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Abstract: This study investigates the dynamic lot-sizing problem integrated with Condition-based maintenance (CBM) 

for a stochastically deteriorating production system. The main difference of this work and the previous 

literature on the joint optimization of lot-sizing and CBM is the relaxation of the constant demand assumption. 

In addition, the influence of the lot-size quantity on the evolution of the equipment degradation is considered. 

To optimally integrate production and maintenance, a stochastic dynamic programming model is developed 

that optimizes the total expected production and maintenance cost including production setup cost, inventory 

holding cost, lost sales cost, preventive maintenance cost and corrective maintenance cost. The algorithm is 

run on a set of instances and the results show that the joint optimization model provides considerable cost 

savings compared to the separate optimization of lot-sizing and CBM. 

1 INTRODUCTION 

Preventive maintenance operations aim to keep the 

equipment in operating condition and reduce the 

chance of having failures. Under Condition-based 

maintenance, they are performed based on the current 

condition of the equipment obtained through 

Condition monitoring (Jardine, 2005). It can 

significantly reduce maintenance cost by eliminating 

unnecessary scheduled preventive maintenance 

operations (Jardine, 2005).  

To not interrupt the production, preventive 

maintenance actions should be conducted in 

accordance with the production plan in deteriorating 

production systems. Since machine deterioration 

depends on the amount of usage, the production 

planning decisions directly affect degradation of the 

systems. Thus, degradation of the equipment should 

be considered in determining production amounts. To 

address this issue, integrated optimization models of 

Economic Production Quantity (EPQ) and CBM were 

developed under the assumption of constant demand 

rate. Producing same quantity in each lot, leads to the 
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same expected degradation path in those systems. 

Therefore, applying a static maintenance policy is 

convenient.  

In a dynamic lot-sizing problem, however, 

production time and thus equipment usage within 

each period may differ, leading to different 

degradation paths. Using a static preventive 

maintenance threshold may not be optimal in this 

case. Therefore, for each period, a dynamic 

maintenance policy that considers future degradation 

paths with respect to different production quantities 

should be utilized.  

This paper proposes a model to consider the 

current equipment condition and the evolution of the 

degradation with respect to production quantity in 

making production and maintenance decisions. 

Demanded quantities of the remaining periods, 

current condition of the equipment, and inventory 

level are the states that determine the production and 

maintenance policies for each period. The main 

difference of our work with the previous papers is the 

adaption of CBM to the multi-period lot-sizing 

problem under dynamic demand. In addition, in our 
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work, the influence of the quantity of the lot-size on 

the degradation level is taken into account in 

determining production decisions which has not been 

considered in this problem setting. We construct a 

stochastic dynamic programming model to minimize 

production setup cost, inventory holding cost, lost 

sales cost, preventive maintenance and corrective 

maintenance costs over finite and infinite horizons. 

2 LITERATURE REVIEW 

The joint optimization of lot-sizing and maintenance 

problem has been extensively studied under 

breakdown, time-based and age-based maintenance. 

Groenevelt et. al (1992) investigates the effect of 

machine breakdowns and corrective maintenance on 

the optimal production lot-sizes. They examine the 

effect of the failure rate on the optimal lot-size 

quantity. Ben-Daya and Makhdoum (1998) consider 

an integrated production and quality model for 

different inspection policies and they model the 

deterioration process using hazard rate function. They 

investigate the impact of different preventive 

maintenance policies on the EPQ. Ben-Daya (2002) 

proposes an integrated optimization model for lot-

sizing and imperfect preventive maintenance which 

adopts age-based maintenance policy. El-Ferik 

(2008) considers economic production lot-sizing for 

an unreliable machine under constant production and 

demand rates. Preventive maintenance actions are 

carried out when the age of the system reaches a 

predetermined level. After each preventive 

maintenance, the system becomes as good as new 

with a high failure rate. Thus, the system is replaced 

after a certain amount of production cycles are 

completed. Jafari and Makis (2015) study optimal lot-

sizing and preventive maintenance policy where the 

deterioration is modeled by a proportion hazards 

model which considers information gathered from 

condition monitoring and age of the system. They 

model and solve the problem as a semi-Markov 

decision process.  

Stochastic dynamic programing models are also 

developed to optimize production and maintenance 

costs. Boukas and Liu (2001) propose a stochastic 

dynamic programming model to minimize 

maintenance and inventory holding costs by 

optimizing production and maintenance rates. Iravani 

and Duenyas (2002) consider an integrated 

maintenance and production control for a single item 

single machine production system with increasing 

failure rate. The demand is distributed as a stationary 

Poisson process. They formulate the problem as a 

Markov Decision Process (MDP) where the states are 

degradation and inventory levels, and the actions are 

producing, idling and maintenance at each decision 

epoch. Sloan (2004) and Xiang et al. (2014) consider 

integrated production and maintenance planning 

subject to random production yield that changes with 

respect to the condition of the equipment. The 

maintenance and production planning decisions are 

made according to the degradation status of the 

equipment and yield. However, the influence of the 

production amount on the machine deterioration is 

not taken into account. 

The joint optimization problem of Economic 

Production Quantity (EPQ) and CBM is studied under 

the assumption of constant production and demand 

rates. Peng and Van Houtum (2016) propose a joint 

optimization model of EPQ and CBM in which 

degradation is modeled as Gamma Process.  Khatab 

et al. (2017) develop an integrated optimization 

model for production quality and CBM. The 

preventive maintenance threshold and inspection 

interval are the decision variables. However, the lot-

size is not optimized. Cheng et. al (2017) propose a 

joint optimization model for production lot-sizing and 

CBM for a multi-component production system. 

Degradation of the components are modeled by 

Gamma process. They use Birnbaum importance 

measure to determine the preventive maintenance 

threshold of the components. Monte Carlo simulation 

technique is used to calculate the costs and genetic 

algorithm is utilized to find the optimal lot-size and 

preventive maintenance threshold. 

Maintenance scheduling has been incorporated in 

the multi-item lot-sizing problems in which cyclic or 

non-cyclic maintenance actions are performed. 

Aghezzaf et. al (2007) propose an integrated 

production and preventive maintenance model for a 

capacitated multi-item production system in which 

the overall capacity of the system is reduced when a 

preventive or corrective maintenance is conducted. 

They consider capacity reduction of the production in 

case of failure or preventive maintenance. Preventive 

maintenance actions are carried out at periodic time 

points. Shamsaei and Van Vyve (2017) also develop 

an integrated model for multi-item lot-sizing and 

maintenance under time-varying demand. 

Additionally, they adapt non-cyclic maintenance 

schedules to their model which reduces the overall 

costs. However, preventive maintenance actions are 

performed without considering the health status of the 

component. 

 

 

 



Nomenclature 
 

 

𝑋(𝑡) degradation level with respect to 

time 

𝑋𝑛 degradation level at the beginning of 

period 𝑛 

𝑍𝑘 state of Markov chain right after the 

production of 𝑘𝑡ℎ  unit within a 

period 

𝐼𝑛  inventory level at the end of period 

𝑛 

𝑇𝐹
(𝑖)

  first passage time to failure from 

state 𝑖 
𝑄𝑛  production lot size in period 𝑛 

𝑄(𝑖, 𝑦, 𝑛)  optimal production lot size in period 

n for states 𝑖 and 𝑦 

𝟏𝑛(𝑄𝑛)  indicator variable taking value 1 if 

there is production in period 𝑛 

𝟏𝑛 (𝐼𝑛−1 + 𝑇𝐹
(𝑖)

− 𝐷𝑛) 

indicator variable taking value 1 if 

there is enough inventory and 

production to cover the demand up 

to the failure 

𝜌 production rate per unit time 

𝑑𝑛 constant demand rate per unit time 

during period 𝑛 

𝐷𝑛 total demand in period 𝑛 

𝜏 fixed time length of a period 

𝑁 finite number of periods 

𝑐ℎ inventory holding cost per unit of 

time 

𝑐𝑙 lost sales cost per unit 

𝑐𝑠 production setup cost per lot 

𝑐𝑝 predictive maintenance cost 

𝑐𝑐 corrective maintenance cost 

𝐻𝑁𝑐(𝑄𝑛, 𝐼𝑛−1)  inventory holding as a function of 

𝑄𝑛 and 𝐼𝑛−1 in case of no failure 

𝐻𝐹𝑐 (𝑇𝐹
(𝑖)

, 𝐼𝑛−1) inventory holding as a function of 

𝑇𝐹
𝑖  and 𝐼𝑛−1 in case of failure 

𝐿𝑐 (𝑇𝐹
(𝑖)

, 𝐼𝑛−1) lost sales cost as a function of 𝑇𝐹
𝑖  

and 𝐼𝑛−1 

𝑉𝑛(𝑋𝑛, 𝐼𝑛−1) total minimum expected cost from 

time 𝑛  to the end of the planning 

horizon 

𝛾 discount factor 

3 SYSTEM DESCRIPTION 

We consider a production system in which the 

degradation of the machine is monitored 

continuously. Its level 𝑋(𝑡) increases with respect to 

the length of the production run-time. When the 

machine fails during the period, and thus the 

degradation having reached the “failure level” 𝐹,  the 

production stops, and corrective maintenance is 

conducted. Note that in case of a failure during a 

period, the remaining units of production cannot be 

produced, although it was planned. To reduce the 

possibility of the failures, preventive maintenance 

actions are performed while the equipment is still in 

working condition.  

At the beginning of each period 𝑛  with a fixed 

length 𝜏, a preventive maintenance decision is made 

and quantity of the production lot size 𝑄𝑛  is 

determined according to the current degradation level 

𝑋𝑛, the ending inventory of the previous period  𝐼𝑛−1, 
and known demand values of the remaining periods. 

The production rate 𝜌 is constant so the maximum 

amount of production in a period is limited to 𝜏𝜌. If 

there is no failure within the production lot and thus 

the production plan is met for that period, there are 

two cases: (1) no maintenance is carried out so the 

starting degradation state of the next period is equal 

to the ending degradation state of the current period; 

(2) preventive maintenance is carried out at the 

beginning of the next period; in this case, starting 

degradation state of the next period becomes as good 

as new. Because maintenance duration is assumed to 

be negligible, carrying out maintenance at the end of 

the production time within a period or at the 

beginning of the next period does not make a 

difference for the model. To be comprehensible, it is 

assumed that maintenance actions are conducted at 

the beginning of the periods. 

 

Figure 1. Sample degradation path with respect to 

production time. 

Figure 1  shows an example of a sample 

degradation path starting from as good as new state 

with respect to the production time where preventive 

maintenance is carried out right after the completion 

of 𝑘𝑡ℎ  item’s production. The health status of the 

machine becomes as good as new after that point. A 

failure occurs after the production of the 𝑛𝑡ℎ  item so 

corrective maintenance is performed starting from 

this point. The corresponding graph of the inventory 

level with respect to the total time including the 

production and idle times are illustrated in Figure 2. 

During the idle times when the production capacity is 



not fully utilized, the degradation remains in the same 

level.  

In the example shown, corrective maintenance is 

conducted in the 𝑚𝑡ℎ period, starting right after the 

production of the 𝑛𝑡ℎ item. Since there is not enough 

inventory to cover the demand at the 𝑚𝑡ℎ period, lost 

sales occur. Figure 3 shows the case where sufficient 

amount of inventory is accumulated up to the failure, 

so no lost sales occurs. In the example shown in 

Figures 1 and Figure 2, up to the 𝑚𝑡ℎ  period, total 

amount of production is equal to 𝑛 (∑ 𝑄𝑘
𝑚−1
𝑘=1 < 𝑛 <

∑ 𝑄𝑘
𝑚
𝑘=1 );  which is less than the planned production 

amount due to the failure. 

 

 

Figure 2. Inventory level with respect to total time 

including production and idle times. 

 

Figure 3. Inventory level with respect to total time 

including production and idle times. 

4 MODEL FORMULATION 

The evolution of the degradation during production 

time is modeled as a discrete-time stochastic process. 

The 𝑘𝑡ℎ epoch corresponds to the planned completion 

epoch of the 𝑘𝑡ℎ unit. As a result, the time in between 

two planned production epochs within the same 

period equals 1/𝜌, with 𝜌 the production rate. The 

degradation level at epoch 𝑘 is denoted by 𝑍𝑘. Within 

a period, the process {𝑍𝑘, 𝑘 = 0,1, … }, behaves as an 

absorbing Markov chain with state space {0,1, … , 𝐹}, 

absorbing state 𝐹, and transition probabilities 𝑃𝑖𝑗  of 

degradation level transitioning to state 𝑗 at the next 

epoch if the degradation level is equal to 𝑖  at the 

current epoch. It is given by  

 

𝑃𝑖𝑗 = 𝑃{𝑍𝑛+1 = 𝑗|𝑍𝑛 = 𝑖} , 

 𝑓𝑜𝑟 𝑖 ≤ 𝑗 ≤ 𝐹 (1) 

 

As degradation cannot decrease during a period, 

𝑃𝑖𝑗 = 0  if 𝑗 < 𝑖 . 𝑷  denotes the matrix of one-step 

transition probabilities 𝑃𝑖𝑗 . It can be expressed as 

 

𝑷 = [
𝑻 𝒕
𝟎 1

], (2) 

 

where 𝑻 is the probability transition matrix of the 

transient states of 𝑷 (first 𝐹 row and columns of 𝑷), 

and 𝒕 is the column vector showing the probabilities 

from each state 𝑖 < 𝐹 to the failure state 𝐹  (first 𝐹 

rows of the last column of 𝑷). 

The 𝑛-step transition probability of the Markov 

chain from state 𝑖 to 𝑗 corresponds to the probability 

that the degradation is at level 𝑗  right after the 

production of the 𝑛𝑡ℎ item within the same period. It 

is given by  

 

𝑃𝑖𝑗
(𝑛)

= 𝑃{𝑍𝑛 = 𝑗|𝑍0 = 𝑖}      

𝑓𝑜𝑟 𝑖 ≤ 𝑗 ≤ 𝐹.    
 

(3) 

 

Since 𝐹 is the absorbing state of the Markov chain, 

 

𝑃𝐹𝐹
(𝑘)

= 𝑃{𝑍𝑛+𝑘 = 𝐹|𝑍𝑛 = 𝐹} = 1 

∀ 𝑘 ∈ {1,2, … }. 
 

(4) 

 

𝑃𝑖𝑗
(𝑛)

 is equal to the entry at the 𝑖𝑡ℎ  row and 𝑗𝑡ℎ 

column of the 𝑛 − 𝑠𝑡𝑒𝑝 transition probability matrix 

𝑷𝑛.  

If 𝑄𝑛 items are planned to be produced in period 

𝑛 and the degradation level at the beginning of the 

period is 𝑖, then 𝑃𝑖𝑗
(𝑄𝑛)

 is the probability that state 𝑗 <

𝐹 will be observed at the end of the production run. If 

a failure occurs right after the production of the 

𝑘𝑡ℎunit (𝑘 < 𝑄𝑛), before the production of the 𝑄𝑛
𝑡ℎ 

unit, the production is stopped. The first passage time 

𝑇𝐹
(𝑖)

, from state 𝑖 to the failure state 𝐹,  has the phase-

type distribution 𝑃ℎ(𝑒𝑖,𝑻), that is 

 

𝑃{𝑇𝐹
(𝑖)

= 𝑘} = 𝑒𝑖. 𝑻𝒌−𝟏. 𝒕, (5) 

 



𝑃{𝑇𝐹
(𝑖)

≤ 𝑘} = 1 − 𝑒𝑖 . 𝑻
𝑘. 𝟏, (6) 

 

where 𝑒𝑖  is the 𝑖𝑡ℎ  unit vector. Note that 𝑇𝐹
(𝑖)

 takes 

values in terms of units of quantity produced up to the 

failure.  

In case of no failure, the inventory holding cost in 

period  𝑛 , where the production lot-size and initial 

inventory level are 𝑄𝑛 and 𝐼𝑛−1, is given by 

 

𝐻𝑁𝑐(𝑄𝑛 , 𝐼𝑛−1) = 

𝑐ℎ [
𝐼𝑛−1𝑄𝑛

𝜌
+

(𝑄𝑛 𝜌⁄ )2(𝜌−𝑑𝑛)

2
 

+
(𝑄𝑛(𝜌−𝑑𝑛) 𝜌⁄ − 𝑄𝑛 + 𝐷𝑛)(𝜏 − 𝑄𝑛 𝜌⁄ )

2
 

+(𝐼𝑛−1 + 𝑄𝑛 − 𝐷𝑛)(𝜏 − 𝑄𝑛 𝜌⁄ )], 

 

 

 

 

 

 

 

(7) 

 

where 𝑐ℎ is the inventory holding cost per item per 

unit time, 𝐷𝑛 is the total demand of the period 𝑛 and 

𝑑𝑛 is the demand rate during period 𝑛 that is equal to 

𝐷𝑛 𝜏⁄ . The equation is obtained by the integration of 

the inventory level with respect to total time as 

illustrated in Figure 2; it is equal to the area under the 

curve within a period 𝑛. 

At the beginning of a period, if the degradation is 

observed to be in state 𝑖, inventory level is 𝐼𝑛−1 and a 

failure occurs during production, then the inventory 

holding cost is expressed as 

 

𝐻𝐹𝑐(𝑇𝐹
(𝑖)

, 𝐼𝑛−1) = 𝑐ℎ 

(1 − 𝟏𝑛(𝐼𝑛−1 + 𝑇𝐹
(𝑖)

− 𝐷𝑛)) 

× [
𝐼𝑛−1𝑇𝐹

(𝑖)

𝜌
+

(𝑇𝐹
(𝑖)

𝜌⁄ )
2

(𝜌−𝑑𝑛)

2
 

+
(𝐼𝑛−1 + 𝑇𝐹

(𝑖)(𝜌−𝑑𝑛) 𝜌⁄ )
2

𝑑𝑛⁄

2
] 

+𝑐ℎ𝟏𝑛(𝐼𝑛−1 + 𝑇𝐹
(𝑖)

− 𝐷𝑛) 

× [
(𝑇𝐹

(𝑖)
𝜌⁄ )

2
(𝜌−𝑑𝑛)

2
 

+
(𝑇𝐹

(𝑖)(𝜌−𝑑𝑛) 𝜌⁄ − 𝑇𝐹
(𝑖)

+ 𝐷𝑛)

2
 

× (𝜏 − 𝑇𝐹
(𝑖)

𝜌⁄ ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+(𝐼𝑛−1 + 𝑇𝐹
(𝑖)

− 𝐷𝑛)(𝜏 − 𝑇𝐹
(𝑖)

𝜌⁄ )], (8) 

 

and the indicator variable is given by 

 

𝟏𝑛(𝐼𝑛−1 + 𝑇𝐹
(𝑖)

− 𝐷𝑛) 

= { 1      𝑖𝑓  𝐼𝑛−1 + 𝑇𝐹
(𝑖)

− 𝐷𝑛 > 0

 0         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 

  

 

 

(9) 

 

In case of a failure, two cases can occur: (1) the 

total demand is covered ( 𝑇𝐹
(𝑖)

+ 𝐼𝑛−1 ≥  𝐷𝑛) ; (2) 

demand is not met and lost sales cost is incurred 

(𝑇𝐹
(𝑖)

+ 𝐼𝑛−1 <  𝐷𝑛). The equations for calculating the 

area under the inventory level differs in these cases so 

indicator variable 𝟏𝑛(𝐼𝑛−1 + 𝑇𝐹
(𝑖)

− 𝐷𝑛)  is used. In 

case of a failure, the lost sales cost is given by 

 

𝐿𝑐(𝑇𝐹
(𝑖)

, 𝐼𝑛−1) 

= 𝑐𝑙 max(0, 𝐷𝑛 − 𝐼𝑛−1 − 𝑇𝐹
(𝑖)

), 

 

 

(10) 

 

where the initial degradation level is 𝑖 and the lost 

sales cost per item is 𝑐𝑙 as in the 𝑚𝑡ℎ production lot 

(Figure 2). The dynamic programming equation in 

period 𝑛 for states 𝑖 < 𝐹 and 𝐼𝑛−1 is expressed as 

 

𝑉𝑛(𝑋𝑛 = 𝑖, 𝐼𝑛−1) 

= 𝑚𝑖𝑛
max (𝐷𝑛−𝐼𝑛−1,0)≤𝑄𝑛≤min (𝐶,∑ 𝐷𝑘)𝑁

𝑘=𝑛

 

[𝑚𝑖𝑛 [∑ 𝑃𝑖𝑗
(𝑄𝑛)

(
𝐹−1

𝑗=𝑖
𝟏𝑛(𝑄𝑛)𝑐𝑠 + 𝐻𝑁𝑐(𝑄𝑛 , 𝐼𝑛−1) 

+𝛾𝑉𝑛+1(𝑗, 𝐼𝑛−1 + 𝑄𝑛 − 𝐷𝑛) 

+ ∑ 𝑃{𝑇𝐹
(𝑖)

= 𝑘}
𝑄𝑛

𝑘=1
(𝑐𝑠 + 𝐻𝐹𝑐(𝑘, 𝐼𝑛−1) 

+𝐿𝑐(𝑘, 𝐼𝑛−1) 

+𝛾𝑉𝑛+1(𝐹, 𝑚𝑎𝑥(0, 𝐼𝑛−1 + 𝑘 − 𝐷𝑛))) 

, 𝑐𝑝 + ∑ 𝑃0𝑗
(𝑄𝑛)

(
𝐹−1

𝑗=0
𝟏𝑛(𝑄𝑛)𝑐𝑠 

+𝐻𝑁𝑐(𝑄𝑛 , 𝐼𝑛−1) 

+𝛾𝑉𝑛+1(𝑗, 𝐼𝑛−1 + 𝑄𝑛 − 𝐷𝑛) 

+ ∑ 𝑃{𝑇𝐹
(0)

= 𝑘}
𝑄𝑛

𝑘=1
(𝑐𝑠 + 𝐻𝐹𝑐(𝑘, 𝐼𝑛−1) 

+𝐿𝑐(𝑘, 𝐼𝑛−1) 

 

 

 

 

 

 

(11) 



+𝛾𝑉𝑛+1(𝐹, 𝑚𝑎𝑥(0, 𝐼𝑛−1 + 𝑘 − 𝐷𝑛)))]]. 

 

𝐶  denotes the production capacity in terms of 

units, that is equal to 𝜌𝜏. The feasible production lot-

size 𝑄𝑛  in state (𝑋𝑛, 𝐼𝑛−1) , must be in {max (𝐷𝑛 −
𝐼𝑛−1, 0), min (𝐶, ∑ 𝐷𝑘)𝑁

𝑘=𝑛 }. 

If a failure occurs in the previous period, then the 

initial degradation state at the beginning of the period 

𝑛  is 𝐹 , and the dynamic programming equation is 

given by, 

 

𝑉𝑛(𝑋𝑛 = 𝐹, 𝐼𝑛−1)

= 𝑚𝑖𝑛
max (𝐷𝑛−𝐼𝑛−1,0)≤𝑄𝑛≤min (𝐶,∑ 𝐷𝑘)𝑁

𝑘=𝑛

[𝑐𝑐

+ ∑ 𝑃0𝑗
(𝑄𝑛)

(
𝐹−1

𝑗=0
𝟏𝑛(𝑄𝑛)𝑐𝑠

+ 𝐻𝑁𝑐(𝑄𝑛 , 𝐼𝑛−1)

+ 𝛾𝑉𝑛+1(𝑗, 𝐼𝑛−1 + 𝑄𝑛 − 𝐷𝑛))

+  ∑ 𝑃{𝑇𝐹
(0)

= 𝑘}
𝑄𝑛

𝑘=1
(𝑐𝑠 

+ 𝐻𝐹𝑐(𝑘, 𝐼𝑛−1) + 𝐿𝑐(𝑘, 𝐼𝑛−1) 

+𝛾𝑉𝑛+1(𝐹, 𝑚𝑎𝑥(0, 𝐼𝑛−1 + 𝑘 − 𝐷𝑛)))]. 
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In this case, corrective maintenance is done and 

its cost 𝑐𝑐 is incurred. In the dynamic programming 

equations, the indicator variable 𝟏𝑛(𝑄𝑛) takes 1 if 

there is production in period 𝑛. It can be expressed 

as 

 

𝟏𝑛(𝑄𝑛) = {
 1      𝑖𝑓  𝑄𝑛 > 0
 0     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
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𝑉𝑛(𝑋𝑛, 𝐼𝑛−1) is the total minimum expected cost 

between 𝑛 and 𝑁  and 0 ≤ 𝐼𝑛−1 ≤ min ((𝑛 − 1)𝐶 −
∑ 𝐷𝑖

𝑛−1
𝑖=1 , ∑ 𝐷𝑘

𝑁
𝑘=𝑛 ). The ending value 𝑉𝑁(𝑋𝑁 =

𝑖, 𝐼𝑁−1),  is 0  for all 𝑋𝑁  and 𝐼𝑁−1  and the final 

inventory level 𝐼𝑁 = 0 . To find the optimal 

production and maintenance policy, enumeration is 

done over all feasible values of 𝑄𝑛  in case of 

preventive maintenance and no preventive 

maintenance. Thus, the optimal policy for each period 

𝑛, degradation level 𝑖 and initial inventory level 𝐼𝑛−1 

is found. 𝑉1(𝑋1 = 0, 𝐼0)  is the total minimum 

expected cost value for the whole horizon where the 

initial degradation level 𝑋1  is 0  and the initial 

inventory level is 𝐼0. 𝐶 is the production capacity that 

is equal to the 𝜌𝜏. The discount factor 𝛾 is used for 

the infinite horizon case; it is taken as 1 for finite 

horizon problem. 

5 NUMERIC STUDY 

In this example, the degradation is modelled as a 

discrete-time Markov chain having 8 states. State 0 is 

the as good as new state and state 7 is the failure state. 

The mean time to failure from state 0 is 8.85 in terms 

of units produced. The inventory holding cost per 

item per unit time is 𝑐ℎ = 1, the production setup cost 

is 𝑐𝑠 = 150, the cost of the preventive maintenance is 

𝑐𝑝 = 500, the cost of the corrective maintenance is 

𝑐𝑐 = 1000 and the cost of lost sales per item is 𝑐𝑙 =
500 . The problem is solved for changing demand 

values (Table 1) which are randomly generated 

integers in {0,10}  for finite horizon 𝑁 = 10 . The 

production rate and fixed time length of one period 

are 𝜌 = 2 and 𝜏 = 10 respectively. 

Table 1. Demand values for each period 

Period 1 2 3 4 5 6 7 8 9 10 

Demand 5 8 4 3 3 5 9 8 6 2 

Table 2. Optimal production and maintenance policies 

for each state and period. 

  Period(n)    

State 6 7 8 9 10 
(0,2,n) 13,N 15,N 12,N 6,N 0,N 
(1,2,n) 12,N 11,N 12,N 6,N 0,N 
(2,2,n) 8,N 10,N 7,N 6,N 0,N 
(3,2,n) 6,N 15,P 12,P 4,N 0,N 
(0,3,n) 13,N 14,N 13,N 5,N - 
(1,3,n) 12,N 11,N 11,N 5,N - 
(2,3,n) 11,N 10,N 11,N 5,N - 
(3,3,n) 6,N 14,P 5,N 5,N - 
(0,4,n) 12,N 13,N 12,N 4,N - 
(1,4,n) 11,N 13,N 10,N 4,N - 
(2,4,n) 10,N 9,N 10,N 4,N - 
(3,4,n) 5,N 6,N 4,N 4,N - 
(0,5,n) 0,N 12,N 11,N 3,N - 
(1,5,n) 0,N 12,N 9,N 3,N - 
(2,5,n) 9,N 8,N 9,N 3,N - 
(3,5,n) 5,N 6,N 4,N 3,N - 

The optimal production and maintenance plan for 

the periods between 6 and 10 are shown in Table 2 

for the specified degradation and inventory states. For 

the degradation state 𝑖 and the initial inventory level 

𝑦  in period 𝑛 , 𝑄(𝑖, 𝑦, 𝑛)  shows the optimal 

production quantity; optimal maintenance decision is 



shown by either performing preventive maintenance 

“P” or not “N”. Since preventive maintenance is 

always carried out when degradation level is greater 

than or equal to 3, same production quantities are 

optimal as in the degradation state 0. Infeasible states 

are indicated by “-“. It can be seen from the Table 2 

that if a preventive maintenance action is not carried 

out in a period, then optimal production quantity is 

non-decreasing with the degradation level for the 

same inventory level 𝑦 . For instance, optimal 

production lot sizes for period 𝑛 = 8  and initial 

inventory level 𝑦 = 5 are: 𝑄(0,5,8) = 1, 𝑄(1,5,8) =
9, 𝑄(2,5,8) = 9, 𝑄(3,5,8) = 4. 

5.1 Sensitivity Analysis and 
Performance Evaluation 

In this part, the objective function values of the joint 

optimization model are compared with the separate 

optimization model. In the separate optimization 

model, first, the production plan is found by 

minimizing the production costs without considering 

maintenance. Then, optimal preventive maintenance 

decision for each state (𝑋𝑛 , 𝐼𝑛−1) is found; the 

production quantities are known from the first stage. 

The model is tested for different levels of the 

production setup cost 𝑐𝑠, the preventive maintenance 

cost 𝑐𝑝 and the inventory holding cost 𝑐ℎ. The value 

of each parameter is changed while other parameters 

are kept at their initial values: 𝑐𝑠 = 150, 𝑐ℎ = 1, 𝑐𝑙 =
500, 𝑐𝑝 = 250 , 𝑐𝑐 = 1000, 𝑁 = 10   and the total 

demand of each period is generated as a random 

integer in [0,10]  for each instance. The beginning 

and the ending inventory levels, 𝐼0  and 𝐼𝑁  are both 

chosen as zero, and the initial degradation level 𝑋1 is 

0.  

The cost savings are calculated for five 

independently generated demand values, and they are 

shown in the following tables. Cost savings 

percentages are calculated by  

 

(𝐶𝑆1(𝑋1 , 𝐼0) − 𝑉1(𝑋1 , 𝐼0))100

𝐶𝑆1(𝑋1, 𝐼0)
, 
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where 𝐶𝑆1(𝑋1, 𝐼0) is the total expected minimum cost 

of separate optimization model.  

As shown in Table 3, the cost saving percentages 

of the joint optimization model are mostly at the 

highest level for the production setup cost  𝑐𝑠 = 50 

and it decreases with the increasing values of  𝑐𝑠 for 

each instance. When the setup cost is high, the joint 

optimization model proposes higher production lot 

sizes which leads to higher risks of having failure. 

Thus, the percentage of cost savings are low in this 

case. The optimal production lot-sizes are relatively 

low when the setup cost is lower, so the machine 

degrades less in each lot. Therefore, the possibility of 

having failures and lost sales are lower that leads to 

higher cost savings. 

Table 3. Percentage of Saving (SP) for different values 

of setup cost  𝑐𝑠. 

  cs  

Instance 50 150 400 

1 15.59% 16.94% 5.57% 

2 14.45% 10.88% 5.94% 

3 7.67% 5.93% 4.32% 

4 19.04% 12.8% 6.05% 

5 24.44% 17.97% 10.89% 

Average 16.24% 12.90% 6.53% 

For higher levels of preventive maintenance cost 

values, the amount of the percentage of savings are 

observed to be less for each instance since changes in 

the production plans are less effective for reducing 

the overall costs (Table 4).  

Table 4. Percentage of Saving (SP) for different values 

of preventive maintenance cost 𝑐𝑝. 

  cp  

Instance 250 500 750 

1 18.12% 8.21% 5.80% 

2 16.72% 5.66% 3.25% 

3 7.62% 4.17% 5.79% 

4 13.96% 5.34% 2.99% 

5 15.06% 5.86% 3.59% 

Average 14.29% 5.84% 4.28% 

Table 5 shows the cost savings of the separate and 

joint optimization models for three different levels of 

the inventory holding cost. When 𝑐ℎ is low, optimal 

lot-sizes tend to be higher in the separate optimization 

model minimizing only production setup and 

inventory holding costs. Because keeping more 

inventory and having a smaller number of production 

runs minimize the total production costs, separate 

optimization model proposes higher quantities of 

production for low inventory holding cost values; 

therefore, there is a higher risk of having corrective 

maintenance and lost sales. 



Table 5. Percentage of Saving (SP) for different values 

of inventory holding cost 𝑐ℎ. 

  ch  

Instance 0.5 1 2 

1 12.95% 9.30% 9.88% 

2 15.47% 7.39% 5.52% 

3 12.09% 5.57% 4.12% 

4 15.73% 14.63% 9.36% 

5 10.15% 8.50% 8.89% 

Average 13.28% 9.08% 7.55% 

6 CONCLUSIONS 

In this study, joint optimization of lot-sizing and 

CBM is studied under time-varying demand for a 

deteriorating production system. The effect of the lot-

size on the machine degradation is considered. A 

stochastic dynamic programming model is 

constructed to find the optimal policy to minimize 

production setup cost, inventory holding cost, lost 

sales cost, preventive maintenance and corrective 

maintenance costs for finite horizon. The proposed 

optimal policy is dynamic; it gives the optimal 

production and maintenance decisions for each 

degradation state, inventory level and period so it 

minimizes overall costs from the current period to the 

end of the planning horizon.  

Numeric study is conducted to present the optimal 

results of the model. Total costs of the joint and 

separate optimization models are calculated, and the 

cost savings are shown for the different levels of the 

cost parameters. The parameters in the numeric 

example are randomly selected to test the model. To 

test the applicability of the proposed model, it could 

be solved for the cases motivated by practice. 

For future research, uncertain demand could be 

considered for the integrated optimization of lot-

sizing and CBM. Adapting the imperfect maintenance 

to our model, which relaxes the assumption that the 

machine is as good as new after each maintenance 

action, will be investigated. Multi-item production 

systems may be studied for the future research as 

well. 
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