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A B S T R A C T

The study aimed to adapt the SHIME® model, developed to simulate human digestion and fermentation, to a
baby-SPIME (baby Simulator of Pig Intestinal Microbial Ecosystem). What constitutes a unique feature of this
model is its twofold objective of introducing an ileal microbial community and mimicking a dietary weaning
transition. This model should then be ideally suited to test the dietary weaning strategies of piglets in vitro.
Regarding the microbiota, the main phyla making up the model were Firmicutes, Bacteroidetes and Proteobacteria
although Bacteroidetes decreased after inoculation (p=0.043 in ileum, p=0.021 in colon) and Delta-
Proteobacteria were favoured (p=0.083 in ileum, p=0.043 in colon) compared to Gamma-Proteobacteria. The
designed model led to a low representation of Bacilli - especially Lactobacillus sp. in the ileum and a weak
representation of Bacteroidia in the proximal colon. However, Mitsuokella and Prevotella were part of the major
genera of the model along with Bifidobacterium, Fusobacterium, Megasphaera and Bacteroides. As a result of
weaning, two major changes - normally occurring in vivo - were detected in the system: firstly, Firmicutes di-
minished when Bacteroidetes increased particularly in the proximal colon; secondly, Bacteroides decreased and
Prevotella increased (mean value for four runs). In terms of metabolite production, while a ratio acetate: pro-
pionate: butyrate of 60:26:14 was obtained in post-weaned colon, the expected inversion of the ratio propionate:
butyrate in the post-weaned ileum was unfortunately not observed. To conclude, the so-called baby-SPIME
model meets expectations regarding the resident microbiota of the proximal colon bioreactor and the metabo-
lites produced thereof. In terms of the evolution of major groups of bacteria, the in vitro weaning process ap-
peared to be successful. However, higher concentration of butyric acid would have been expected in ileum part
of newly weaned piglets, as observed in vivo. The microbiota in the ileum bioreactor seemed in fact to act like a
pre-colon. This suggests that microbial profile in ileum bioreactor had to be improved.

1. Introduction

The use of in vitro models in animal experimentation has become an
interesting alternative which no longer needs to be demonstrated, as

seen in pig production where several of these models have been thor-
oughly developed. These are particularly well adapted to research that
focuses on the fermentability of feed ingredients (Williams et al., 2005)
or on the impact of drugs on piglet gut microbiota in the veterinary field
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(Fleury et al., 2017) for example.
Two major types of systems exist: batch models as the gas produc-

tion technique described in the works of Bindelle et al. (2007) and
(semi-)continuous models as Cositec (von Heimendahl et al., 2010); or
PolyFermS (Tanner et al., 2014); or PigutIVM (Fleury et al., 2017).
They are mimicking the colon of adult pigs except for PigutIVM that is
mimicking the colon of piglets.

Currently, none dynamic and multi-compartment model includes an
ileum fermentation portion. Yet, the ileum plays an important role in
porcine digestion. Indeed, the first – and potentially extensive - fer-
mentation of the rapidly fermentable carbohydrates occurs in this part
of the gastrointestinal tract (GIT) (Williams et al., 2005) while the di-
gestion of plant polysaccharides occurs in the colon, leading to a clear
differentiation of the microbial composition in these two digestive
compartments (Crespo-Piazuelo et al., 2018). In this way, bacteria be-
longing to the Lactobacillus and Clostridium genera are observed in the
small intestine while bacteria belonging to the Prevotella genus or to the
Ruminococcaceae family are found in the colon (Crespo-Piazuelo et al.,
2018), suggesting upgrading an in vitro model with an ileal simulation
as an interesting possibility.

Moreover, none of these in vitro models has been used to study the
transition from a lactation diet to a post-weaning diet. Weaning is a
critical period for piglets as the relatively stable microbial population
undergoes a huge modification after the introduction of solid food (Kim
and Isaacson, 2015; Konstantinov et al., 2004). Significant composi-
tional and functional differences have been reported in the microbiome
of piglets as a result of this stressful event (Guevarra et al., 2018). And
the effects of weaning seem to be higher in the ileum compared to the
colon (Tao et al., 2015). These observations encourage to attempt to

reproduce a weaning in bioreactors, including an ileum bioreactor.
Among the dynamic and multi-compartments models that are de-

veloped, the SHIME® (Simulator of Human Intestinal Microbial
Ecosystem) model (Van den Abbeele et al., 2010) can display the
functions of both ileum (i.e. abiotic factors) and colon (i.e. abiotic fac-
tors and gut microbes) simultaneously. It consists of an in vitro dynamic,
multi-compartment gastrointestinal model, which includes a stomach, a
small intestine, and three consecutive colon compartments (ascending/
transverse/descending colon) in its classic set-up that can be modified
according to the research question. After being inoculated with human
faecal microbiota, the 3 parts of the colon offer a suitable environment
for a reproducible microbial colonization of bioreactors by human mi-
crobial communities (Van den Abbeele et al., 2010).

The aim of the present study was to modify the SHIME into a baby-
SPIME model (Simulator of Pig Intestinal Microbial Ecosystem, dedi-
cated to the luminal microbiota of piglet) with a special focus on mi-
micking in vitro weaning at 28 days of age and introducing an ileal
microbiota. This model should make feasible the in vitro testing of
dietary weaning strategies for piglets.

2. Material and methods

2.1. Equipment

A SHIME® equipment (ProDigest Bvba, Gent, Belgium) as described
by Van den Abbeele et al. (2010) (Van den Abbeele et al., 2010), was
used to build the baby-SPIME model. Briefly, the SHIME system consists
of a cabinet equipped with 24 peristaltic pumps and 6 double-jacketed
bioreactors linked to a hot-water bath. All units are connected to a

Fig. 1. Schematic representation of the baby-SPIME model. It consists of three double-jacketed bioreactors (bioreactor 1: stomach/duodenum/jejunum, bioreactor 2:
ileum and bioreactor 3: proximal colon). Three times a day, the culture medium entered bioreactor 1 (stomach digestion) through liquid connections controlled by
pumps. Then pancreatic juice and bile entered bioreactor 1 (duodenum/jejunum digestion) following instructions given in the figure. The liquid was then made to
flow simultaneously toward the ileum and proximal colon until reaching a waste. The system was flushed once a day with nitrogen (N2) through the air connection
system. The bioreactors were constantly stirred and kept at 39.5 °C. Throughout the run, ileum and colon pH were checked and adjusted to fixed pH ranges.

S. Dufourny, et al. Journal of Microbiological Methods 167 (2019) 105735

2



computer designed to standardize the different parameters of the
system (temperature, pH, transfer time). The pumps provide the
transfer of culture media, pancreatic juice, bile, acid (HCl 0.5M), base
(NaOH 0.5M) and all the fermentation liquids from one bioreactor to
another during a complete run. Manual quality controls are regularly
performed to check the parameters and samples are taken 3 times a
week at fixed intervals (days and times).

Regarding the baby-SPIME model, the cabinet was divided into two
independent units containing three bioreactors as illustrated in Fig. 1.
Bioreactor 1, not inoculated, simulated the stomach and duodenum/
jejunum digestion. Bioreactors 2 and 3, inoculated with piglets' faeces,
simulated the functions of an ileum and a proximal colon, respectively.
The feeding cycle was scheduled three times a day based on a total
retention time of 14 h. During each cycle, culture media (140mL),
maintained at 4 °C, flowed into bioreactor 1 for 1 h 30min. Then,
pancreatic juice+ bile (60mL), also maintained at 4 °C, was added to
the same bioreactor for 1 hr, after which the content of bioreactors 1, 2
and 3 was made to flow simultaneously into bioreactors 2, 3 and a
waste, respectively. The flowing rates served two purposes: empty
bioreactor 1 (from 200mL to 0mL); and obtain a residence time of 4 h
and 10 h in bioreactors 2 (constant volume of 100mL) and 3 (constant
volume of 250mL), respectively. For the ileum bioreactor, the minimal
volume required was used to take into account the emptying of the
small intestine that happens in vivo, while maintaining a good fer-
mentation process in bioreactor. For the colon bioreactor, the volume
used in the SHIME model was maintained for the development of the
baby-SPIME model. The anaerobic condition of all bioreactors was
maintained by flushing with nitrogen (N2) once a day for 10min. Ad-
ditionally, they were continuously stirred (300 rpm) and kept at
39.5 °C. The pH of bioreactors 2 and 3 was continuously monitored by
pH controllers maintaining pH ranges of [6.40–6.60] in bioreactor 2
(ileum) and [5.80–6.05] in bioreactor 3 (proximal colon) by using
NaOH (0.5M) or HCl (0.5M). Four runs were managed (4 different
donors). Every run lasted 4 weeks: 2 weeks for the stabilization of the
microbiota in the lactation phase, a weaning procedure (replacement of
the culture medium), and a 2-week post-weaning phase.

2.2. Inocula and culture media

The intervention on piglets was approved by the ethical committee
of the University of Liège (ULiège, Liège, Belgium) – file n°1823 and
was in compliance with European (Directive 2010/63/EU) and Belgian
(Royal Decree of the 29th of May 2013) regulations governing the
protection of animals used for scientific purposes.

The faeces of four [Piétrain× Landrace] suckling piglets (27 days
old) free of antibiotics were used to prepare the inocula for the study.
The four samples were taken at the same farm (Walloon Agricultural
Research Centre, CRA-W, Gembloux, Belgium) with several weeks be-
tween the sampling. During transportation the faeces were kept in ice
under anaerobic conditions. A single donor was used to prepare the
inoculum for a run and a single inoculum prepared for both ileum and
colon bioreactors of the same run. The inoculum was obtained by
adding faeces to an anaerobic phosphate buffer solution (pH 7.0; 1:5,
weight: volume) and homogenizing for 10min. The filtrate was injected
simultaneously in the ileum bioreactor (5 mL) and the proximal colon
bioreactor (12.5 mL). Before inoculation, these two bioreactors were
filled with non-acidified lactation culture medium (100mL for ileum
bioreactor and 250mL for colon bioreactor) and the pH was auto-
matically adjusted in each bioreactor according to its required range.

For each run, two different culture media (lactation and post-
weaning media) were prepared drawing on the work of Molly et al.
(1993). Their composition is shown in Table 1. The culture media were
prepared in 5 L bottles and autoclaved during 35min at 121 °C. The
post-weaning medium required a special preparation in order to avoid
the clogging of feeding tubes: after heating, the medium was homo-
genized and allowed to sediment for 10min before pumping 4 L of the

supernatant as a base. Separately, 1L of the same medium was pre-
pared, autoclaved and added to the base medium ensuring that every
fraction of the various fibres contained in the post-weaning diet was
transferred. The media were stored at 4 °C and the pH was adjusted to
3.0 before using in the first bioreactor simulating the gastric conditions.

Pancreatic juice was prepared in 2 L bottles with autoclaved water.
It contained (personal communication of ProDigest) sodium hydro-
gencarbonate (2.5 g/L, VWR Chemicals, Radnol, Pennsylvania, USA)
and pancreatin (0.9 g/L, ProDigest). Bile (Oxgall, 4.0 g/L, ProDigest)
was added.

2.3. Sample collection

Before adding the culture medium, a 9mL sample was taken from
the ileum and proximal colon bioreactors 3 times a week at fixed in-
tervals of days and times from the beginning to the end of the run in
order to standardize the sampling all along the run. Each collected
sample was subdivided as follows: 2 mL for microbial metabolites
analysis; 1 mL for high throughput sequencing analysis; and the re-
maining 6mL for extra potential analyses. Samples for microbial me-
tabolites analysis and high throughput sequencing analysis were cen-
trifuged for 2min at 17,000g to recover the supernatant of the first one
and the pellet of the second one, respectively. Supernatants dedicated
to metabolites analysis were filtered (0.45 μm). Samples were stored at
−20 °C until analyses were performed.

All samples were analysed for microbial metabolites because the
concentration of the metabolites detected in the samples was used to
monitor the system, ensuring that the microbiota was well stabilised for
the last day of the lactation phase (after the two first weeks of the run)
and for the last day of the post-weaning phase (the last day of the
4 weeks that ran the run).

Samples used for the microbial metabolites analysis: the two last
samples of the lactation phase and the two last samples of the post-
weaning phase were used to calculate a mean value in metabolites for
the lactation and the post-weaning phases of a run. The data shown in
the manuscript are the averages obtained from the four runs.

Samples used for the high throughput sequencing analysis: the last
sample of the lactation phase and the post-weaning phase, for the four
runs, were used to obtain the microbiota results.

2.4. Short-chain fatty acids of ileal and colon effluents (by SPME-GC–MS)

Samples were analysed for their short-chain fatty acids (SCFA)
content. The analysed compounds were acetic (C2), propionic (C3),
isobutyric (iC4), butyric (C4), isovaleric (iC5), valeric (C5) and hex-
anoic acids (C6).

The SPME-GC–MS method developed for the management of the
baby-SPIME is described by Douny et al. (Douny et al., 2019). Briefly,
25 μL of baby-SPIME samples were pipetted into a 20mL glass vial.
Forty microlitres of internal standard (2-methylvaleric acid) at a con-
centration of 0.2 mg/mL, 15 μl of 0.9M sulfuric acid and 920 μl of
culture medium were then added. For this purpose, a lactation culture
medium and a post-weaning culture medium were used to analyse the
samples taken during the lactation and post-weaning phases, respec-
tively. The mixture was vortexed and placed on the autosampler of the
SPME-GC–MS system until an analysis could be performed. SCFA were
extracted with a SPME fibre, separated on a Focus GC gas chromato-
graph (Thermo Fisher Scientific) using a Supelcowax-10 column
(30m×0.25mm, 0.2 μm) (Supelco, Bellefonte, PA, USA) and analysed
with an ion trap PolarisQ mass spectrometer (Thermo Fisher Scientific).
The agitation temperature was set at 60 °C and the extraction time at
20min.

The results given by SPME-GC–MS, in mg/L of sample, were con-
verted into mmol/L (± SEM). Ratios C2: C3: C4 were then calculated.
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2.5. 16S rRNA gene sequencing

DNA extraction and sequencing of all the samples were performed
by DNA Vision (Gosselies, Belgium) following their internal quality
SOP. DNA was extracted from frozen pellets with the DNeasy Blood &
Tissue kit according to the manufacturer's instructions Qiagen (Qiagen
Benelux B.V., Venlo, The Netherlands). DNA was quantified and qua-
litatively assessed on a NanoDrop 2000 from Thermo Scientific™ and by
PicoGreenVICTOR X3 (PerkinElmer) using the Quant-it PicoGreen
dsDNA Assay kit from Invitrogen. The 16S targeted region V3-V4 was
amplified by PCR, purified and tagged. Libraries were indexed using the
NEXTERA XT Index kit V2 from Illumina. The high throughput se-
quencing was carried out on Illumina Miseq in paired-end sequencing
(2× 250 bp) by targeting an average of 10,000 reads per sample.
Finally, the bioinformatic analysis was executed with the QIIME
(Quantitative Insights Into Microbial Ecology) software, version 1.9.0
with “Greengenes 13_8” as database and recommended parameters to
use QIIME scripts. The OTU (Operational Taxonomic Unit) table was
generated based on a 97% sequence similarity of the sequencing reads
to cluster OTUs. Only samples presenting more than 5000 reads were
used for taxonomic analysis. Similarly, samples with the same nor-
malized number of reads were used for the beta diversity analysis.

The results were expressed in relative abundance – a percentage of
the total bacteria (± SEM).

2.6. Statistical analysis

A paired t-test was applied to the short-chain fatty acids results (sum
of SCFA, C2, C3, iC4, C4, C5, C6) first to compare ileum vs colon
samples in each phase and then to compare lactation vs post-weaning
phase samples in ileum and colon bioreactors.

Iso-valeric acid data did not follow a normal distribution; a non-
parametric Kruskal-Wallis test was used following the same comparison
modalities.

For the 16S rRNA gene sequencing results, alpha diversity statistical
analysis was based on a non-parametric t-test (Monte Carlo

permutations to calculate p-value) comparing groups of samples two by
two. Beta diversity statistical analysis was done at different levels of the
taxonomy classification to detect differences in read abundances be-
tween groups of samples. The non-parametric Kruskal-Wallis test used
for this purpose gave a p-value (K-W p-value) that was subsequently
adjusted using the Benjamini-Hochberg FDR procedure for multiple
comparisons (FDR p-value).

A p-value between 0.01 and 0.05, or equal to 0.05, was considered
statistically significant. A p-value between 0.05 and 0.1, or equal to 0.1,
was considered a trend. Otherwise, a p-value higher than 0.1 was
considered not significant (ns).

3. Results

3.1. Alpha-diversity of the microbial ecosystem

The results of the alpha-diversity (Shannon and observed OTU) are
given in Table 2. No statistical difference was evident except between
the inocula and the lactation phase samples. The Chao 1 index of the
proximal colon samples showed an increasing statistical trend (344
lactation phase vs 446 post-weaning phase).

3.2. Taxonomy of the microbial ecosystem at the end of the lactation phase

3.2.1. Phyla – classes - families
At the phyla level of the bacterial taxonomy, Firmicutes,

Bacteroidetes and Proteobacteria were dominant in the inocula samples
(90.9% ± 2.4). At the end of the lactation phase, the sum of these 3
phyla reached 71.7% ± 4.5 in the ileum and 76.3% ± 3.6 in the
proximal colon (Additional file – Table 1), with Bacteroidetes (class of
Bacteroidia) being significantly diminished in both bioreactors (from
32.6% ± 1.8 in inocula to 13.0% ± 3.2, p= .043, in the ileum and
12.8% ± 1.1, p= .021, in the proximal colon). In this phylum,
[Paraprevotellaceae] family was less abundant in the ileum bioreactor
than in the proximal colon bioreactor (respectively 0.0% ± 0.0 and
0.1% ± 0.0, p= .043). The Muribaculaceae (S24-7) family tended to

Table 1
Composition of the culture media.

Ingredients Lactation culture medium Post-weaning culture medium

Mucin (Sigma-Aldrich, St-Louis, Missouri, USA) 6.0 g/L 6.0 g/L
Protéose-peptone n°3 (BD Bacto Biosciences, Franklin Lakes, New-Jersey, USA) 1.0 g/L 1.0 g/L
Potato starch (Sigma-Aldrich, St-Louis, Missouri, USA) 1.0 g/L 1.0 g/L
L-Cysteine hydrochloride (Merck, Darmstadt, Germany) 0.2 g/L 0.2 g/L
Nuklospray yoghurta (Dumoulin, Andenne, Belgium) 8.0 g/L 0.0 g/L
Post-weaning diet for pigletsb (ABZDiervoeding, Nijkerk, The Netherlands) 0.0 g/L 8.0 g/L

g/L: grams per litre.
a Commercial complementary milk replacer feed for piglets containing, among others, whey powder, vegetable oils and wheat flour.
b Grinded to particles of 250 μm Composition: Barley (30.00%), Wheat (14.41%), Maize (5.00%), Oat flakes (5.00%), Toasted soybeans (15.00%), Soya meal

(13.87%), Potato protein (2.00%), Bread flour (5.00%), Soya oil (0.36%), Fat filled whey powder (4.67%), Chalk (1.05%), Monocalciumphosphate (1.01%), Salt
(0.54%), Methionine (0.16%), L-lysine HCL (0.47%), L-threonine (0.11%), Lysine/tryptophan mix (0.02%), Flavoring (0.20%), Vitamins (0.40%), Start/BL.15CU
(premix containing Cu, Fe, Zn, Mn, Se, I and vitamins A, B2, B3, B5, D3, E, K3; 0.40%), Phytase (0.33%).

Table 2
Alpha-diversity results.

Index Inocula Lactation phase Post-weaning phase Effect of weaning

Ileum Prox. colon p Ileum Prox. colon p p

Shannon 6.66a 4.52b 4.58b 0.01 4.91 4.92 ns ns
Observed OTU 783c 252d 239d 0.03 281 288 ns ns
Chao 1 1196e 393f 344f 0.02 427 446 ns Ileum: ns Colon: 0.05

Analysed samples are the last sample of each phase (samples taken 2weeks after the inoculation for the lactation phase, samples taken 2weeks after the weaning
transition for the post-weaning phase), n=4 (4 runs).
p means p-value, ns means not significant, prox. means proximal.
a to f: values with different exponents within a row are statistically different.
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be less abundant in the ileum bioreactor than in the proximal colon
bioreactor (respectively 0.2% ± 0.1 and 0.7% ± 0.2, p= .083). Fol-
lowing stabilization, the Fusobacteria phylum was less abundant in the
inocula samples (1.3% ± 1.1) than in the ileum (14.4% ± 5.8,
p= .043) or the proximal colon (13.6% ± 4.4, p= .043) bioreactors.
Actinobacteria tended to be less abundant in the inocula (1.7% ± 0.9)
compared to the ileum (10.5% ± 3.2, p= .083) or the colon
(8.5% ± 2.7, p= .083). In this phylum, the Nocardiaceae family
tended to be less abundant in the ileum bioreactor than in the proximal
colon bioreactor (respectively 0.0% ± 0.0 and 0.1% ± 0.0, p= .083).

Regarding the Proteobacteria phylum, two classes were significantly
present in inocula and bioreactors, namely Gamma-Proteobacteria and
Delta-Proteobacteria (Fig. 2). Gamma-Proteobacteria were present in in-
ocula (4.4% ± 2.7), ileum (1.2% ± 0.4) and proximal colon
(1.6 ± 0.4). It included the Enterobacteriaceae family – among them the
well-known Escherichia genus. The abundance of this family in inocula
equalled 3.8% ± 2.2 of the total sample bacteria. It reached
1.1% ± 0.3 in the ileum and 1.5% ± 0.5 in the proximal colon. Delta-
Proteobacteria was represented mainly by Desulfovibrionaceae that in-
cluded Desulfovibrio and Bilophila genera. Delta-Proteobacteria tended to
be more abundant both in the ileum (2.8% ± 0.4, p= .083) and in the
colon (3.3% ± 0.4, p= .043) of the baby-SPIME model, as compared
to inocula (1.2% ± 0.6).

Included in the phyla Firmicutes, the class Bacilli showed decreasing
relative abundance from inocula (5.5% ± 2.6) to the ileum
(0.1% ± 0.1, p= .021) and the proximal colon (0.2% ± 0.2,
p= .021). Regarding specifically – within this class – the family
Lactobacillaceae, this was abundant in the inocula via Lactobacillus sp.
(4.5% ± 2.0) but it was detected – using 16S rRNA analysis – at a
maximum level of 0.1% in the ileum and the colon during the third run
(data not shown).

Verrucomicrobia, present in the model principally through
Akkermansia sp., showed no statistical difference between inocula and
bioreactors. The ileum of the first run accommodated this phylum
particularly well compared to other ileum (8.4% in the first run vs 0.2%
on average for the others runs) or colon samples (2.3% vs 0.1%, data
not shown).

3.2.2. Genera
Forty-nine genera (data not shown) with a relative abundance

higher than 0.1% were identified in the ileum or colon. These genera
represented more than 99% of the total bacteria of the model but only
64.0% of those found in the inocula. As shown in Fig. 3, these included
Mitsuokella, Fusobacterium, Prevotella, Megasphaera, Bifidobacterium,
Sharpea or Bacteroides.

3.2.3. Comparison between ileum and proximal colon
While no statistical differences in microbial composition were ob-

served at the phylum level, at the family level of the classification, some
differences could be detected. However, these differences were not
observed in the case of abundant families but among sparser families:
[Paraprevotellaceae], Nocardiaceae and Muribaculaceae (S24–7); the
latter belonging to a family with a high relative abundance in the in-
ocula (6.5 ± 2.3).

3.3. Taxonomy of the microbial ecosystem at the end of the post-weaning
phase

Regarding the phyla found at the end of the post-weaning phase of
the proximal colon (Fig. 4), the relative abundances of Bacteroidetes
increased while the relative abundances of Firmicutes and Proteobacteria
diminished, except for the second run.

At the class level (Additional file – Table 1), statistical differences
associated with weaning were detected in the ileum and proximal
colon. Regarding the ileum, Erysipelotrichi (Firmicutes) increased in re-
lative abundance (+5.0%, p= .043) and Actinobacteria (Actinobacteria)
tended to increase (+6.5%, p= .083). In the proximal colon, Gamma-
Proteobacteria (Proteobacteria) decreased (−0.9%, p= .021).

At the family level, statistical differences appeared at the end of
weaning in the ileum and proximal colon. Regarding the former,
Erysipelotrichaceae (Firmicutes) increased (+5.0%, p= .043) and
Bifidobacteriaceae (Actinobacteria) tended to increase (+6.3%,
p= .083) when Veillonellaceae (Firmicutes) tended to decrease (−6.8%,
p= .083). In terms of the colon, [Paraprevotellaceae] (Bacteroidetes)
increased (+0.1%, p= .021) while Enterobacteriaceae (Proteobacteria)
and Veillonellaceae (Firmicutes) decreased or tended to decrease
(−0.9%, p= .021 and −9.6%, p= .083, respectively).

3.4. Metabolites results

The SCFA profile of each sample was observed in order to confirm
the stabilization of the system at the end of the lactation phase and at
the end of the post-weaning phase in order to exploit the last 2 samples
of each phase. Results of the metabolites through the SCFA are given in
Table 3.

During the lactation phase, the total SCFA concentration tended to
be higher (p=0.098) in the ileum (67.3 ± 2.4mM) compared to that
of in the proximal colon (62.9 ± 3.3mM). A trend value (p=0.053)
was observed on acetic acid (33.5 ± 2.7mM in ileum vs
30.1 ± 1.8mM in proximal colon).

The weaning in the ileum and the proximal colon was statistically
perceptible on isovaleric acid concentrations (p= 0.021) seen by a
drop from 2.1 ± 1.5mM in the ileum and 1.9 ± 1.0mM in the

Fig. 2. Class composition of microbiota in the inocula (pre-
pared with faeces of 4 piglets (pig)) and in the corresponding
samples of the lactation phase from ileum and proximal colon
bioreactors of the baby-SPIME model. Samples were taken
the last day of each phase (2 weeks after inoculation for
lactation phase and 2 weeks after the weaning transition).
Classes are grouped by phyla: Actinobacteria (red),
Bacteroidetes (green), Chlamydiae (yellow), Firmicutes (blue),
Fusobacteria (orange), Proteobacteria (mauve), Spirochaetes
(blue), Synergistetes (brown) and Verrucomicrobia (grey).
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proximal colon, respectively, to 1.0 ± 0.2mM in each of the two
bioreactors.

In the post-weaning samples, butyric acid concentration was sig-
nificantly higher in the ileum (8.2 ± 0.8mM) than in the proximal
colon (7.8 ± 1.0 mM; p= .026).

Regarding the general profile of SCFA, acetic acid showed the
highest concentration values followed by propionic, butyric, valeric and
hexanoic acids. Isobutyric and isovaleric acid concentrations were weak
and close to the hexanoic acid value.

In terms of proportions between acetic, propionic and butyric acids
(C2: C3: C4), weaning tended to increase the proportion of acetic acid
in the ileum (57: 28: 15 for lactation phase vs 60: 26: 14 for post-
weaning phase, p= .096 for C2) and the proximal colon (56: 29: 15 vs
60: 26: 14, respectively, p= .060 for C2).

4. Discussion

The SHIME® - an in vitro dynamic multi-compartment model dedi-
cated to human researches (Van den Abbeele et al., 2010) - is parti-
cularly well suited to be adapted to an in vitro piglet model ensuring the
presence of an ileum and allowing a weaning process to take place in

bioreactors. These two particularities constitute novelties in compar-
ison with existing models (PolyFermS and PigutIVM). Compared to the
human model, different parameters had to be adapted according to the
piglet physiology (i.e., volume, transit time, concentration of digestive
secretions and culture media …) with special attention to pH due to its
potential effect on microbiota (Ilhan et al., 2017). Indeed, the con-
straint of maintaining equal parameters in the system in order to study
the effect of the culture media on microbiota make it mandatory to fix
the pH ranges for the lactation as well as post-weaning phases. A pH of
6.5 was chosen for the ileum, and a pH of 5.9 for the proximal colon
(Snoeck et al., 2004a). Define parameters for the retention time was
also not easy in these particular conditions. They were set considering
the constraints of an in vitro digestion model regarding the data from
the literature (Davis et al., 2001; Snoeck et al., 2004b).

The bioreactors were inoculated with a preparation that contained
the faeces of a suckling piglet. Faeces from 4 piglets were used to study
and establish the present model. Each donor, originating in the same
farm but different litters (time and space), allowed starting an in-
dividual run. This represented a constraint due to variations that occur
in the microbiome between animals of the same age and involving
variations in the microbial ecosystem of baby-SPIME. But it has been

Fig. 3. Genera composition of microbiota in the ileum and proximal colon at the end of the lactation phase (samples taken 2 weeks after inoculation)

Fig. 4. Phyla composition of microbiota in the proximal colon at the end of the lactation phase (samples taken 2weeks after inoculation) and at the end of the post-
weaning phase (samples taken 2weeks after weaning transition).
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shown that same age groups share more similarities than animals of
different ages (Isaacson and Kim, 2012). This feature was a deliberate
choice as it offered the opportunity to study metabolic and microbial
activities linked to a specific individual in the future. This can be
considered as an advantage of the baby-SPIME model as compared
against PigutIVM, i.e. the in vitro piglet model validated using a pool of
faeces from 8 weaned piglets.

4.1. Introducing an ileum in an in vitro dynamic model

Based on the microbiota observed in the ileum and colon of the
model, it can be concluded that Firmicutes, Bacteroidetes and, to a lesser
extent, Proteobacteria were the main phyla present, in agreement with in
vivo observations (De Rodas et al., 2018; Kim and Isaacson, 2015; Niu
et al., 2015; Pajarillo et al., 2014). Indeed, according to the literature,
Firmicutes and Bacteroidetes can make up 90% of the total bacteria, a
fact confirmed by the in vitro model developed by Fleury et al. (Fleury
et al., 2017). The baby-SPIME did not reach this level mainly due to the
presence of Fusobacteria.

Recent work on piglet intestinal microbiota (De Rodas et al., 2018)
revealed that Firmicutes are represented by Clostridia and Bacilli, the
former found in high relative abundance in the colon and the latter in
high relative abundance in the ileum. Moreover, in this study Bacter-
oidetes, through Bacteroidia, were also an important class but less
dominant in the ileum than in the colon. Baby-SPIME led to similar
observations, but two major discrepancies were also observed. Firstly,
the relative abundance of Bacteroidia in the colon of baby-SPIME was
weak compared to the results observed in vivo in the colon by the team
of De Rodas et al. (De Rodas et al., 2018) - closer to 13% rather than
35%. Li et al. (2019) also observed more Bacteroidetes in the colon. The
explanation of the lack of Bacteroidetes in the proximal colon bior-
eactors can probably be found in the use of Oxgall bile (Begley et al.,
2005; Islam et al., 2011) without a dialysis module. Secondly, the re-
lative abundance of Bacilli was also weak in vitro, and this point affected
particularly the ileum profile where the relative abundance of Bacilli
reached a value of only 0.1% in the baby-SPIME. Regarding the parti-
cularities of Bacteroidia and Bacilli relative abundances, the ileum and
the proximal colon of baby-SPIME were quite comparable in terms of
microbial populations, and quite similar to the profiles expected in the
colon of piglets. Despite everything, the model seems to accurately
reflect well expectations set forth in the literature, such as for example,
the higher presence of E. coli found in the ileum vs that found in the
colon (Zhao et al., 2015) as we observed with our qPCR results (data
not shown). The ileum bioreactor seemed so to play the role of a pre-
colon, suggesting the necessity to improve its microbial composition.

In light of the weakness of some bacterial population belonging to
Bacilli class, including populations such as Lactobacillus spp.,in ileum
compared to in vivo studies (Pieper et al., 2008), the culture conditions
could be improved. These culture conditions seemed suitable to ensure
the presence of hardly cultivable bacteria, such as Akkermansia muci-
niphila (van der Ark et al., 2018) at least during one run. But they did

not seem suitable to sufficiently promote the growth of bacteria of high
interest such as Lactobacillus spp. in any run. As proposed by several
authors (Fleury et al., 2017; Tran et al., 2016; Van den Abbeele et al.,
2012), adding a solid substrate of mucin to replicate the intestinal
mucin coat could help to improve the current model. Indeed, from
mucosa to the lumen, each microorganism populates its niche helped by
favourable ecological and food conditions, especially in a segment
where retention time is high (Fonty and Chaucheyras-Durand, 2007). In
all likelihood, the solid mucin substrate could give a more accurate
representation of the in vivo process of development of Lactobacillus spp.
(Van den Abbeele et al., 2012). It would also contribute to better dif-
ferentiate the ileum from the colon. Similarly, as seen in the work of
Tran et al. (Tran et al., 2016), the solid mucin environment would
probably allow counterbalancing the proportions of Gamma-Proteo-
bacteria and Delta-Proteobacteria in order to yield an even more realistic
model. In addition, the new balance between bacterial populations
achieved with a solid mucin environment would probably contribute to
improve the relative abundance of Bacteroidia in the colon of baby-
SPIME.

Regarding Actinobacteria, Fusobacteria and - to a lesser extent -
Verrucomicrobia, they were more abundant in the baby-SPIME model
than in vivo. Their relative abundances were variable from one run to
another. Therefore, in future runs, it will be difficult to predict the
profile they will develop in the bioreactors after the stabilization of the
microbiota. Indeed, relative abundance by the end of the stabilization
period could be low or high and could be assimilated to individual
variations of the system. Fusobacteria, present through Fusobacterium,
particularly held our attention. They are common in the gastrointestinal
tract of human and animals (De Witte et al., 2017; Krieg et al., 2010)
and can be more abundant in the microbiome profile of captive animals
rather than in wild breed due to the composition of their feed (Wang
et al., 2016). Perhaps the culture medium can partially explain the
overabundance of this bacterium in the model.

To discuss the results observed at a lower level of the classification,
Mach et al. (2015) hypothesized the existence of two clusters in piglet's
microbiota in vivo: Ruminococcaceae on the one hand and Prevotella on
the other. After weaning, the cluster Ruminococcaceae is enriched with
Treponema while the Prevotella cluster is enriched with Mitsuokella
(Mach et al., 2015). Interestingly, in the baby-SPIME model, the mi-
crobiota seemed to evolve from the Ruminococcaceae cluster in the in-
oculum to the Prevotella cluster for lactation and weaning stages. In-
deed, the inoculum is enriched in Ruminococcaceae while lactation and
post-weaning phases are enriched with Mitsuokella and Prevotella, two
important genera of the model with Fusobacterium, Bifidobacterium
Megasphaera and Bacteroides among others. The Ruminococcaceae
cluster is more adapted to lactation periods because it includes bacteria
capable of digesting free milk oligosaccharides. At the opposite end, the
Prevotella cluster, since it is better adapted to the degradation of com-
plex dietary polysaccharides, appears to derive more advantages from
post-weaning diets. Perhaps cluster evolution could originate from the
ability of Prevotella to degrade the glycoprotein of mucin in a mucin-

Table 3
Short-chain fatty acids (SCFA) contained in baby-SPIME samples.

SCFA Lactation phase Post-weaning phase Effect of weaning

Ileum Proximal colon p Ileum Proximal colon p p

Total SCFA 67.3 ± 2.4 62.9 ± 3.3 0.098 66.3 ± 6.5 61.4 ± 9.3 ns ns
Acetic acid 33.5 ± 2.7 30.1 ± 1.8 0.053 35.4 ± 3.9 32.2 ± 5.9 ns ns
Propionic acid 16.5 ± 2.2 15.5 ± 2.0 ns 15.2 ± 2.5 14.0 ± 3.2 ns ns
Isobutyric acid 0.6 ± 0.2 0.6 ± 0.1 ns 0.5 ± 0.1 0.5 ± 0.1 ns ns
Butyric acid 8.5 ± 0.3 8.3 ± 0.9 ns 8.2 ± 0.8 7.8 ± 1.0 0.026 ns
Isovaleric acid 2.1 ± 1.5 1.9 ± 1.0 ns 1.0 ± 0.2 1.0 ± 0.2 ns On ileum: p= 0.021; On colon: p= 0.021
Valeric acid 5.0 ± 0.7 5.0 ± 0.7 ns 4.9 ± 1.2 4.6 ± 1.3 ns ns
Hexanoic acid 1.1 ± 0.4 1.5 ± 0.4 ns 1.1 ± 0.4 1.3 ± 0.3 ns ns

Concentrations in mmol/L of sample ± SEM, n=4, p means p-value, ns means not significant.
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enriched environment (Pajarillo et al., 2014 quoting both Wright et al.
2000 and Rho et al. 2005). The culture media of the baby-SPIME model
being very rich in mucin (6.0 g/L on a total of 16.2 g/L of ingredients),
could explain the evolution of the system toward the Mitsuokella/Pre-
votella cluster.

Finally, another prospect in the use of the model consists to sys-
tematically perform qPCR analyses on specific bacterium as E. coli be-
cause the only 16S rRNA data barcoding appeared not to be sufficient to
quantify or to follow bacteria present in low proportions.

4.2. Ensuring a weaning stage in bioreactors

Weaning in bioreactors generally causes Firmicutes to decrease when
Bacteroidetes increase, without leading to an inversion of the ratio as
observed in vivo (Pajarillo et al., 2014). This is mainly seen in colon
bioreactors and is contingent on the ability of Bacteroidetes to degrade
complex carbohydrates (Thomas et al., 2011; Wang et al., 2016). But
one of the 4 runs did not confirm this (both Firmicutes and Bacteroidetes
increased) and the reasons remain unclear since the quality control
mechanisms of the system appear to be working properly. Gamma-
Proteobacteria decreased from the steady-state lactation to the steady-
state post-weaning phases, as seen in vivo across ages (De Rodas et al.,
2018).

Moreover, another important bacterial modification in agreement
with in vivo weaning trials consists of a shift, in Bacteroidetes phyla,
between Bacteroides - that decreased - and Prevotella - that increased
(Pajarillo et al., 2014). This is explained in the literature by the fa-
vourable substrate for each of these bacteria: mono- and oligosacchar-
ides contained in milk products in the case of Bacteroides and hemi-
cellulose in the case of Prevotella (Kim and Isaacson, 2015 citing both
Hayashi et al., 2007 and Lamendella et al., 2011). Recent in vivo work
confirmed the significant increase of Prevotella as well as Lactobacillus
following weaning (Guevarra et al., 2018). In the baby-SPIME model,
the average relative abundance of Bacteroides was lower in the post-
weaned ileum but statistically confirmed through Bacteroides fragilis
and Bacteroides uniformis (data not shown). The average relative
abundance of Prevotella was higher in the post-weaned proximal colon
although this was not statistically confirmed.

Interestingly, the differences between the lactation and the post-
weaning microbial profiles were rather limited. This could probably be
explained by the composition of the culture medium. Indeed, the lac-
tation culture medium provided to the baby-SPIME contains a com-
plementary milk replacer feed with wheat flour and others typical post-
weaned raw materials. The provision of Nuklospray to bacteria during
the lactation phase probably led to a first shift of the microbial popu-
lations and could explain why the shift of the microbiota after in vitro
weaning is less remarkable compared to the in vivo observation (Kim
and Isaacson, 2015; Slifierz et al., 2015). It would be of great interest to
substitute part of this milk replacer feed in the medium by a milk
powder free of wheat and other typical post-weaned raw materials. It
would allow verifying the hypothesis of observing a stronger shift of the
microbiota through this strategy.

The microbial discrepancy observed in the ileum bioreactors during
the lactation phase can probably help to explain the odd SCFA profile in
the ileum of post-weaning baby-SPIME. Indeed, during the different
runs, SCFA were produced in the bioreactors. They were monitored to
determine the evolution of their profiles during trials. The profile of the
different SCFA (concentration of C2 > C3 > C4 > C5 > C6, con-
centration of iC5 > iC4 and close to the concentration of C6) and the
ratios between acetic, propionic and butyric acids were in concordance
with the literature when comparing the proximal colon of baby-SPIME
with both in vitro models (PolyFermS and PigutIVM) or with in vivo data
(Awati et al., 2006b; Kraler et al., 2015). The concentration of total
SCFA was lower in baby-SPIME than in PigutIVM but this can be ex-
plained by the composition of the culture media (16.2 g/L for all in-
gredients for the baby-SPIME culture medium vs 35 g/L of

carbohydrates and proteins for the culture medium of PigutIVM).
However, in the ileum, higher concentration of butyric acid vs pro-
pionic acid would have been expected in newly weaned piglets, as
observed in in vivo studies (Awati et al., 2006b; Kraler et al., 2015). This
confirms that microbial profile in ileum bioreactor had to be improved
even for the post-weaning phase. Three parameters that have to be
investigated concern the richness of the medium in simple carbohy-
drates (Poeker et al., 2019), the anaerobic condition of the system
(Zhao et al., 2015) and the type of inoculum - real ileal content instead
of faecal matter (Awati et al., 2006a). Improve these parameters of the
baby-SPIME model will also improve the dynamic evolution of Lacto-
bacillus spp. in the bioreactor, so important to help piglets at weaning
(Guevarra et al., 2018). Moreover, Lactobacillus - well known to meta-
bolize highly fermentable carbohydrates - seems also to play a crucial
role for the utilisation of complex carbohydrates (Guevarra et al., 2018)
increasing the interest of promoting its growth in the bioreactors.

5. Conclusions

The purpose of the study was to adapt the SHIME® model, devel-
oped for human research, to a baby-SPIME model (Simulator of Pig
Intestinal Microbial Ecosystem, dedicated to the luminal microbiota of
piglet) including an inoculated ileum in addition to the colon, and a
weaning transition in bioreactors. This adaptation would allow the
study of weaning dietary strategies. The baby-SPIME model thus de-
veloped appears to meet expectations for the proximal colon in terms of
microbial profile and the production of short-chain fatty acids. In vitro
weaning seems to be successful regarding firstly the evolution of
Firmicutes and Bacteroidetes in the proximal colon, and secondly the
evolution of Bacteroides and Prevotella. As regards the ileum bioreactor,
an obstacle has yet to be overcome especially in terms of improving the
relative abundance of the class Bacilli in the model. Testing an in-
oculation with intestinal content instead of faeces, adding a solid
mucin-environment and/or using milk powder for suckling piglets have
all been considered possible improvements to the model.
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