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Abstract 

Drought stress forms a major environmental constraint during the life cycle of plants, often decreasing 

plant yield and in extreme cases threatening survival. The molecular and physiological responses induced 

by drought have therefore been the topic of extensive research during the last decades. Because soil-

based approaches to study drought responses are often inconvenient due to low throughput and 

insufficient control of the conditions, osmotic stress assays in plates were developed to mimic drought. 

Addition of compounds such as poly-ethylene glycol, mannitol, sorbitol, or NaCl to controlled growth 

media has become increasingly popular since it offers the advantage of accurate control of stress level 

and onset. These osmotic stress assays enabled the discovery of very early stress responses, occurring 

within seconds or minutes following osmotic stress exposure. In this review, we construct a detailed 

timeline of early responses to osmotic stress, with a focus on how they initiate plant growth arrest. We 

further discuss the specific responses triggered by different types and severities of osmotic stress. Finally, 

we compare short-term plant responses under osmotic stress vs. in-soil drought and discuss the 

advantages, disadvantages and future of these plate-based proxies for drought. 

Keywords: Drought, Mannitol, Osmotic stress, PEG, Poly-ethylene glycol, Salt, Signaling, Sorbitol, Stress 

response 

 

Abbreviations:  ABA, abscisic acid; ACC, 1-aminocyclopropane-1-carboxylic acid; ERF, ETHYLENE 

RESPONSE FACTOR; GA, gibberellic acid; JA, jasmonic acid; nHRSC, non-hydraulic root-sourced signal; 

PIPs, plasma membrane intrinsic proteins; PEG, polyethylene glycol (PEG); RBOHs, RESPIRATORY BURST 

OXIDASE HOMOLOGs; ROS, reactive oxygen species; SOS, Salt Overly Sensitive.
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From soil-based drought to osmotic stress in plates: when, how and why 

About half a century ago, the drastically increasing world population and the upcoming effects of global 

warming started to become a point of concern (Broecker, 1975). It was clear that drought stress would 

form a major constraint for worldwide agriculture and drought stress responses in plants formed an 

important research area (extensively reviewed first in Hsiao and Acevedo (1974), Supp. Fig. 1).  Drought 

stress experiments were performed in soil either by progressive drying of the soil or by transplantation 

to pots with reduced moisture levels (Saunier et al., 1968; Boyer, 1971). These methods were, however, 

found inappropriate because it was impossible to exactly control the stress levels and, most importantly, 

because they were unsuitable to grow large numbers of plants. Therefore, during the seventies and 

eighties, alternative approaches to study drought response were elaborated, and alternative setups to 

mimic drought stress were introduced first on cell cultures and not much later on plants (Kaufmann and 

Eckard, 1971). By adding certain compounds to the artificial growth medium the water potential was 

lowered, making it harder for the plants to take up water from the substrate (Heyser and Nabors, 1981; 

Nguyen and Lamant, 1989; Claes et al., 1990). Among them, sodium chloride (NaCl) is most commonly 

used, followed by polyethylene glycol (PEG), mannitol and sorbitol (Supp. Fig. 1)(Verslues et al., 2006; 

Claeys et al., 2014b). Although these compounds have very different chemical properties and elicit 

specific responses in plants (discussed in a later section), they share the property of triggering osmotic 

adjustment of the plant’s cells and are therefore commonly categorized as osmotic stress, together with 

drought or freezing stress. In this review, these four compounds commonly used to mimic drought stress 

will be referred to as ‘osmotic stress compounds’. When they are used as addition to the growth medium 

for sterile culture of plants (e.g. whole plants grown in petri plates with MS medium with sorbitol), we 

also use the term ‘in vitro osmotic stress assays’. 

 Mannitol and sorbitol are non-metabolizable sugar analogs sharing a common chemical structure 

that only differs in steric C-atom conformation. Because of their low molecular weight and their behavior 

as ideal solutes, mannitol, sorbitol and salt offer the advantage of being easily and equally dissolved in the 

growth medium. PEG doesn’t have this advantage and has to infiltrate solidified medium through 

diffusion (for a detailed procotol, we refer to the work of (Verslues et al., 2006)). PEG is a very commonly 

used compound that was proven to be particularly useful for applying stable, long-term low water 

potential stress (Verslues et al., 2006; Claeys et al., 2014b). Multiple studies report a homogeneous PEG-

induced stress response in plant roots grown on vertical petri plates, while a higher variability was 

observed, in our hands, when growing plants on horizontal plates with PEG (Skirycz et al., 2010). The 

reason behind this variability is unclear; one explanation could be that PEG entered the roots via small 

lesions caused by growth on horizontal plates. Importantly, PEG also offers the advantage of triggering 

cellular responses that are similar to drought stress. Drought stress triggers cytorrhysis; shrinking of cell 

wall and protoplast simultaneously due to passive export of water molecules (Haswell and Verslues, 

2015). High-molecular weight PEG (PEG6000 or higher) molecules do not penetrate the cell wall and also 
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trigger cytorrhysis (Kaufmann and Eckard, 1971; Heyser and Nabors, 1981). In contrast, small molecules 

of mannitol, sorbitol, or salt enter the cell wall, potentially triggering plasmolysis (shrinking of the 

protoplast only, which detaches from the cell wall). Moreover, mannitol was reported to activate 

mannitol-specific downstream responses, unrelated to drought stress (Trontin et al., 2014) – this will be 

discussed in more detail in a later section.  

Finally, NaCl is often used in parallel to drought. Salt triggers a dual stress, composed of an 

osmotic component which might mimic drought, but also of an ionic stress component caused by high 

levels of Na+. The two components of salt stress can be separated in time (Munns, 2002; Verslues et al., 

2006; Munns and Tester, 2008; Rajendran et al., 2009; Isayenkov and Maathuis, 2019). Immediately upon 

stress exposure, the osmotic component is the main inducer of stress responses within hours, triggering 

stomatal closure and growth inhibition, as described later in more detail. After several days or weeks, the 

Na+-ions taken up by the plants cause toxicity by inhibiting enzymatic activities and triggering the uptake 

of other toxic positive ions such as Li+ and K+ (Xiong and Zhu, 2002). However, this might depend on the 

concentration of salt stress used. Under moderate osmotic stress (f.e. 100mM salt, corresponding to -

0.7MPa), Na+ is taken up by the plants (Zhao et al., 2010) and root growth is more affected than on non-

ionic PEG stress at the same osmotic equivalent (Verslues et al., 2006). However, when salt 

concentrations are lower (f.e. 50mM salt – a basal stress level reducing plant growth), the growth of salt-

stressed plants is equally affected as that of sorbitol-stressed plants after 15 days of stress (non-ionic, at 

osmotic equivalent level)(Claeys et al., 2014b). This suggests that very mild salt stress levels do not 

trigger Na+-toxicity, or much later, and that plants evolved to deal with the basal salt stress levels in the 

field.  

As compared to soil-based drought assays, in vitro setups are easy to use and suitable to expose 

large amounts of plants simultaneously to stress, as well as to precisely control the stress levels, onset 

and duration. Because in vitro assays can be used to apply a stable stress level during a long period of the 

plant’s development, they are particularly useful for the study of stress acclimation responses. When no 

exogenous sugars are supplied via the growth medium, the long-term responses of plants grown on 

osmotic stress not triggering plasmolysis (e.g. via the use of PEG), are comparable to the responses of 

drought-stressed plants. Another advantage of in vitro setups is the possibility to apply stress at a well-

chosen moment and study the response within minutes or hours after stress application, further referred 

to as short-term stress assays. For this purpose, young seedlings can either be grown in liquid medium or 

hydroponics cultures to which the compound can be added at the preferred moment. Alternatively, 

seedlings can be grown on solid control medium overlaid with a nylon mesh, which can be transferred to 

medium supplemented with the osmoticum at the desired time point (Verslues et al., 2006).  

The possibility to precisely control the stress onset offers two major benefits. First, the exact time 

point at which the stress will be applied can be chosen. As the response to stress in different plant organs 

has been shown to highly depend on the cell type and developmental stage of the tissue (Dinneny et al., 

D
ow

nloaded from
 https://academ

ic.oup.com
/jxb/advance-article-abstract/doi/10.1093/jxb/eraa037/5714152 by G

hent U
niversity user on 27 January 2020



Acc
ep

te
d 

M
an

us
cr

ipt

 

 5 

2008; Skirycz et al., 2010; Thatcher et al., 2016; Wang et al., 2019), it might be suitable to expose plants to 

stress at a particular moment during development. Second, because the moment of stress exposure is 

precisely known, the short-term stress response can be followed by harvesting the tissue of interest after 

hours, minutes, or even seconds upon stress exposure. These short-term responses comprise large 

changes on proteome, phosphoproteome and transcriptome level that are highly dynamic and can be 

masked on longer term, when new steady state levels are reached. Therefore, the study of short-term 

responses can reveal new candidate genes or processes that are overlooked at later time points, but that 

could still be important in the establishment of the plant’s stress response.  

Here, we combined the available osmotic stress studies that investigated this short-term response 

to construct a timeline of the response of Arabidopsis thaliana to osmotic stress. Ideally, an individual 

timeline should be constructed per type of stress, organ, developmental stage and per level of stress, as all 

of these factors were shown to differently affect the stress response (Dinneny et al., 2008; Skirycz et al., 

2010; Verelst et al., 2013; Claeys et al., 2014b; Ma et al., 2014). However, since too few studies are 

available to enable such an analysis, we focus on the different types and levels of stresses but mention the 

specificity of the response, when reported.  

Control of stress onset enables the unraveling of short-term stress responses 

Continuous detection of water potential in roots: a role for osmosensors?   

In order to adapt properly to continuous environmental microchanges, plants developed mechanisms 

tracking the status of their surroundings. Just like phytochromes permanently sense the light quality 

around the aerial parts, it is reasonable to think that receptors in root cells monitor the water availability 

(Haswell and Verslues, 2015). One of these so-called osmosensors that has attracted scientists’ attention 

during years is the histidine kinase protein AtHK1, a receptor – not a cytokinin receptor, in contrast to 

other members of its family – that acts upstream of a two-component His-kinase transduction pathway. 

AtHK1 was identified as the first putative plant osmosensor because it complements the salt-sensitive 

phenotype of yeast strains mutated in osmosensors like sln1 (Urao et al., 1999). In Arabidopsis, depletion 

of AtHK1 was found to render plants more sensitive to severe, life-threatening drought stress in soil, 

whereas plants overexpressing the putative osmosensor showed increased survival rates under drought 

(Tran et al., 2007; Wohlbach et al., 2008). Moreover, AtHK1 acts upstream of the abscisic acid (ABA) 

response and is itself induced transcriptionally in roots by osmotic stress, making it a plausible candidate 

for connecting the soil water status to the drought stress response (Tran et al., 2007; Wohlbach et al., 

2008). However, the mutant is not affected in drought-induced stomatal closure, neither in solutes nor 

ABA accumulation triggered by lower water potential (Wohlbach et al., 2008; Kumar et al., 2013). In fact, 

it is more likely that an increased stomatal density, and not a loss of putative osmosensor activity, is at 

the origin of the drought-hypersensitive phenotype (Kumar et al., 2013). Although it remains intriguing 

that AtHK1 and its poplar ortholog HK1b have similar molecular roles as yeast osmosensors (Urao et al., 
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1999; Héricourt et al., 2016), they might not be critical for osmosensing in plants, not in roots, neither in 

leaves (Kumar et al., 2013; Sussmilch et al., 2017). 

Besides histidine kinases that have demonstrated osmosensor function in other kingdoms, 

integrin-type proteins can also act as stress-sensing proteins. Integrin proteins are transmembrane 

receptors that can elicit stress-response pathways, particularly in mammalian cells. In Arabidopsis, a 

protein with a small integrin-like domain, At14a-like1 (AFL1), is emerging as a new putative osmosensor. 

AFL1 is a transmembrane protein that is strongly induced by low water potential and interacts with PDI5 

and NAI2, which are two known regulators of growth and accumulation of proline, a central molecule in 

drought and osmotic stress response (Kumar et al., 2015). At the plasmamembrane, AFL1 could 

participate in the initiation of clathrin-mediated endocytosis described in the next section. A prominent 

role for AFL1 in osmotic and drought stress response is further supported by its strong down-regulation 

in salt-hypersentitive Arabidopsis mutants and an improved root growth under moderate osmotic stress 

levels in plants overexpressing AFL1 (Kumar et al., 2015; Huang et al., 2018). Although the presence and 

mode-of-action of a true osmosensor at the origin of the drought stress response still remains to be 

formerly demonstrated in plants, the above-mentioned osmotic stress-induced transmembrane proteins 

that impact plant growth under stress can be considered robust candidates.  

Endocytosis and Ca2+ initiate the response within seconds  

When roots are exposed to environments with a water potential lower than the one of the root cells, 

water is passively exported out of cells (Fig. 1a) (Zonia and Munnik, 2007). This lowers the intracellular 

turgor pressure, initiates a hydraulic signal (see later), and has three direct molecular consequences. 

First, the surface-to-volume ratio of cells is increased, generating a surplus of plasma membrane which is 

internalized by clathrin-mediated and clathrin-independent endocytosis (Fig. 1b) (Leshem et al., 2007; 

Baral et al., 2015a; Baral et al., 2015b; Zwiewka et al., 2015). As the putative osmosensor, AFL1 is 

localized at foci near clathrin-mediated vesicle formation, and it is possible that it stimulates this process 

(Kumar et al., 2019). Vesicle internalization has been observed under both ionic and non-ionic osmotic 

stresses even under relatively mild concentrations (75 mM mannitol or sorbitol, 50 mM KCl, 100 mM 

NaCl) and occurs within ten minutes of stress exposure (Zwiewka et al., 2015). Consistently, mutants 

defective in clathrin components or in regulators of vesicle trafficking are unable to adapt their growth 

when exposed to osmotic stress (Leshem et al., 2007; Zwiewka et al., 2015).  

A second and central response triggered by the decreased cellular water potential is the 

accumulation of free cytosolic Ca2+ molecules (Fig. 1c). The accumulation of Ca2+ has been reported to 

occur under salt, mannitol, sorbitol and PEG-mediated osmotic stress and occurs in waves of which the 

first peak was observed within five seconds following stress exposure (Kiegle et al., 2000; Yuan et al., 

2014; Stephan et al., 2016). The Ca2+ peak is compound-specific (see later) and only lasts for about one 

minute but repetitive peaks can trigger sustained signals in specific root cell types (Kiegle et al., 2000).  
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While the observation that Ca2+ accumulates in response to stress is more than forty years old 

(Kaufmann and Eckard, 1971), the question about its upstream effectors is very timely (Isayenkov and 

Maathuis, 2019). Cytosolic Ca2+ increase can be mediated via Ca2+ release from cellular compartments 

such as vacuole or ER, or from Ca2+ import from the apoplast (Dodd et al., 2010). Several calcium-

channels with mechano-sensivity have been studied and form good candidates as upstream effectors of 

Ca2+ accumulation. For example, a forward genetics screens enabled the identification of OSCA1 

(OSmolality-induced CA2+-increase) and OSCA3, Ca2+-gated osmosensors which stimulate ion influx 

channels for further Ca2+ accumulation (Fig. 1c)(Yuan et al., 2014; Zhang et al., 2018). They have a domain 

for interaction with membranes, possibly mediating mechano-sensitivity, and form a pore, although it is 

still unclear whether this pore is for Ca2+ transport (Jojoa-Cruz et al., 2018; Murthy et al., 2018; Maity et 

al., 2019). Consistently, in osca1 mutants, the Ca2+ wave is weaker resulting in impaired osmotic stress 

responses. Calcium can also be transported via cyclic nucleotide-gated channels (CNGC), and the levels of 

cyclic guanosine monophosphate (cGMP) increase upon osmotic stress. Chemical inhibition of cGMP 

disables the Ca2+ accumulation under salt, suggesting that CNGCs might participate in the Ca2+ peak, 

although this might be a salt-specific effect (Fig. 1c)(Donaldson et al., 2004). A similar strategy, with 

chemical inhibitors, was used to demonstrate that Na+/H+-antiport systems could participate in the Ca2+ 

release under salt stress in Populus callus (Sun et al., 2010). Under cold stress, a stress that can cause 

osmotic stress when it becomes severe, two mechanosensitive calcium channels, MCA1 and MCA2, 

mediate the Ca2+ peak (Mori et al., 2018), but their involvement in the sorbitol-induced osmotic stress 

response remains questionable (Kurusu et al., 2013; Stephan et al., 2016). Instead, two plastid-localized 

K+ exchange antiporters (KEA) are necessary for Ca2+ release under salt and sorbitol stress, and seedlings 

defective in KEA proteins show altered sensitivity to salt stress (Fig. 1c)(Kunz et al., 2014; Stephan et al., 

2016). Finally, other membrane-localized proteins that do not function directly as channels can also 

promote calcium uptake. As such, the receptor-like kinase FERONIA senses changes in cell wall integrity 

upon root bending or osmotic stress and participates in establishing the Ca2+ peak, although this 

mechanisms might be specific to high salt stress (Shih et al., 2014; Feng et al., 2018). 

Finally, changes in cytoskeleton dynamics were reported to be another process initiated within 

minutes upon stress application and were observed for salt, PEG and mannitol, although for the latter it 

has not been reported in root cells (Wang et al., 2007; Yu et al., 2018). In Arabidopsis root epidermal cells, 

the actin and microtubule cytoskeleton is highly dynamic and filaments continuously polymerize, 

assemble and elongate. Upon exposure of roots to high salt stress, actin depolymerization and bundle 

fragmentation is stimulated within ten minutes of stress exposure (Liu et al., 2012), probably to adapt the 

cytoskeleton to the new cell shape under higher osmotic pressure (Fig. 1e). Accordingly, a mutant 

affected in microtubule organization was found to be hypersensitive to osmotic stress (Bhaskara et al., 

2017b). The precise molecular mechanisms triggering these changes are poorly understood, but evidence 

suggests that microtubule disassembly can, in turn, also stimulate an increase in Ca2+ levels (Wang et al., 
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2011). Altogether, different early osmotic stress-responsive mechanisms converge towards fast but 

transient waves of intracellular Ca2+. 

Reactive oxygen species (ROS) peak within minutes following osmotic stress 

During the rapid and transient Ca2+ peak, Ca2+ molecules can be recognized and bound by different 

families of proteins such as calmodulin and the calmodulin-binding transcription factors (CAMTA) to 

further elicit transcriptional responses. Alternatively, they can initiate phosphorylation cascades by 

binding Ca2+-dependent protein kinases (CDPKs) and calmodulin-dependent kinases (CCaMKs) (Fig. 1d) 

(Kaplan et al., 2006; Finkler et al., 2007; Dodd et al., 2010). Among the multiple downstream effects of 

Ca2+-induced signaling, one notable example observed under salt stress is the calcium-induced activity of 

RSA1, which directly binds Ca2+ and RITF1, a transcription factor that triggers SOS1 transcription (Fig. 1d) 

(Guan et al., 2013). Ca2+ also binds the calcineurin-like B protein CBL4/SOS3 which causes activation of 

the kinase SOS2 that, in turn, phosphorylates SOS1. In these salt-stress specific examples, Ca2+ thus 

contributes to stress avoidance by stimulating SOS1-mediated Na+ export to prevent toxicity (reviewed in 

Julkowska and Testerink (2015) and Isayenkov and Maathuis (2019)). Other examples include Ca2+-

mediated inhibition of non-specific cation channels or, in aerial plant organs, stomatal closure (Geiger et 

al., 2010; reviewed in Daszkowska-Golec and Szarejko, 2013).  

 Another important downstream effect of Ca2+ accumulation is the stimulation of ROS by post-

translational activation of ROS-producing enzymes, RESPIRATORY BURST OXIDASE HOMOLOGs 

(RBOHs). Some RBOH proteins possess EF-hand motifs at the N-terminus through which they might bind 

Ca2+ and thereby be activated (Fig. 1f) (Canton and Grinstein, 2014; Navathe et al., 2019), while other 

RBOHs have phosphorylation sites targeted by CCaMKs (Fig. 1g) (Kadota et al., 2015). Although less 

characterized at the molecular level, several lines of evidence also suggest that the RBOH enzymes are 

stimulated by stress-induced endocytosis and actin depolymerization (Fig. 1h) (Wang et al., 2011; Hao et 

al., 2014; Tian et al., 2015). Following short-term stress exposure, RBOHs produce O2- in mitochondria, 

peroxisomes and the apoplast of root cells (Gill and Tuteja, 2010), which is further converted to H2O2 (Fig. 

1i) (Suzuki et al., 2011). Conversely, ROS like OH-radicals can activate ANNEXIN-type channels that 

further stimulate Ca2+ import upon salt stress (Laohavisit et al., 2012; Laohavisit et al., 2013). 

 Each RBOH produces ROS in a different context; RBOH-D and E are responsible for ROS 

production under osmotic stress (Xie et al., 2011; Ma et al., 2012). While in high concentrations ROS can 

damage proteins, H2O2 acts as stress signaling molecule at low levels (Foyer and Noctor, 2009). Therefore, 

plants affected in ROS production, e.g. upon mutation of the important RBOH-D enzyme, are more 

sensitive to salt stress (Huang et al., 2019). Short-term accumulation of ROS has now been reported in 

multiple species upon exposure to different types of osmotic stress, although the evidence for a ROS burst 

under PEG and mannitol is rather limited or contradictory (Leshem et al., 2007; Si et al., 2010; Tamás et 

al., 2010; Uzilday et al., 2014; Ben Rejeb et al., 2015a). Overall, studies that performed ROS measurements 
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in different species report a fast but transient ROS wave ranging from minutes to 12 h following stress 

exposure. 

Root-to-shoot-transported molecules propagate the signal upwards within one hour 

Osmotic stress triggers molecular and phenotypic changes locally at root level, but the effects in the shoot 

are even more pronounced (Claeys et al., 2014b; Khadka et al., 2019). Shoot responses to osmotic stress 

reduce growth, redirect energy metabolism and minimize water loss, requiring a fast and mobile signal 

from the root to the shoot. Whether this signal has a hydraulic origin or is a non-hydraulic root-sourced 

signal (nHRSC), such as a hormone-related molecule, is still under debate. Root conductivity is affected 

within minutes by osmotic stress through ROS-induced internalization of the aquaporins via clathrin-

mediated endocytosis (Fig. 1j) (Boursiac et al., 2008; Ueda et al., 2016; Kapilan et al., 2018). As a result, 

water transport is reduced, further sustaining the hydraulic signal along the root up to the shoot, where 

this decrease in water potential is perceived (reviewed in Rodrigues et al., 2019). However, several lines 

of evidence suggest that root-to-shoot signaling following stress still occurs when the water potential is 

maintained by watering parts of the roots or by adjusting the osmotic potential, thereby strongly 

suggesting the presence of nHRSCs (Davies and Zhang, 1991; Nonami et al., 1997; Tang and Boyer, 2002; 

Parent et al., 2010; Bonhomme et al., 2012; Batool et al., 2019a; Batool et al., 2019b). The current view is 

that the earliest response to mild osmotic stress is dominated by nHRSCs, whereas the longer-term 

response, or when the stress is more severe, is sustained by hydraulic signals (Schachtman and Goodger, 

2008; Pérez-Alfocea et al., 2011; Batool et al., 2019a; Batool et al., 2019b). In the context of the rapid 

stress response presented here, only nHRSCs will be discussed.  

One criterium for candidate early nHRSCs is that biosynthesis or accumulation in the roots, xylem-

mediated upwards transport and accumulation in the shoot occur in subsequent order. As the first 

responses in shoots are captured between ten minutes and one hour upon exposure of the root to stress 

(see next section), this series of steps is expected to be extremely fast. It can thus be considered unlikely 

that the earliest signals are synthesized by enzymes that are regulated at the transcriptional level; post-

translational activation or release of stored/conjugated molecules is more plausible. A first good 

candidate nHRSCs is ROS, as post-translational mechanisms activate ROS biosynthesis within minutes 

upon osmotic stress. Transmitted through a wave, ROS induce RBOH activity in adjacent cells, which in 

turn produce ROS (Fig. 1k) (Miller et al., 2009; Mittler et al., 2011). Such waves can reach a speed of 8 cm 

per minute, and could trigger responses in leaves of small seedlings within minutes. Along with ROS, the 

other secondary signaling molecule, Ca2+, would also be capable of long-distance transport, as was 

observed under salt stress (Choi et al., 2014; Choi et al., 2016). Whether a root-to-shoot Ca2+ wave also 

takes place under other types of osmotic stress, is still unclear.    

Another good candidate for root-to-shoot signaling under osmotic stress is the precursor of 

ethylene gas, 1-aminocyclopropane-1-carboxylic acid (ACC), or a soluble ACC-conjugate. ROS can activate 
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a phosphorylation cascade involving MKK9, MPK3 and MPK6 (Yuasa et al., 2001; Liu et al., 2010; Chang et 

al., 2012; Tsugama et al., 2012). MPK3/6 in turn phosphorylate and activate ACC-SYNTHASE2 (ACS) and 

ACS6, regulating the rate-limiting step of ACC biosynthesis (Fig. 1l), although the precise involvement of 

ROS in this process and the occurrence under osmotic stress are unclear (Liu and Zhang, 2004; Xu et al., 

2014). Osmotic stress and drought have previously been found to increase the ACC concentration in the 

xylem in several – but not all – studies exploring this, leaving the question whether ACC could act as a 

root-to-shoot signal still open (Pérez-Alfocea et al., 2011; Marino et al., 2017). The earliest ethylene-

related transcriptional responses in shoots were detected 30-45 min following biotic or osmotic stress 

(see further), suggesting that ACC would be transported within the first half hour of stress (Fig. 

1m)(Hasegawa et al., 2011; Dubois et al., 2015).  

Third, jasmonic acid (JA) is emerging as a candidate to either function as or trigger the root-to-

shoot signal. Several genes encoding JA biosynthesis enzymes can be induced by Ca2+, and also ROS might 

be involved in this process (Kang et al., 2006; Hu et al., 2009). JA levels are increased in Arabidopsis, 

wheat and eucalyptus roots following exposure to drought (Du et al., 2013; Correia et al., 2014; Liu et al., 

2015), and JA-responsive genes are commonly found among drought-induced transcriptomic changes 

(Baerenfaller et al., 2012; Clauw et al., 2016; Dubois et al., 2017). However, a closer look at the timing of 

JA accumulation could question its possible function in early root-to-shoot signaling. The accumulation of 

JA (60 min) precedes the induction of its biosynthesis genes (90 min), pointing towards a feedback 

mechanism rather than a causal effect (Ellouzi et al., 2014). Moreover, the induction of JA biosynthesis 

genes upon Ca2+ accumulation occurs transcriptionally, further questioning the hypothesis of JA as a very 

early signal. 

Fourth, the central drought-responsive hormone ABA has historically grown as the most obvious 

candidate for root-to-shoot signaling, although recent pieces of evidence lead to question this (reviewed 

by Pérez-Alfocea et al., 2011; McAdam et al., 2016a; McAdam et al., 2016b). Increased ABA production 

upon osmotic stress and drought has been observed extensively in multiple species (reviewed in Waadt 

et al., 2014; Batool et al., 2019a; Batool et al., 2019b; Brunetti et al., 2019; Khadka et al., 2019; Takahashi 

and Shinozaki, 2019). ABA levels are increased in roots and in the xylem sap, most likely as a result of 

increased transcription of NCED3, the gene encoding the rate-limiting ABA biosynthesis enzyme (Brunetti 

et al., 2019). As transcriptional induction takes time, there would be a delay in ABA accumulation for 

root-to-shoot signaling, which is in line with the recent view on this process. In this model (reviewed in 

McAdam et al., 2016b; Takahashi and Shinozaki, 2019), the ABA signal in the shoot is not a direct 

consequence of fast root-to-shoot ABA transport, but a combined effect of ABA biosynthesis in the shoot 

and bidirectional ABA transport. Indeed, ABA was recently shown to accumulate more rapidly in the 

shoot (10 min) than in the roots (Yuan et al., 2014; Liu et al., 2015), thus, the increased levels of ABA in 

the xylem (Pérez-Alfocea et al., 2011; Correia et al., 2014) might result from re-circulation of leaf-sourced 

ABA rather than from early stress-responsive root-to-shoot transport (Zeevaart and Boyer, 1984; 
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Schachtman and Goodger, 2008)(Fig. 1n). It is speculated that ABA biosynthesis in the shoot might result 

from a JA-mediated signal or from the hydraulic signal, as in some species the level of ABA is not 

increasing when the hydraulic signal is dampened (de Ollas et al., 2015; McAdam et al., 2016b; Marino et 

al., 2017; Takahashi and Shinozaki, 2019).  

Besides these putative root-to-shoot signals, other molecules deserve additional research in order 

to determine their possible role in this process, including cytokinin, salicylic acid, malate, acetylcholine, 

sulfate, gibberellic acid (GA) and peptides of the CLE family (Gaion et al., 2018; Nelissen et al., 2018; 

Takahashi and Shinozaki, 2019). The latter consists of small, cell non-autonomous peptides that can be 

responsive to drought stress and trigger drought-related responses such as stomatal closure (CLE9 and 

CLE10) (Kucukoglu and Nilsson, 2015; Qian et al., 2018; Zhang et al., 2018). Interestingly, CLE25 

expression is induced in the roots upon dehydration stress and exogenous CLE25 treatment of the root 

induces ABA synthesis in the shoot (Takahashi et al., 2018). Whether the CLE25 peptide itself is 

transported from root to shoot and whether this takes place upon short-term or mild osmotic stress is a 

future area to be explored.  

Within the first hour, leaves close stomata and initiate growth arrest 

Following stress exposure of Arabidopsis roots, the stress signal reaches the shoot and triggers responses 

that are known to be highly dependent on the organ, the developmental stage of each leaf, the tissue, and 

even the cell type (Dinneny et al., 2008; Skirycz et al., 2010; Verelst et al., 2013). In the shoot, rapid 

physiological responses such as stomatal closure were captured within ~10 minutes following treatment 

of roots with PEG or sorbitol (Fig. 1r) (Yuan et al., 2014). At the molecular level, differential 

phosphorylation of ~70 proteins was measured in leaves within 30 minutes upon mild mannitol-induced 

stress (Nikonorova et al., 2018). Other phosphoproteomics studies detected extensive differential 

phosphorylation upon shorter stress exposure (up to 5 minutes), or investigated phosphoproteome 

changes by using other osmotic stress compounds, which helped to characterize important stress-

responsive phosphorylation pathways, such as the PP2C-SnRK2 described below (Xue et al., 2013; 

Stecker et al., 2014; Bhaskara et al., 2017a; Wong et al., 2019). Unfortunately, the latter studies lack 

organ-level resolution necessary to draw conclusions about the timing at which these phosphoproteome 

changes occur in the shoot. Specifically in shoots, transcriptomics and proteomics analyses found notable 

osmotic stress-induced changes within 30~60 minutes following osmotic stress (Skirycz et al., 2011a; 

Nikonorova et al., 2018). Overall, these studies situate the short-term stress response in aerial plant 

tissues of Arabidopsis around 10~60 minutes upon stress sensing by the roots. 

 In fully-grown leaves, ABA is the central hormone controlling the response to in vitro osmotic 

stress, but also to drought, cold, heavy metal, or UV stress (reviewed in Vishwakarma et al. (2017)). 

Whereas stomatal closure is an immediate ABA-regulated stress response, the accumulation of osmolytes 

and ROS is initiated by ABA for a long-lasting response (see details in next section). In short, ABA binds to 
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a family of PYL/PYR (PYRABACTIN-RESISTANCE(-LIKE)) soluble receptors, thereby changing their 

conformation and causing them bind to PROTEIN-PHOSPHATASE 2C (PP2C) (Fig. 1r)(reviewed in Joshi-

Saha et al., 2011; Agurla et al., 2018). PP2C is then unable to inhibit its downstream targets, kinases of the 

SnRK2 (SNF-RELATED KINASE2) family, of which OST1 (OPEN STOMATA1) is crucial in stomatal closure 

(Fujii et al., 2011; Fujita et al., 2013). The released kinases are free to phosphorylate on the one hand K+ 

influx channels, thereby inhibiting them, and on the other hand anions efflux channels, activating them, 

which results in fast stomatal closure (Fig. 1r). Additionally, transcription factors of the ABA-RESPONSIVE 

ELEMENT BINDING family (AREBs) are targeted by SnRK2 kinases as well as by Ca2+-dependent protein 

kinases, further controlling the ABA-dependent downstream stress response (Fujita et al., 2011). 

In young Arabidopsis leaves, 57 transcripts respond within 1.5 h of stress, or even earlier (Skirycz 

et al., 2011a; Dubois et al., 2015; Van den Broeck et al., 2017; Nikonorova et al., 2018). The majority of 

these genes is involved in ethylene response and, consistently, osmotic stress was shown to trigger an 

increase in ACC levels in young seedlings after 1 h (Fig. 1m) (Skirycz et al., 2011a). The role of ACC in 

young leaves of plants exposed to stress is summarized by the “pause-and-stop model” (Skirycz et al., 

2011a; reviewed in Dubois et al., 2018b). Within hours following stress, the accumulation of ACC triggers 

phosphorylation and inactivation of CYCLIN-DEPENDENT KINASE A (CDKA), causing a cell cycle “pause” 

(Fig. 1o) (Skirycz et al., 2011a). This subsequently triggers a permanent cell cycle exit possibly controlled 

by two distinct mechanisms. First, ETHYLENE RESPONSE FACTORs (ERFs), such as ERF6, activate GA 

degradation by inducing the GA2-OXIDASE6 gene, thereby stabilizing DELLA proteins, which further push 

cells into differentiation (Fig. 1p) (Claeys et al., 2012; Dubois et al., 2013; reviewed in Claeys et al., 2014a). 

This ERF-mediated pathway can strongly impact Arabidopsis leaf growth and is therefore tightly 

controlled and fine-tuned by a densely connected stress-responsive network (Van den Broeck et al., 

2017). Second, inactivation of CDKA might cause stabilization of cell cycle inhibitory proteins like SMR1, 

transcriptionally and post-translationally induced by drought stress as well as by ACC (Dubois et al., 

2018a). In the end, these parallel mechanisms cause a reduction in leaf growth that was observed 24 h 

following exposure to mild osmotic stress (Fig. 1q) (Skirycz et al., 2011a). 

Upon initial burst of stress signals, a new steady state is established in root and shoot 

After the initial response, levels of ACC decrease between 4 and 16 h following stress (Fig. 1w) (Ellouzi et 

al., 2014). Accordingly, transcript levels of some ERFs return to pre-stress levels after 48h, even when the 

stress persists (Van den Broeck et al., 2017). In contrast, ABA levels continue to increase progressively 

(Fig. 1x) (Ellouzi et al., 2014), in accordance with previous reports that ABA would play an increasingly 

important role when the stress signal persists (Schachtman and Goodger, 2008). As a result of increased 

ABA accumulation, RBOH genes are transcriptionally activated through the ABA-responsive NTL4 (NAC 

WITH TRANSMEMBRANE MOTIF-LIKE4) transcription factor or via ERF74, maintaining further ROS 

production (Fig. 1y) (Lee et al., 2012; Yao et al., 2017). RHOB-D is transcriptionally induced in Arabidopsis 

D
ow

nloaded from
 https://academ

ic.oup.com
/jxb/advance-article-abstract/doi/10.1093/jxb/eraa037/5714152 by G

hent U
niversity user on 27 January 2020



Acc
ep

te
d 

M
an

us
cr

ipt

 

 13 

roots from 3 h upon stress initiation onwards (Suzuki et al., 2011) and H2O2 levels continue to increase 

until 10 to 24 h, depending on the species, before they reach a plateau (Si et al., 2010; Ellouzi et al., 2014; 

Niu et al., 2018). The H2O2 accumulation further maintains endocytosis and internalization of plasma 

membrane-localized aquaporins (plasma membrane intrinsic proteins, PIPs)(Fig. 1j) (Boursiac et al., 

2008). Eventually, root growth is inhibited between 5 to 10 h depending on the type of stress, and root 

water content decreases after 16 h, and is reduced by half after 72 h (Fig. 1z) (Verslues et al., 2006; 

Ellouzi et al., 2014). Under salt stress, upon this initial period of growth reduction, the primary root 

growth recovers via ABA-mediated inhibition of ethylene (Geng et al., 2013), while the lateral root 

emergence remains inhibited (Duan et al., 2013; Dinneny, 2015). These mechanisms redirect the energy 

towards the deep-growing primary root. 

Above-ground, within hours following stress, closure of stomata enables a reduction in leaf 

transpiration but also limits CO2 uptake, thereby lowering photosynthesis, and chlorophyll contents 

decrease on middle-long term (4 h) (Fig. 1s) (Ellouzi et al., 2014). Also within 4 h and likely as a result of 

the ABA increase, H2O2 levels are induced and further increase progressively (Fig. 1t) (Ellouzi et al., 

2014). Both ROS and ABA can contribute to the biosynthesis of proline: ROS triggers NADPH-mediated 

biosynthesis of proline, and ABA up-regulates proline biosynthesis genes (Fig. 1x) (Ábrahám et al., 2003; 

Ben Rejeb et al., 2015b). It has recently been demonstrated that the transcription of P5CS1, encoding the 

rate-limiting enzyme in proline biosynthesis, is impaired in ABA-deficient and ABA-insensitive mutants 

upon phosphate starvation (Aleksza et al., 2017). This suggest that ABA might be necessary for proline 

biosynthesis in some conditions, but not sufficient for proline accumulation under osmotic stress 

(Sharma and Verslues, 2010). Proline accumulates in the leaves with a similar timing as ROS and ABA 

(Fig. 1u)(Ellouzi et al., 2014; Ben Rejeb et al., 2015b). As proline biosynthesis and catabolism affect the 

NAPDH/NADP ratio, proline metabolism is crucial for maintaining the redox status under stress (Sharma 

et al., 2011) and proline participates in ROS scavenging. As a highly soluble molecule, proline also acts as 

an osmolyte to counteract the effects of reduced water potential of the medium. However, proline by itself 

is not crucial for stress tolerance, and studies in Arabidopsis mutants, accesssions, and other plant species 

have demonstrated that, although often correlated, higher proline accumulation is not necessarily linked 

to improved osmotic stress or drought tolerance (Sharma et al., 2011; Kesari et al., 2012; Bandurska et al., 

2017) ; reviewed in (Kavi Kishor and Sreenivasulu, 2014; Bhaskara et al., 2015). Via the rapid induction 

of above-described mechanisms, leaf water content and osmotic potential are only mildly affected during 

the first two days of osmotic stress, but eventually show a clear reduction 72 h following exposure to 

severe salt stress, and likely longer when the stress is milder (Fig. 1v) (Ellouzi et al., 2014; Ben Rejeb et 

al., 2015a). 

Compound-specific early responses 
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While all types of osmotic stress share a common feature in lowering the water potential of the growth 

medium, some compounds are known to elicit specific responses (Table 1). Although cytosolic Ca2+ 

accumulation occurs under multiple types of (osmotic) stresses, it contributes to the establishment of 

stress-specific responses. The specificity is achieved through the Ca2+ signature, determined by the speed, 

amplitude, frequency and duration of the Ca2+ peak (Chinnusamy et al., 2004). For example, in the root 

endodermis, mannitol induces a low primary Ca2+ peak (1.1 μM) but with a long duration (50 s), while salt 

stress induces a higher primary peak (1.8 μM) that lasts a shorter time (30 to 40 s) (Kiegle et al., 2000). 

The speed with which the peak occurs correlates mainly with the severity of the stress (Zhu et al., 2013), 

and the combination of each profile across the different cell types forms an additional characteristic 

contributing to the specificity (Kiegle et al., 2000). More downstream, RBOHs D and E have been shown to 

be induced only by salt and not by non-ionic osmotic stress: the ionic component is determinant for fast 

ROS production (Leshem et al., 2007), and one of the direct effects of ROS in cucumber is the exclusion of 

the toxic Na+ enzyme out of the cell (Niu et al., 2018). As different RBOH enzymes are induced depending 

on the type of environmental stress, the specificity of the Ca2+ signature could be determinant in this 

process (Canton and Grinstein, 2014; Kadota et al., 2015). Another specific effect of salt-induced Ca2+ 

accumulation is the activation of the well-characterized Salt Overly Sensitive (SOS) pathway, as was 

detailed in an earlier section (Chinnusamy et al., 2004).  

Besides specificity achieved by the Ca2+ signature, plant-encoded receptors can be involved in the 

recognition of osmotic stress compounds. As such, a compound-specific response pathway was reported 

for mannitol through the action of two putative mannitol receptors, EGM1 and EGM2 (Enhanced Growth 

on Mannitol) (Trontin et al., 2014). Consequently, the growth of mutants lacking one of these EGMs is less 

affected by mannitol. Whether EGM proteins are upstream of the above-described leaf responses is a 

matter of debate; they might act only under rather high mannitol concentration or under long-term 

mannitol-induced stress (Dubois et al., 2015). It is nevertheless clear that mild levels of mannitol (25 mM 

for 24 h, Skirycz et al., 2011a) trigger a response very different from mild salt levels (50 mM for 48 h, 

Shen et al., 2014), as there is no correlation between the transcriptomic changes caused by both stresses 

in growing shoot tissue (CCSpearmann = -0.38). Accordingly, genes identified as regulators of growth under 

mild mannitol-mediated stress, such as ERF6, are not affected by mild salt stress, and consequently the 

corresponding mutants, which grow better than the wild type on low concentrations of mannitol, do not 

perform better under mild salt stress (Dubois et al., 2013). 

Altogether, these compound-specific early responses can cause downstream phenotypic effects 

that are different depending on the compound (Claeys et al., 2014b). They have been reported in 

Arabidopsis and rice, and are important to be taken into account (Hazman et al., 2016). When osmotic 

stress is used as a user-friendly alternative to drought, compound-specific effects should be avoided. In 

this respect, PEG-imposed osmotic stress is a good option for gene discovery, as no PEG-specific 

responses were reported so far. Alternatively, proteins/pathways that were originally identified via the 
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use of mannitol or salt could be validated by verifying their functionality (e.g. via mutant phenotyping) 

under PEG-based osmotic stress or even soil-based drought, as has been done, for example, for the 

characterization of SnRK2 kinase and for the validation of some of the above-mentioned ERF genes (Fujii 

et al., 2011; Dubois et al., 2017; Van den Broeck et al., 2017). 

Importance of short-term stress assays  

During the 20th century, “short-term” responses to sudden osmotic stress were mainly studied after two 

to three days following stress exposure, without taking into account earlier time points (Kaufmann and 

Eckard, 1971; Kalantari et al., 2000). Since then, numerous studies reported time-course measurements 

following stress exposure with a range and resolution varying depending on the type of experiment 

(Gamboa et al., 2013; Luo et al., 2013; Bu et al., 2014; Yuan et al., 2014; Zhao et al., 2015). Time-course 

analyses made it possible to distinguish two types of responses. On the one hand, certain processes are 

induced shortly upon stress and further maintained or enhanced over time, such as proline and ABA 

accumulation, contributing to their widely accepted role as main stress response factors (Zeller et al., 

2009). On the other hand, several processes are only transiently induced following stress. For example, 

the very short-term Ca2+ signal that initiates a large part of the response becomes fully undetectable 

within minutes following stress initiation (Yuan et al., 2014). Also ROS-mediated stress signaling, induced 

within minutes and peaking after hours upon stress, is decreasing back to control levels after on average 

24 h as a result of the activation of multiple ROS-scavenging enzymes (Fig. 1t and y) (Ben Rejeb et al., 

2015b). Finally, the ACC accumulation, orchestrating the short-term growth-inhibitory response of 

growing Arabidopsis leaves, is also just a transient signal which decreases back to control levels after 

days following stress exposure (Fig. 1m) (Kalantari et al., 2000; Ellouzi et al., 2014). This is most likely 

achieved by the ABA-mediated repression of the ethylene pathway (Takahashi and Shinozaki, 2019).  

Overall, at transcriptome level, on average about one-fourth of the genes differentially expressed 

at the most early time points (1-3 h) following osmotic stress, is no longer affected at later time points 

(10-24 h) (Kreps et al., 2002; Matsui et al., 2008; Zeller et al., 2009; Skirycz et al., 2011a). A similar trend 

was observed in a proteomics study following mannitol treatment: after 4 h of stress, only approximately 

one-third of the earliest (30 min) mannitol-responsive proteins remained differentially accumulated in 

the same way, one-third disappeared, while one-third even showed an opposite trend (Nikonorova et al., 

2018).  

As these responses disappear over time even though the stress is maintained, their importance in 

long-term plant acclimation to osmotic stress could be questioned. Interestingly, altering the expression 

of genes that are involved specifically in short-term response can have an impact on the long-term stress 

sensitivity. For example, compromising the (very transient) Ca2+ increase upon stress in the osca1 mutant 

affects the growth of roots after 10 days of osmotic stress (Yuan et al., 2014). Similarly, whereas the 

transcript level of some osmotic stress-responsive transcription factors, like ERF2, ERF8, and others, is 
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only transiently increased, mutants in these genes do show a long-term phenotypic effect upon osmotic 

stress – a phenotype that is, interestingly, also conserved upon mild drought stress in soil (Dubois et al., 

2017; Van den Broeck et al., 2017). These examples show that genes that are transiently induced upon 

osmotic stress can be important in the long-term stress response and underscore the importance of 

sampling at early time points, especially when the aim is to study the early stress avoidance mechanisms 

of plants.  

Importance of controlling the stress level 

Besides the exact control of the stress onset, osmotic stress setups give the possibility to expose plants to 

a wide range of stress levels by varying the concentrations of the osmotic compound. Overall, in vitro 

osmotic stress research mainly focused on rather severe stress levels (Claeys et al., 2014b). High levels of 

stress (>25 mM mannitol, >100 mM sorbitol, >50 mM salt) trigger huge transcriptional responses and 

easily visible and measurable phenotypic effects such as bleaching, alterations in leaf shape, inhibition of 

root growth, or germination defects, and are therefore used in the majority of stress studies (Table 1). 

However, more sensitive traits are affected by much milder stress, inhibiting only growth, while other 

symptoms remain absent (Claeys et al., 2014b). Arabidopsis leaf growth is already affected by very low 

concentrations of stress, making it the most sensitive macroscopic phenotype to detect if plants feel the 

stress. Also at the molecular level, plants react according to the stress level to balance growth and 

survival and, consequently, different mechanisms control growth under moderate stress and survival to 

life-threatening, severe stress (for a review, see Claeys and Inzé, 2013). Most likely, different stress levels 

do not only quantitatively affect gene expression by increasing/decreasing the number of differentially 

expressed genes or their expression level, but rather trigger specific responses qualitatively depending 

on stress severity. 

Added value of osmotic stress setups for future drought stress research 

 In vitro osmotic stress setups are used as convenient alternatives to mimic drought stress, but 

how comparable are they? When Arabidopsis seedlings are exposed to in vitro osmotic stress for days or 

weeks, their phenotype and long-term physiological acclimation resembles the one of drought stressed 

plants: stomata are closed, osmolytes accumulate, plants are smaller and, depending on the stress level, 

the photosynthesis rate is reduced and more severe symptoms can become visible. For the study of these 

longer-term physiological responses, in vitro osmotic compounds that do not trigger compound-specific 

responses and that are applied without exogenous sugars, at a relevant level of severity, form a good 

alternative to in soil drought (Fig. 2) (Verslues et al., 2006).  

 Similar phenotypic or physiological responses could be the result of different early signaling 

events, involving different regulators. When comparing short-term osmotic stress responses with short-

term drought stress signaling (see next section about the feasibility of such measurements), three 

tendencies are clear. First, high levels of osmotic stress (> 100 mM NaCl, > 200 mM mannitol and > 20% 
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PEG6000) induce short-term transcriptome responses that are comparable between different compounds 

(comparison between the dataset of Kreps et al. (2002) and Matsui et al. (2008)) and that correlate with 

severe dehydration responses (CCSpearman = 0.74)(Matsui et al., 2008). As a consequence, many mutants 

with an increased tolerance to severe osmotic stress also survive better when grown in soil and exposed 

to severe dehydration stress (Gamboa et al., 2013; Lü et al., 2013; Song et al., 2013; Xiao et al., 2013; Cai et 

al., 2014; Cho et al., 2014; Kim et al., 2014; Li et al., 2014; Liu et al., 2014; Qin et al., 2014; Cai et al., 2015; 

Zhao et al., 2015; Liu et al., 2019). These mutants often carry mutations in genes involved in early, general 

stress response pathways such as ROS- and Ca2+-signaling (Fig. 2). Secondly, the overlap in short-term 

responses between mild osmotic stress imposed by PEG and mild progressive drought is significant. 

About 25% of the genes up- or down-regulated in young seedlings upon 4 days of low water potential 

stress using PEG (-0.7 MPa) are similarly affected in young leaves of seedlings exposed to 4 days of 

progressive drought in soil, with genes involved in water deprivation, ABA, and anthocyanin metabolism 

in the overlap (Supp. Fig. 2)(Dubois et al., 2017; Wong et al., 2019). Consistently,  mutants with similar 

phenotypes under progressive drought and mild PEG-induced osmotic stress are found, e.g. mutants in E-

CLADE GROWTH-REGULATING PP2C (EGR) and MICROTUBULE-ASSOCIATED STRESS PROTEIN1 

(MASP1), both involved in microtubule re-organization, one of the earliest responses to stress (Bhaskara 

et al., 2017b). Third, the correlation between osmotic stress and drought is less obvious when mannitol, a 

plasmolysis-inducing compound, is used. Transcriptome datasets from mild mannitol-induced osmotic 

stress and progressive drought stress, both on very young Arabidopsis leaves that were similarly affected 

at phenotypic level, do not correlate (CCSpearmann = -0.19) (Skirycz et al., 2011a; Clauw et al., 2015). 

Moreover, in young leaves, the central regulators of leaf growth under mild mannitol-mediated osmotic 

stress, such as ERF6, are not responsive to drought stress in the soil (Fig. 2). However, recent studies 

using mild to moderate drought stress in the soil highlighted a role for ethylene, GA and JA in growing 

Arabidopsis leaves (Baerenfaller et al., 2012; Dubois et al., 2017). It can therefore be speculated that, 

upon drought, (other) transcription factors from the ethylene-responsive family act on the DELLA 

proteins to regulate leaf growth, as happens in vitro. For example, the ERF8 gene is induced in young 

leaves by mannitol and by progressive drought, and the mutant has the same phenotype under both 

osmotic stress and drought (Dubois et al., 2017; Van den Broeck et al., 2017). Altogether, these examples 

show that the general response mechanisms between mild osmotic stress and mild drought might be 

conserved, regarding hormonal pathways or gene families, but that the identity of the regulators involved 

in specific processes might be different (Fig. 2).  

  These comparisons show that in vitro osmotic stress assays can be useful tools for future studies 

of both long-term and short-term stress responses. Given the compound-specific responses initiated by 

mannitol and salt, PEG is currently the most suitable compound, not triggering plasmolysis and enabling a 

stable stress level. When used properly (medium without sugar and on vertical plates with high agar 

concentration, as described in Verslues et al., 2006), PEG homogeneously decreases the growth of plant 

D
ow

nloaded from
 https://academ

ic.oup.com
/jxb/advance-article-abstract/doi/10.1093/jxb/eraa037/5714152 by G

hent U
niversity user on 27 January 2020



Acc
ep

te
d 

M
an

us
cr

ipt

 

 18 

roots. Because, in our opinion, PEG might be less suitable for studying rosette growth on horizontal plates 

(see introductory section), sorbitol might be a better compound for this purpose. As an ideal solute, 

sorbitol dissolves equally in solid in vitro growth medium, however, it should be kept in mind that this 

compound can cause plasmolysis of root cells. Importantly, upon gene discovery using one of the osmotic 

compounds, it is in our opinion critical to validate the genes of interest by using another osmotic 

compound or, even more relevant, by the use of actual drought stress, in soil.    

Gene discovery and validation in soil-based drought assays... a feasible challenge 

Most commonly, early osmotic stress responses are being unraveled in vitro. The validation of the 

findings under actual drought is straight-forward when studying very general stress responses such as 

Ca2+, ABA or ROS signaling, but can be very challenging when aiming at validating specific responses to 

milder levels of stress. An obvious reason why some osmotic stress responses cannot be translated is 

likely because soil is intrinsically different from artificial growth medium: along the same root, local 

differences in soil composition or soil humidity can initiate different responses in the closest root cells 

(Fig. 2). These micro-differences around the root can become increasingly important upon soil drying, as 

the soil within a pot does not dry homogeneously.  Another plausible reason for this limited success is 

that some less general in vitro responses per definition depend on the precise context, being either (i) the 

developmental stage of the studied organ, (ii) the stress level or (iii) the duration of the stress. When care 

is not taken to maintain as far as possible this context during the in soil validation, the specific gene or 

pathway that is to be validated, might not be detected. Indeed, also in soil-based drought stress assays, 

the plants’ developmental stage and the severity of the drought stress are determinant for the observed 

response (Skirycz et al., 2011b; Ma et al., 2014) and mutants surviving better under severe stress are not 

performing better when measuring rosette growth under milder drought (Skirycz et al., 2011b).  

To increase the probability of validating a certain in vitro-identified process under drought, 

controling stress levels and duration is of crucial importance, particularly when studying short-term 

stress responses – it, nevertheless, forms a considerable challenge. In progressive drying soil setups, 

which are more comparable to natural drought situations than sudden dehydration assays, the stress 

level can easily be confounded with the duration of stress exposure, as stress levels and duration increase 

simultaneously (Fig. 2). Moreover, when soil is dried out progressively, it is unclear at which level of soil 

humidity the stress response will be activated, and different processes are likely to be induced when 

different thresholds in soil humidity are reached. 

To capture short-term drought responses during non-lethal drought stress, the following setup 

can be used. First, seedlings should be grown under controlled well-watered conditions, in sufficiently 

large pots, and the soil humidity of each pot should be measured and adapted daily, manually or via the 

use of automated drought platforms, as detailed in Granier et al. (2006) and Skirycz et al. (2011b). The 

well-watered treatment should be maintained until the seedling or organ of interest almost reaches the 
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desired developmental stage (e.g. before leaf emergence if the aim is to study leaf growth, before 

flowering if one aims to study flowers, etc) (Fig. 2). At this time point, progressive drying of the soil can 

start and should be, from the start, accompanied by a detailed time-course analysis with high-resolution 

phenotypic, physiological and transcript- or protein-level measurements. From the moment drought 

triggers small phenotypic changes, the soil humidity during the drought treatment should be kept 

constant. The time-course experiment can then still be continued for several days, without confusion 

between stress duration and stress severity. If one aims to study very young Arabidopsis seedlings upon 

moderate drought, another technique is to transfer young seedlings directly to pots with dry soil (Clauw 

et al., 2016). This technique is easily applicable for young seedlings (with short roots), although special 

care should be taken to not stress the seedlings during the transfer itself. These approaches can be 

followed by expression analysis to validate the responsiveness of the gene of interest to drought, and by 

phenotypic measurements of wild-type and the mutant (Fig. 2). 

Finally, because in-vitro-to-drought translation of specific genes or pathways appears to be 

difficult, e.g. regarding the shoot growth inhibition, another relevant approach is to perform gene 

discovery directly under soil-based drought. The setup described here-above can be combined with 

transcriptomics, proteomics or phosphoproteomics to discover new regulators or effectors of short-term 

drought responses. In such large-scale studies, the challenge is to pinpoint genes linked to the studied 

phenotype. Genes involved in classical drought responses, such as ABA, ROS or proline, are omni-present 

in drought stress datasets, even when the drought is mild (Baerenfaller et al., 2012; Clauw et al., 2015; 

Clauw et al., 2016; Dubois et al., 2017). Nevertheless, these processes are not necessarily linked to the 

studied phenotype. Possible approaches to distinguish key phenotype-related genes from the overall 

drought response include the comparison of the genome-wide response in wild-type vs. a mutant affected 

in the studied phenotype, or in multiple accessions differently affected in it. Alternatively, genes/proteins 

that are not related to the phenotype can be filtered out if they show the same differential response in a 

context not related to the phenotype (e.g. a different organ, or the same organ in a different 

developmental stage). Finally, if the phenotype is quantifiable the dynamics of the phenotype and the 

transcriptome/proteome can be integrated to find possible positive (correlating with phenotype) or 

negative (anti-correlating) regulators. Most likely, mathematical modeling approaches will be necessary 

to get insights in these extremely complex responses. 

Conclusions and perspectives 

Over the last decades, in vitro osmotic stress setups have evolved as reliable and user-friendly alternative 

to drought for imposing a lower water potential to plants. As compared to drought, plate-based methods 

offer the possibility to apply a stable stress level for a long period, enabling the study of long-term 

acclimation mechanisms. Additionally, by exposing plants to in vitro osmotic stress only at a desired stage 

during development and subsequently measuring the response at multiple time points upon stress, the 
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short-term phenotypic effects and pathways governing it can be deciphered. Unraveling these short-term 

responses is of great importance to understand, and in the future possibly improve, the plants’ response 

to drought: they form the connection between the drought perception and the long-term drought 

acclimation. Consequently, mutants in early responses such as Ca2+ or ROS signaling, are more sensitive to 

osmotic stress on the long term, underscoring the importance of these short-term responses. These early 

signaling processes subsequently initiate a trigger from the root to the shoot, causing organ-specific 

responses in the aerial part within the first hour upon stress exposure. 

 In soil-based drought stress experiments, capturing these early responses is a challenge, 

particularly for the discovery of new genes involved in specific phenotypic drought responses. 

Nevertheless, some processes uncovered using in vitro stress setups were successfully translated using in 

soil drought. This is particularly true for the general stress responses, such as ABA and Ca2+ signaling, or 

osmolyte accumulation. On the contrary, the mechanisms controlling very specific responses, such as the 

inhibition of the growth of young leaves under mild stress levels, appeared to be less translatable. 

Therefore, we can conclude that osmotic stress assays are great tools for the identification of early and 

late stress-responsive genes, but that it is crucial to validate the responsiveness and function of the 

identified genes in a broader range of stresses, either by using more than one, preferable not plasmolysis-

inducing, osmotic compound or by using drought stress in soil. In this case, special care should be taken 

to develop a drought assay that is comparable to the in vitro stress in terms of stress severity and timing.  

As detailed in this review, a large number of stress-responsive pathways have been identified, but 

the precise molecular regulation of many of them forms an exciting area for future research. As such, the 

first process involved in this response, the stress sensing, is a fascinating and not yet understood 

mechanism. However, doubts can be raised as whether stress-sensing mechanisms can be unraveled by 

the use of in vitro mimics, as drying soil likely gives a different effect on the root surface than osmotic 

compound-containing, but still humid, in vitro medium. Similarly, how this stress-sensing mechanisms 

subsequently trigger cellular Ca2+ accumulation also remains elusive, although much progress has been 

booked during the last years. Another open question is the exact identity of the root-to-shoot signal under 

drought, even though many candidates were proposed. In this respect, the possibility that more than one 

signal is transported from root to shoot in order to initiate specific shoot responses, should not be 

excluded.  
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TABLE  
 
Table 1. Characteristics of commonly used osmotic stress compounds. Advantages and 

disadvantages of each compound are reported. For each osmoticum, the minimal concentration to reduce 

root and rosette size by half is given, as well as the concentration inducing severe stress symptoms, such 

as bleaching or anthocyanin accumulation in at least 20% of the plants (van der Weele et al., 2000; 

Verslues et al., 2006; Claeys et al., 2014b).  

 

  (Dis)-advantages of the compound 
Root length  

-50% 

Rosette 
area/weight 

-50% 

Severe 
symptoms 

(>20%) 
References 

PEG 
+ No compound-specific pathway reported 

-1.2 MPa ~-0.8 MPa < -1.7 MPa  
van der Weele et al., 2000 

Verslues et al., 2006  
+ Commonly used, demonstrated relevance 
- Less convenient for preparation solid medium 

SORBITOL 
+ No compound-specific pathway reported 150 mM 

(-0.36MPa) 
100 mM 

(-0.24MPa) 
300 mM 

(-0.72MPa) 
Claeys et al., 2014 

- Not commonly used, lack of information 

MANNITOL 
+/- Combined effect of biotic and osmotic stress 150 mM 

(-0.36MPa) 
25 mM 

(-0.6MPa) 
>300 mM 

(-0.72MPa) 
Claeys et al., 2014 

- Possible compound-specific response 

SALT 
+/- Combined effect of (non)-ionic osmotic stress 75 mM 

(-0.36MPa) 
50 mM 

(-0.24MPa) 
75 mM 

(-0.36MPa) 
Claeys et al., 2014 

- SOS-mediated compound-specific pathway 
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FIGURE LEGENDS 

 

Fig. 1. Overview of the osmotic stress responses over time following stress. Osmotic stress decreases 

the cellular water potential (a), which triggers internalization of the plasma membrane (b) and the 

increase of cytosolic Ca2+ levels (c). Ca2+-triggered cascades (orange) comprise activation of Ca2+-

dependent kinases and transcription factors (d). Stress also triggers cytoskeleton changes (e). Ca2+, 

cytoskeleton changes and membrane internalization are involved in the activation of RBOH enzymes (f, g 

and h). RBOH enzymes produce ROS like hydrogen peroxide (H202, red) (i), which rapidly induce 

internalization of plasma membrane intrinsic proteins (PIPs) (j). The ROS signal is transduced to the 

shoot through a ROS-wave in which RBOH enzymes are subsequently activated (k). ROS can also activate 

ACC-biosynthesis enzymes (l). This triggers the accumulation of ACC, which is possible transported to the 

shoot and triggers an ethylene response in growing leaves within 1h (m). This response causes leaf 

growth arrest and is denominated the “pause-and-stop” model, as leaf growth is first transiently arrested 

through CDKA phosphorylation (o) and later stopped by acting on the GA/DELLA pathway (p). As a 

result, leaf growth is inhibited within 24 h. In fully-grown leaves, ABA triggers closure of the stomata (r), 

which on longer term blocks photosynthesis (s). ABA also triggers further ROS generation in roots and 

leaves (n), which activates proline biosynthesis (u). ROS detoxifying mechanisms are induced to buffer 

the increasing ROS levels in shoot and root (t and y). Further dehydration also reduces leaf and root 

water content (v and z). After days of stress, ACC levels decrease again (w), while ABA and proline levels 

remain high (x). Full lines indicate activation/inhibition, dashed lines transport, and dotted lines 

evolution over time. See main text for abbreviations and references. 

 
Fig. 2. Comparison between osmotic stress assays and soil-based drought experiments. Even before 

the stress onset, osmotic stress assays in petri plates impose a very different environment to plants 

compared to soil-based experiments. In in vitro-performed experiments, plants are grown on very 

homogeneous growth medium, while in soil the local structure of the soil can be very different along one 

root. To impose osmotic stress, in vitro assays offer the advantage of a precise control of stress onset and 

of stress level. The imposed stress is homogeneous along the root and the moment at the moment at 

which the root feels the stress is clear. In contrast, when watering of soil is withheld, it is unclear when 

the plants start to perceive drought and at which moment the short-term responses should be captured. 

Consequently, short-term responses observed in vitro are hard to translate in soil, but the general 

response including Ca2+, ROS, and ABA signaling seems conserved. After a longer period of days or weeks 

upon osmotic stress or drought, the responses are more comparable in terms of phenotype and molecular 

acclimation. 
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