¼ 1.84) participated in the experiment. All of the participants had
normal or corrected-to-normal vision and none reported a history of head
injury. Participants were undergraduate students recruited from the
University of Victoria. Each received course credit as well as a monetary
bonus based on their task performance, as described below. All partici-
pants gave informed consent. The study was approved by the local
research ethics committee and was conducted in accordance with the
ethical standards prescribed in the 1964 Declaration of Helsinki.

2.1.2. Task design
Participants engaged in a computerized task that was a modified
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version of the casino task (Diuk et al., 2013), coded using Psychophysics
Toolbox version 3 for MATLAB. All stimuli were viewed from a distance
of about 70 cm (13.9� wide, 9.8� high) and displayed on a 17-inch
computer monitor. The visual angle of each stimulus was 6�. The task
consisted of four blocks of 38 trials each. On each trial, participants were
required to choose between two casinos and subsequently select two out
of four slot machines in order to maximize their monetary gain. To be
specific, participants selected one of two door images presented on a
computer screen, each of which represented an entrance to a virtual
“casino”, by pressing a corresponding key on a standard QWERTY
keyboard (Fig. 2). Participants pressed the “f” key (with the index finger
of the left hand) to select the casino on the left side and the “j” key (with
the index finger of the right hand) to select the casino on the right side. If
no response was issued within 3 s following the onset of the door stim-
ulus, then 1 cent was deducted from their total earnings, the trial was
terminated and the next trial began.

One second after selecting a casino, the participants were presented
with an image of four different slot machines (distinguishable by colour)
positioned near each of the four corners of a rectangle, which represented
the environment inside the selected casino. Slot selection involved
pressing a character on the keyboard (characters “f”, “j”, “c”, “m”) that
was spatially consistent with the location of the machine on the screen.
Note that participants were instructed to press the “c”, “m”with their left
and right thumb respectively. Participants were instructed to select two
slot machines consecutively. The first time that a participant selected a
slot machine, the colour of the other machines turned grey, indicating
deactivation, and the appearance of the slot on the selected machine
changed to indicate activation (Fig. 2). Then, a number indicating the
amount of game points resulting from that selection appeared at the
center of the machine. 3 s after the second selection, the trial outcome
was indicated by changing the colour of the bar in the middle of screen
either to green, indicating a win of 10 cents, or to red, indicating a loss of
10 cents, as appropriate to the choice-reward contingencies described
below (Fig. 2)).

If no response was committed at the casino level in the 3 s period after
the presentation of the door image, the trial would be discontinued and
another trial would begin. In contrast, if no response was committed at
the slot machine level for each of the slot machine choices, the trial
would discontinue incurring a 1 Canadian cent penalty on the total
earnings made by the participants.

Participants were given 5 dollars in credit to spend during the
experiment. They were instructed to maximize their monetary gain by
choosing the casino “that gives you on average the greatest chance of
winning 10 cents” and to find the slot machines “that are most likely to
give you 5 points.” Thus, the task instructions were intentionally biased
to encourage subjects to represent the game hierarchically.

Importantly, the task was designed to dissociate the effects of lower-
level reward versus higher-level reward information on the participants'
behavior. Each slot machine choice yielded a dichotomous outcome (0
points or 5 points; hereafter, the “bad” and “good” outcomes at the lower-
level, respectively) so that on each trial the participant obtained 0, 5 or
10 points across both choices. For both casinos, the payoffs on the four
slot machines were associated with different probabilities of yielding 5
points (30%, 40%, 60% and 70%; implemented as pseudorandom vari-
ables) with each slot machine being associated with only one of these
payoff rates. Thus, the probabilities of winning a low-level reward did not
differ across the two casinos.

The casino outcome on each trial depended on the number of points
obtained. Feedback indicating 0 points resulted in a certain loss of 10
cents (the “bad” outcome at the higher-level), feedback indicating 10
points resulted in a certain gain of 10 cents (the “good” outcome at the
higher-level). Feedback indicating 5 points yielded a probabilistic reward
– 40% chance of gaining 10 cents in one casino and a 60% chance of
gaining 10 cents in the other casino – resulting in unexpected high-level
outcomes on about half of the trials. Given that the probability of winning
the lower-level reward did not differ across casinos, subjects had to pay



Fig. 2. Event timings for an example trial.
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attention to the higher-level reward information in order to maximize
their monetary reward (i.e. in which casino they had a higher likelihood
of winning money). The identity of the “better” casino was counter-
balanced across participants. Note that chance performance on this task
results, on average, in 0 cents gain overall.

2.1.3. Behavioral data analysis
Given the explicit hierarchical nature of the task, we hypothesized

that the outcomes at each level of hierarchy would only modulate the
frequency of choices at that particular level (i.e. casino outcomes
modulate casino choices and slot machine outcomes modulate slot ma-
chine choices). To test this, we conducted two analyses of variance
(ANOVAs) on the frequency of repeating the same action in the future:

To assess whether the casino choices are only modulated by outcomes
at the casino level and not by outcomes at the slot machine level, we
conducted a two way within-subjects ANOVA with slot machine (bad,
good) and casino (bad, good) outcomes as factors on the frequency of
repeating the same casino choice (stay probability) on the upcoming
trial.

To assess whether the casino choices are only modulated by outcomes
at the slot machine level and not by outcomes at the casino level, we
conducted a two-way within-subject ANOVA with slot machine (bad,
good) and casino outcomes (bad, good) as factors on the frequency of
repeating the same slot machine choice (stay probability) on the next
trial in which the participant selected the same casino.

2.1.4. Value based computational modeling of choice behavior
In addition, we used a hierarchically organised temporal difference

learning (TD) model to account for choice behavior according to a value-
based decision making framework. We then compared the model fit for
the hierarchical model with that of a TD based flat model. Specifically,
we pit two competing models against each other. In onemodel, choices at
both levels of hierarchy were only driven by information at the casino
level, which corresponds to a flat agent. In the other model, choices were
driven by information from both levels, which corresponds to a hierar-
chical agent.

2.1.4.1. Flat model. The flat model was implemented using an actor-
critic architecture. Here, the critic uses the TD algorithm for evaluating
the value of each state while the actor learns the value of each action
(Sutton and Barto, 1998). The model only learns from monetary reward
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feedback; the different points outcomes are represented as different
environmental states without intrinsic value.

The agent selects between two, four and three choices on the 1st, 2nd
and 3rd steps, respectively. Depending on the choices, the agent can
experience either of the two states in step 2 (chosen casino), one of the
four states in step 3 (0 vs 5 points feedback in each casino) and one of the
eight states in step 4 (delivery of either 0 vs. 5 points feedback following
each of the four states on step 2). Hence the agent can experience 2, 4,
and 8 states on the 2nd, 3rd and 4th steps of the sequence, respectively.

The value for each state VF, where V denotes the value and F indicates
that this value is assigned by a flat agent, is determined based on the RPE
term δ:

δt ¼ RMtþ1 þ γVFðStþ1Þ � VFðStÞ (1)

VFðStÞ ← VFðStÞ þ αδt (2)

Here, S denotes the current state, RM denotes the monetary reward, γ
denotes the discount factor, t denotes the current step of the sequence,
and α denotes the learning rate.

The value for each action is also updated based on the prediction error
term and actor's learning rate β:

hðSt ; atÞ ¼ hðSt ; atÞ þ βδt (3)

The probability for selecting each action a is determined according to
the softmax equation:

Pðselecting action a at time tÞ ¼ ehðSt ;at Þ=τ
Pn

At;i¼1e
hðSt ;At;iÞ=τ

(4)

In Equation (4), n is the number of possible actions at state St and τ is
the temperature parameter.

Note that the flat agent does not evaluate slot machine outcomes as
having an inherent valence; nevertheless, because each slot machine
outcome is represented as a separate state, it can gradually learn that
high-point outcomes have higher values, and therefore that actions that
lead to high-point outcomes have higher values.

The model depends on four parameters (α;β;τ;γÞ. Because the events
in a trial happen in rapid succession, the discount rate is set to 1. The
other three parameter values are estimated by fitting the model to each
participant's choice behavior using the maximum likelihood estimation
procedure (Daw, 2011).
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2.1.4.2. Hierarchical model. In this model, door selections are reinforced
based on monetary earnings and slot machine selections are reinforced
based on points earnings. The model implements an actor-critic learning
algorithm separately for each level.

The hierarchical agent learns at two levels of abstraction. These levels
are both implemented using an actor-critic architecture. The lower, slot
machine level is characterized by four actions and one state; the value for
the state VH, where H indicates that this value is assigned by a hierar-
chical agent, is learned based on the pRPE term δslot :

δslot ¼ RPtþ1 � VHðStÞ (5)

VHðStÞ ← VHðStÞ þ α1δslot (6)

In Equation (5), RP denotes points delivered, i.e., the pseudo-reward,
and α1 is the learning rate for the lower-level critic. The lower-level actor
learns the value of selecting each slot machine with β1 as its learning rate.

hðSt ;atÞ ¼ hðSt ; atÞ þ β1δslot (7)

The probability for selecting each action a is determined using the
softmax equation with temperature parameter τ1:

Pðselecting action a at time tÞ ¼ e
hðSt ;at Þ=τ1

Pn
At;i¼1e

hðSt ;At;iÞ=τ1
(8)

In Equation (8), n is the number of possible actions for each state (i.e.
n¼ 4 for 1st slot choice, n¼ 3 for 2nd slot choice).

The higher, casino-level is characterized by two actions and one state;
the value for the state is learned based on the RPE term.

δcasino ¼ RMtþ1 � VHðStÞ (9)

VHðStÞ ← VHðStÞ þ α2δcasino (10)

In Equation (9), RM denotes money delivered, i.e., the primary-
reward. α2 in Equation (10) is the learning rate for the higher-level critic.

The higher-level actor learns the value of each slot machine with β2 as
its learning rate. And the probability for selecting each action is deter-
mined using the softmax equation with temperature parameter τ2:

hðSt ;atÞ ¼ hðSt ; atÞ þ β2δcasino (11)

Pðselecting action a at time tÞ ¼ e
hðSt ;at Þ=τ2

P2
At;i¼e

hðSt ;At;iÞ=τ2
(12)

The model therefore has six parameters: α1; α2; β1; β2; τ1; τ2. These
parameters are estimated using the maximum likelihood estimation
procedure to find the best fit between the model output and the observed
participants' choice behavior (Daw et al., 2011).

For model comparison, we used the Akaike information criterion
(AIC) (Akaike, 1998) technique to compare the goodness of fit for the two
models. The criterion value for this technique includes a penalty that
increases with the number of parameters associated with each model.
This penalty is intended to lower the chance of overfitting. The criterion
value for each model is calculated according to the following equation:

AIC (model) ¼ 2k(model)þ 2 NLL(model) (13)

In Equation (13), k is the number of parameters and NLL is the
negative log-likelihood (as calculated according to Daw, 2011) of the
model. Lower criterion values are associated with better performing
models.

2.1.5. EEG acquisition and preprocessing
The EEG signal was acquired using a montage of 33 Ag/AgCl ring

electrodes mounted on a nylon electrode cap according to the extended
international 10–20 system (Jasper, 1958). The electrode AFz was used
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as the ground for the EEG recording and the amplifier used an online
average reference to amplify the signal. Inter-electrode impedances were
maintained below 20 kΩ using an abrasive conductive gel applied to each
electrode. The electro-oculogram (EOG) was recorded for the purpose of
ocular correction; horizontal EOG was recorded from the external canthi
of both eyes, and vertical EOG was recorded from the sub-orbit of the
right eye and electrode channel Fp2. Signals were amplified by differ-
ential amplifiers with an online bandpass filter in the range frequency
response 0.017–67.5 Hz (90 dB per octave roll off) and digitized with a
sampling rate of 250 per second. Digitized signals were stored on disk
using Brain Vision Recorder software (Brain Products GmbH, Munich).

Post-processing and data visualization were performed using Brain
Vision Analyzer software (Brain Products GmbH,Munich). A fourth order
digital Butterworth passband filter in the range of 0.1–30Hz was applied
(12 dB per octave roll off for the 0.1 and 24 dB per octave roll off for the
30 Hz). We visually inspected the continuous EEG data for periods of
unsystematic artifacts that were unlikely to be corrected by the artifact
correction algorithm; any time window containing such data was then
rejected from further analysis. On average only 1 percent of the contin-
uous EEG data was rejected based on this procedure (except for one
subject who had more than 60% of their data rejected; the entire data set
for this participant was then removed from further analysis). Ocular ar-
tifacts were corrected using the eye movement correction algorithm
described by Gratton et al. (1983). The EEG data were re-referenced to
averaged-mastoids electrodes. Epochs of 800ms duration were created
by extracting samples from 200ms prior to 600ms following the onset of
each feedback stimulus (for the slot machine-level feedback, points
shown on the slot machines, and for the casino-level feedback, the green
or red colour of the outcome bar) from the continuous EEG, separately for
each channel and subject. This procedure created about 450 segments per
subject (150 segments for each feedback type (i.e. first lower-level
feedback, second lower-level feedback and higher-level feedback)
when collapsed across valence condition). Data were baseline-corrected
by subtracting the mean voltage during the 200ms interval preceding
feedback stimulus onset in each epoch from the post-feedback stimulus
voltages in that epoch. Muscular and other artifacts were removed using
a �100 μV threshold and a �35 μV step threshold as rejection criteria
(Luck, 2014, p.349, 2011). On average 2% of the segments were rejected
as a result of the artifact rejection procedure (SD¼ 2.0%, see supple-
mentary inline material, Appendix B for more details).

To examine the ERPs to lower-level feedback events, six feedback-
related ERPs were created for each electrode and subject by averaging
the single-trial EEG according to four different outcome types as follows:
1) 5 point and 2) 0 point outcomes to the first slot machine; 3) 5 point and
4) 0 point outcomes to the second slot machine, and 5) 5 point and 6)
0 point outcomes averaged across the first and second slot machine
outcomes. RewP amplitude was calculated using a difference-wave
approach by subtracting the ERP to the good outcomes from that of
bad outcomes for each event of interest, separately for each channel and
subject. This approach minimizes overlap with other ERP components
(Holroyd and Krigolson, 2007; Sambrook and Goslin, 2015; but see
Cavanagh, 2015). RewP at the (lower) slot machine level was calculated
separately for 1) the first slot machine outcomes, 2) the second slot
machine outcomes, and 3) across both slot machine outcomes.

To examine the ERPs to higher-level outcomes, feedback-related ERPs
were created for each electrode and subject by averaging the single-trial
EEG separately according to the win outcomes and loss outcomes. Similar
to the lower-level, RewP amplitude was calculated by subtracting the
ERP to the good outcomes from that of bad outcomes for each event of
interest, separately for each channel and subject.

For all inferential statistical analyses, RewP amplitude was evaluated
at channel FCz, where previous literature indicates that the component
reaches maximum amplitude (Walsh and Anderson, 2012). The
frontal-central shape of the distributions was evaluated by inspection.
The mean amplitude of the RewP was calculated as the average value of
the difference wave observed within the interval 240–340ms



Fig. 4. Comparison between the fit of each model to the choice behavior for
Experiment 1. The model fit is calculated by subtracting the negative log-
likelihood (NLL) of a model-based on chance from the indicated model's NLL
and then dividing the result by the number of trials, for both the hierarchical
(“Hier.”) and flat models, for each participant.
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post-stimulus, as prescribed by a meta-analysis of RewP studies (Sam-
brook and Goslin, 2015). Hereafter we refer to this interval as the “RewP
interval”.

We carried out three different analyses to examine which of the three
possibilities articulated in the introduction were supported by the evi-
dence. First, a one sample t-test on the amplitude of the RewP to the slot
machine-level outcomes (averaged across the first and second slot ma-
chines) was completed in order to examine whether those outcomes
modulated RewP amplitude. Second, we examined whether the casino-
level outcomes elicited a RewP by conducting a one sample t-test on
the amplitude of the RewP to the casino outcomes. Third, we compared
the amplitude of the RewP elicited by the first slot machine outcome to
that elicited by the second slot machine outcome in order to examine
whether temporal proximity of the slot machine outcome to the casino
outcome modulated RewP amplitude.

3. Results

3.1. Behavioral data

Fig. 3 (left panel) shows the effect of casino and slot machine out-
comes on the mean frequency of repeating (staying with) the same casino
choice on the following trial. Average reaction times for the first and
second slot machine choices were (M¼ 738, SD¼ 224) for the first-
choice, (M¼ 446, SD¼ 178) ms for the second-choice. Average reac-
tion time for the casino choice was (M¼ 782, SD¼ 183) ms. The average
reaction time for the first slot machine choice was significantly larger
than that of the second choice, t (23)¼ 9.96, p< 0.05.

A two way within-subjects ANOVAwith slot machine (bad, good) and
casino (bad, good) outcomes as factors on the frequency of repeating the
same casino choice (stay probability) on the upcoming trial revealed a
significant main effect of casino outcome, F (1, 23)¼ 29.6, p< 0.05, but
no significant main effect of slot machine outcome, F (1, 23)¼ 1.72,
p> 0.05, and no significant interaction between the two factors, F (1,
23)¼ 0.04, p> 0.05. Therefore, the casino choices were influenced only
by the casino outcomes and not by the slot machine outcomes. Because
outcomes at the lower-level of the hierarchy did not effect choices at the
higher-level, this result is consistent with a hierarchical learning account.

Fig. 3 (right panel) shows the effect of casino and slot machine out-
comes on the mean frequency of repeating the same slot choice upon
selecting the same casino (stay probability). A two-way within-subjects
ANOVA with slot machine (bad, good) and casino outcomes (bad, good)
as factors on the stay probability revealed no significant main effect of
casino outcome, F (1, 23)¼ 1.7, p> 0.05, a significant main effect of slot
machine outcomes, F (1, 23)¼ 34.6, p< 0.05 and no significant
Fig. 3. Feedback at different levels of hierarchy modulate choices at their respectiv
Left panel: probability of repeating (stay%) the high-level (casino) choice on the up
Right panel: probability of repeating (stay%) the low-level (slot machine) choice upon
level (casino) feedback and bad, high-level feedback are depicted in black and grey, re
x-axis.
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interaction between the two factors, F (1, 23)¼ 2.1, p> 0.05. Therefore,
because the low-level choices were influenced only by low-level out-
comes and not by high-level outcomes, this result is also consistent with a
hierarchical learning account.
3.2. Modeling results

Computational simulations of subjects' choice behavior provide
further evidence that the subjects represented the task hierarchically. As
mentioned before, each participant selected between 24 different se-
quences total (2*4*3 choices over the 3 steps). A model based on chance
behavior would assign a probability of 1/24 to each possible sequence of
choices, which corresponds to an average of 3.178 NLL. If the partici-
pant's choices are in fact influenced by the outcomes, then both the flat
and hierarchical models predict above-chance behavior, meaning that
these models would achieve lower NLL as compared to the average
e level.
coming trial.
entering the same casino again. Behaviors following presentation of good, high-
spectively. Good and bad low-level (slot machine) feedback are indicated on the
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performance of a chance model (i.e. a model that selects competing ac-
tions with equal probability). Fig. 4 shows the difference in NLLs between
the chance model and the flat model, and between the chance model and
the hierarchical model, averaged across trials separately for each subject.
As revealed by inspection, the hierarchical model fits the data better than
the flat model for all participants. Further, AIC criterion values – which
control for the number of parameters k for each model – revealed supe-
rior performance by the hierarchical model, despite the latter having
more parameters:

Experiment 1: AIC (flat model)-AIC (hierarchical model)¼ 888.03
3.3. Electrophysiological data

The data of one participant were removed from all of the analyses due
to a large number of trials rejected because of artifact (67%). Fig. 5 (left
column) shows the grand average ERPs recorded at channel FCz to the
slot-machine level feedback, averaged across the feedback to both slot
machine choices, the RewP computed from these ERPs, and the corre-
sponding scalp distribution of the RewP. As expected, the grand average
RewP to the slot machine outcomes is positive-going in the interval 240
–340ms following feedback presentation. A two-tailed one sample t-test
on the mean area amplitude (M¼�4.23, SD¼ 2.85) revealed a signifi-
cant effect, t (23)¼ -7.28, p< 0.05, d¼ 1.48. Moreover, visual inspection
of the scalp distribution of the difference wave to slot machine outcome
confirms that the RewP exhibits a fronto-central distribution (see Fig. 5
top row left column).

Fig. 5 (middle column) shows the grand average ERPs to the casino
Fig. 5. Reward positivity (RewP) elicited by feedback at different levels of hierarch
Left Panels. Bottom: The RewP to lower-level outcomes. Solid line. Difference wave. D
vertical dashed lines indicate the RewP interval. Top: Scalp distribution associated w
Middle Panels. Bottom: The RewP to higher-level outcomes. Solid line. Difference wa
The vertical dashed lines indicate RewP interval. Top plot. Scalp distribution associa
interval.
Right Panel. Bottom: RewPs elicited to first and second lower-level outcomes. Solid l
first lower-level outcome. The vertical dashed lines indicate the RewP interval. Top.
outcomes over the RewP interval.
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level feedback at channel FCz, the RewP computed from these ERPs, and
the corresponding scalp distribution. Although the grand average RewP
is positive-going in the RewP interval, this value was not statistically
different from zero (M¼�0.34, SD¼ 2.15), t (23)¼ - 0.77, p> 0.05,
d¼ 0.16.

Fig. 5 (right column) shows the RewPs elicited to the first slot ma-
chine feedback and to the second slot machine feedback and the scalp
distribution associated with the difference between these waveforms in
the RewP interval. A two-tailed one sample t-test on the mean area
amplitude in the RewP interval of the difference wave created by sub-
tracting the RewP to the first slot machine outcome from that of second
slot machine outcome (M¼�0.45, SD¼ 3.12) did not reveal any sig-
nificant effect, t (23)¼�1.93, p> 0.05, d¼ 0.14.
3.4. Exploratory ERP results

We considered whether low-level feedback, high-level feedback, or
both would elicit the RewP in a hierarchically-framed reinforcement
learning task. Although we found that low-level feedback elicited the
RewP, we failed to find a statistically-significant effect of high-level
feedback on RewP amplitude. As discussed above, this result is consis-
tent with both flat RL and HRL accounts (Fig. 1, fourth row). To explore
these results further, we created RewPs to the second slot machine
outcome averaged separately according to the outcomes of the first slot
machine.

According to a hierarchical account, if the RewP encodes pRPEs, then
each slot machine outcome should be associated with an inherent
valence that does not depend on the other outcomes in the trial. Thus, a
good outcome following the second slot machine choice should elicit a
y.
otted line: ERP to the good outcome. Dashed line. ERP to the bad outcome. The
ith mean RewP amplitude to lower-level outcomes during the RewP interval.
ve. Dotted line. ERP to the good outcome. Dashed line. ERP to the bad outcome.
ted with mean amplitude of the RewP to higher-level outcomes over the RewP

ine. The RewP to the second lower-level outcome. Dashed line. The RewP to the
Scalp distribution associated with mean amplitude of the RewP to higher-level
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RewP regardless of the previous slot machine outcome. Fig. 6 (panel a)
plots the amplitudes of the raw ERPs to the second slot machine outcome
as a function of the first slot machine outcome and Fig. 6 (panel c) plots
the associated RewPs. One sample t-tests indicate that when the first slot
machine outcome was bad, the second slot machine elicited a RewP
(M¼�3.11, SD¼ 3.56), t (23)¼ 4.28, p< 0.05, d¼ 0.83. Similarly,
when the first slot machine outcome was good, the second slot machine
outcome produced a RewP (M¼�6.18, SD¼ 4.74), t (23)¼ 6.39,
p< 0.05, d¼ 1.30. Importantly, the amplitude of the RewP when the first
slot machine outcome was good was significantly higher than when the
first slot machine was bad (M¼�3.07, SD¼ 3.90), t (23)¼ 3.89,
p< 0.05, d¼ 0.79.

These results suggest that good versus bad outcomes to the second
slot machine elicit a larger RewPwhen preceded by good outcomes to the
first slot machine as compared to when they are preceded by bad out-
comes to the first slot machine.

Further, given the task design, some of the higher-level outcomes
were readily predictable from the lower-level outcomes. In particular,
subjects could correctly predict whether they would win or lose at the
casino level if they had accumulated either 0 or 10 points at the slot-
Fig. 6. Post-hoc analyses of the ERPs to the second slot machine outcomes and casi
second slot machine outcomes. G and B denote Good and Bad outcomes respectively a
respectively. For example, B1G2 indicates a bad outcome following the first slot mach
casino outcomes as a function of their valence and expectancy. The prefixes "un" an
"loss" indicate wins and loss outcomes, respectively. c) Reward positivity (RewP) eli
outcome. Dashed line depicts ERP to a bad outcome following the first slot machin
machine choice. d) ERPs to unexpected (solid line) vs. expected (dashed line) casino
panels a and c and P3 for panel b and d). Note the different y-axis scales across the
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machine level. Because RewP amplitude is enhanced to unpredictable
feedback (Sambrook and Goslin, 2015; Walsh and Anderson, 2012), we
hypothesized that the predictability of casino outcomes could modulate
the amplitude of the RewP. To investigate this possibility, we averaged
the mean ERP amplitude to wins versus losses as a function of the total
number of points accumulated following the second slot choice, where
0 and 10 points feedback constitute predictable outcomes and 5 points
feedback constitutes unpredictable outcomes (Fig. 6, panel b).

A one-sample t-test on the amplitude of the RewP to unpredictable
casino feedback did not reveal any significant effect (M¼�0.81,
SD¼ 3.59), t (23)¼�1.12, p> 0.05, d¼ 0.23. Similarly, a one sample t-
test on the amplitude of the RewP to predictable casino feedback out-
comes did not reveal any significant effect (M¼ 0.04, SD¼ 3.32), t
(23)¼ 0.06, p> 0.05, d¼ 0.01. Further, a t-test on the amplitude of the
difference between the RewP to unpredictable versus predictable out-
comes during the RewP interval did not reveal any effect of predictability
on the amplitude of the RewP (M¼�0.86, SD¼ 4.89), t (23)¼ 0.86,
p> 0.05, d¼ 0.17.

Given the lack of an effect of RewP amplitude to the casino outcomes,
we were concerned that subjects might not have paid attention to the
no outcomes. a) ERPs to second slot machine outcome as a function of first and
nd 1 and 2 indicate feedback following the first and second slot machine choices,
ine choice and a good outcome following the second slot machine. b) ERPs to the
d "ex" denote unexpected and expected outcomes, respectively, and "win" and
cited by the second slot machine outcome as a function of the first slot machine
e choice and solid line depicts ERP to a good outcome following the first slot
outcomes. The vertical dashed lines indicate the interval of interest (RewP for
panels. All waveforms associated with channel FCz.
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casino-level feedback. For this reason, we tested whether the amplitude
of the P3 – which is associated with attention and working memory,
exhibiting larger amplitudes to infrequent, task-relevant events in a va-
riety of task paradigms (Polich, 2007) – was modulated by the valence
and probability of the casino outcomes. We measured the P3 as the mean
amplitude of ERP in the interval 340–440ms post-feedback (which fol-
lows the RewP interval immediately and is matched for duration)
recorded at channel Pz in accordance with previous literature (Polich,
2007). A two-factor repeated measures ANOVA on P3 amplitude with
factors probability (two levels: predictable, unpredictable) and valence
(two level: win, loss) revealed a significant main effect of predictability of
casino outcome F (1,23)¼ 77.46, p< 0.05,MSE¼ 56.28. As expected
there was no main effect of casino outcome F (1,23)¼ 1.90, p> 0.05,
MSE¼ 26.90, nor an interaction between the two factors F (1,23)¼ 1.74,
p> 0.05, MSE¼ 26.12 (see Fig. 6, panel d for ERPs recorded at channel
FCz). This result shows that the P3 is larger to the unexpected casino
outcomes (after subjects accumulated 5 points across both slots) than to
expected casino outcomes (after subjects accumulated either 0 points or
10 points after both slots), irrespective of whether the outcome consti-
tuted a win or a loss.

4. Experiment 2

In the first experiment, we found that low-level feedback elicited the
RewP, but we failed to detect a RewP elicited by high-level feedback. On
the assumption that high-level feedback in the casino task does not in fact
produce a RewP (please see below for a discussion of this inference), then
this result is consistent with both flat RL and HRL accounts. According to
the flat RL hypothesis, participants might have attributed to the low-level
feedback an inherent valence – namely, that a higher number of points is
inherently better than a lower number of points – as opposed to reflecting
the completion of a sub-goal within the larger goal of maximizing
monetary earnings. On this view, people just like to win points; therefore;
winning points elicited the RewP. According to the HRL account, subjects
represent the task hierarchically, but different brain areas process the
different levels of feedback, with only the low-level feedback producing
the RewP. To decide between these possibilities, we ran a second
experiment in which the participants were told that 0 points resulted in a
win and 10 points resulted in a loss on each trial, and that they should
therefore try to minimize the number of points accumulated. A RewP that
was more positive-going to 0 points feedback than to 5 points feedback
would indicate that the participants construed the feedback in line with
the task instructions, as opposed to associating the more desirable
feedback with more points. For the purpose of completeness, participants
were also told that red bar feedback indicated a win at the casino level
(rather than green bar feedback, as was the case for Experiment 1). The
experimental methods were otherwise identical to those of Experiment 1.
We recorded EEG data from the same sample size (25 participants). Note
that similar to Experiment 1, EEG data from one subject were excluded
due a high number of trials (>60%) rejected because of excessive EEG
artifact.

All of the behavioral and EEG effects reported above for Experiment 1
were replicated in Experiment 2 except for one effect: the second slot
machine outcome did not produce a detectable RewP when it followed a
bad outcome to the first slot machine choice (Supplementary Inline
Materials, Appendix A). The replication of the majority of experimental
effects provides evidence for the statistical reliability of the results.
Further, the results of Experiment 2 rule out the alternative interpretation
that the low-level feedback elicited a RewP simply because subjects
inherently like to accumulate points, as in this experiment the RewP was
elicited by feedback indicating accumulation of fewer points.

5. Discussion

In the two experiments presented here, we investigated whether an
ERP component believed to reflect the involvement of the MPFC in RL,
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the RewP, is sensitive to reward information at two levels of hierarchy.
To this end, we recorded ERPs in two experiments involving choices at
two different levels of hierarchy (casino choices and slot machine
choices) with explicit feedback pertinent to the level of the task (money)
and subtask (points). The behavioral results indicated that participants
successfully incorporated information from both levels of feedback into
their decisions. Therefore, we infer that subjects represented the task
hierarchically.

In contrast, the ERP analysis yielded some surprising results. Themost
surprising result, which was observed in both experiments, is that
although low-level feedback elicited a RewP, the high-level feedback did
not elicit a detectable RewP. Furthermore, even though unexpected
feedback normally enhances RewP amplitude (Walsh and Anderson,
2012), the RewP to unexpected casino outcomes (i.e., on trials in which
the casino outcome could not be inferred from the lower-level outcomes
preceding it) also failed to reach statistical significance.

We see three reasons that could give rise to this failure to observe a
significant RewP to the casino outcomes. First, the lack of a RewP effect
to high-level feedback could simply result from low statistical power.
However, the effect sizes associated with RewP to the slot machine
outcomes across both experiments were relatively high (dz¼ 1.44 and
0.50 for Experiments 1 and 2, respectively). With a comparable effect
size, our study had relatively high statistical power (around 99% and
61% for Experiments 1 and 2, respectively) to detect whether the RewP is
elicited by the casino outcomes.

Second, the task instructions, task design and/or low-level stimulus
features could have emphasized the importance of the slot machine
outcomes, making them more salient to subjects compared to the casino
outcomes. This contrast could have attenuated the size of the RewP to the
high-level outcomes, as RewP amplitude is sensitive to the emphasis
conveyed by task instructions on different dimensions of feedback in-
formation (Nieuwenhuis et al., 2004). As well, the feedback stimuli at the
two levels of hierarchy were delivered with different delay periods (with
3 s and 1 s delays for high- and low-level feedback, respectively). Past
literature indicates that long delays between the response and subse-
quent feedback attenuates the size of the RewP (Weinberg et al., 2012;
Peterburs et al., 2016; Weismüller and Bellebaum, 2016; Arbel et al.,
2017). However, although such elements of the task design could have
played a role in attenuating the size of the RewP, the win-stay and hi-
erarchical modeling analyses all indicated that subjects adapted their
behavior according to the casino-level outcomes. Moreover, P3 ampli-
tude was elevated to the unexpected casino outcomes relative to the
expected casino outcomes. These results indicate that participants paid
attention to the casino outcomes and incorporated that information into
their decisions. In short, the casino outcomes modulated the participants'
choice behavior despite failing to modulate RewP amplitude in a
detectable manner. This finding is consistent with substantial evidence
indicating a dissociation between RewP amplitude and adaptive behavior
(Holroyd and Umemoto, 2016).

A third, not mutually exclusive possibility is that in hierarchical tasks
the RewP responds only to lower-level rewards related to subtasks. Given
that the first two possibilities are implausible, we believe that the data
support this third possibility.

The finding that RewP amplitude is sensitive mainly to lower-level
feedback can support two competing accounts about the underlying
computational process. First, according to an HRL account, the RewP is
sensitive to lower-level feedback events because these events elicit
pRPEs. Second, according to a flat RL account, subjects in fact, treated the
low-level rewards as high-level (primary) rewards, i.e., they evaluated
points as being intrinsically rewarding. However, the results of Experi-
ment 2 ruled out this possibility. In this experiment, the stimuli for good
versus bad feedback were swapped, such that 0 points feedback predicted
a win at the casino level with higher probability as compared to 5 points
feedback. Despite this task manipulation, the RewP continued to be eli-
cited by good (0 point) outcomes. These results indicate that the RewP's
sensitivity to the lower-level feedback stimuli was determined by the task
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instructions, not by subject preferences or bias. Overall, these results
provide evidence that the MPFC is sensitive to lower-level outcomes of
hierarchically represented subtasks.

Past research supports this interpretation. Ribas Fernandez et al.
(2011) showed that the RewP is sensitive to negative pseudo-reward
information in a task that modulated participant effort levels to com-
plete each trial. Their study also involved an fMRI experiment that
implicated the MPFC as one of the brain areas responsive to
pseudo-reward information.

Comparably, Zarr and Brown (2016) found that the MPFC learns from
feedback at different levels of hierarchy along a rostro-caudal gradient,
which points to the involvement of the MPFC in processing different
types of lower-level information associatedwith hierarchically-organized
tasks. Further, other theoretical treatments propose that different regions
of MPFC process feedback at different levels of hierarchy (Holroyd and
McClure, 2015). It is possible that whereas neurons in caudal MPFC are
oriented in a way that is conducive to generating the RewP as recorded at
the scalp (Holroyd and Coles, 2002), neurons in rostral MPFC are less so.

However, our exploratory analyses on the ERPs to lower-level out-
comes in Experiment 1, which were replicated in Experiment 2,
complicate these conclusions. Notably, the RewP to the second slot ma-
chine outcome was modulated by the preceding outcome: For both ex-
periments, the ERP to good feedback to the second slot-machine choice
was significantly more positive-going when the event was preceded by
good feedback to the first slot-machine choice than by bad feedback to
the first slot machine choice. This result is inconsistent with a strict hi-
erarchical account in which each slot machine outcome constitutes the
end of an independent episode, in which case the RewP to the second
feedback stimulus would not depend on the value of the preceding
feedback stimulus. Rather, it appears that the best possible outcome at
the lower-level elicited a significantly larger RewP.

These findings are reminiscent of the results of Osinsky et al. (2017),
who reported a similar interaction between different levels of task goals
in modulating RewP amplitude. In this study, researchers examined the
RewP in a task in which outcomes indicating monetary wins versus losses
sometimes accorded with (termed task-supportive) or conflicted with
(termed task-unsupportive) the long-term task goals. The investigators
found that only the task-supportive wins elicited the RewP, indicating
sensitivity to both the immediate and long-term action-outcome contin-
gencies. In light of this study, one can speculate that the amplitude of the
RewP is enhanced when different levels of goals are achieved simulta-
neously, as in our task, in which the 10 points outcome signaled
achieving goals at two levels of hierarchy.

We should note that, given the inverse problem, there is some con-
troversy about where the RewP is produced. Nevertheless, there is good
reason to believe that MPFC – and likely specifically aMCC – is the
source. First, several source localization studies converge on a source in
the MPFC as the neural generator giving rise to the difference ERPs to
positive and negative feedback (see Walsh and Anderson, 2012 for re-
view). According to Walsh and Anderson (2012) only small fraction of
the studies have localized the RewP to sources outside of MPFC. More-
over, converging evidence from simultaneous EEG/fMRI recording, a
transcranial direct current stimulation experiment and intracranial re-
cordings in rats also point to aMCC as the likely neural generator of the
RewP (see Holroyd and Umemoto, 2016 for review). Therefore, while the
assertion that the MPFC is the neural generator of RewP is still an open
question, it remains the most parsimonious hypothesis.

Overall, the results of our experiments indicate that ERPs believed to
be generated in the MPFC are sensitive to pseudo-reward information.
Given that the RewP is said to be generated by phasic dopamine release
in the MPFC (Holroyd and Coles, 2002), these results resonate with the
speculations of Botvinick et al. (2009) that dopamine is involved in
signaling pRPEs. Moreover, given that the RewP is only elicited to the
second slot machine feedback when that feedback signals a sure win, our
results support the possibility that different levels of task goals interact in
modulating RewP amplitude.
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