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Abstract 

The Application of reclaimed asphalt is becoming increasingly important in the 
European Road Network. Beside the conventional recycling options (i. e. hot asphalt 
mixtures), cold recycling has been successfully applied in numerous road structures 
within the secondary and the main road network. However, the standard design 
procedures for common pavement materials as well as the approaches for cold 
recycling differ from one country to another. The comparison of five national 
pavement design procedures shows, that different design approaches may result in 
similar pavement structures for standard road materials (here: hot asphalt 
mixtures). The available specifications for pavement design with cold recycled 
materials indicate generally a surplus of thickness compared to standard structures. 
This varying surplus in thickness indicates different safety conditions applied in the 
analysed countries. In order to validate the existing pavement design procedures 
for cold recycling materials, two options will be followed. On the one hand 
mechanistic pavement design is applied which allows the calculation of required 
layer thicknesses. On the other hand, pavement design based on empirical values 
can be used. 
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Abstract 

Road surface state monitoring is of main concern for road infrastructure owners. 
Hence dedicated measurement campaigns using laser scanning and image analysis 
are performed on a regular basis. Yet, this type of monitoring comes at a high labor 
cost and thus it is often limited in coverage and update frequency. This paper 
proposes opportunistic sensing as an alternative approach. Using sound and 
vibration sensing in cars that are on the road for other purposes and exploiting the 
advent of cheap communication, big data, and machine learning, timely information 
on road state is obtained. Results are compared to laser scanning for spatial 
frequencies between 0.1 and 100 cycles/m showing the applicability of the method. 
Results are also used for classification and labeling of road surfaces regarding their 
effect on rolling noise. Mapping illustrates the coverage of highways and local roads 
obtained in a few months with as few as seven cars. 
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Abstract 

Road surface state monitoring is of main concern for road infrastructure owners. Hence dedicated measurement 
campaigns using laser scanning and image analysis are performed on a regular basis. Yet, this type of monitoring 
comes at a high labor cost and thus it is often limited in coverage and update frequency. This paper proposes 
opportunistic sensing as an alternative approach. Using sound and vibration sensing in cars that are on the road for 
other purposes and exploiting the advent of cheap communication, big data, and machine learning, timely 
information on road state is obtained. Results are compared to laser scanning for spatial frequencies between 0.1 
and 100 cycles/m showing the applicability of the method. Results are also used for classification and labeling of 
road surfaces regarding their effect on rolling noise. Mapping illustrates the coverage of highways and local roads 
obtained in a few months with as few as seven cars. 
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1. Introduction 

Road surface state monitoring is of main concern for road infrastructure owners. Deteriorated road surfaces lead 
to higher noise emissions, and may even cause damage to vehicles or their cargo, which in turn may lead to damage 
claims. As road surfaces degrade over time, timely maintenance is required to prevent further damage, to maintain 
safe driving conditions, and to keep vehicle noise and vibrations within limits. Road administrators therefore use 
standardized measurement methods to monitor this degradation, such as laser scanning or close-proximity (CPX) 
noise emission measurements. However, performing these measurements is time consuming and requires 
specialized equipment. Hence, typically only major roads are covered, through ad hoc measurement campaigns. 
In practice, this implies that larger road infrastructure managers, such as regional or highway authorities, carry out 
measurements at most once in a year; in many cases only the rightmost lane is covered. 
 
During the last couple of years, a number of alternative measurement methods have been developed, with the main 
goal of achieving a wider road coverage (Karlsson, 2014). A first approach is based on GPS and accelerometer 
data from smartphones, ideally attached to the dashboard of vehicles (Sattar et al., 2018). Examples of this 
approach are Nericell (Mohan et al., 2008), SRoM (Aleyadeh et al., 2015) or Roadroid (www.roadroid.com). Due 
to the large number of uncertainties related to smartphone measurements (e.g. unknown location and orientation 
of smartphone in the cabin), the accuracy obtained with this approach only allows to locate major potholes, and 
does not provide sufficient information on subtle changes in road wear, necessary for preventive maintenance. An 
alternative approach is based on the analysis of camera images performed while driving. An example of this 
approach is Sensovo (Van Geem et al., 2016), which uses dashboard cameras and accelerometers placed in regular 
vehicles. 
 
This paper presents an opportunistic sensing approach to assess pavement degradation more efficiently in terms 
of cost, ease of deployment, data quality and spatial coverage, as compared to existing methods. The proposed 
approach is based on continuous monitoring of sound and vibration in the trunk of passenger cars, using a dedicated 
on-board unit. Confounders and modifiers, such as engine noise, the noise from passengers, vehicle speed and tire 
type, are removed by exploring the abundancy of acquired data. In the following sections, the methodology is 
presented, followed by the results from a pilot project, that show that the approach allows to distinguish different 
types of roads and their degradation. 
 

2. Methodology 

Road texture can be defined as the deviation of a pavement surface from a true planar surface, and is usually 
classified according to its longitudinal wave pattern. Irregularities can be defined on a micro, macro and/or mega 
scale (ISO 10844, 2014). On the one hand, the interaction between tires and pavement causes rolling noise 
(Sandberg and Descornet, 1980). Macrotexture interacts with the tire groves, giving rise to air-pumping effects, 
whereas megatexture causes tire vibrations. On the other hand, waviness and irregularity of the road surface also 
causes car vibrations (Cantisani and Loprencipe, 2010). 
 
Within the proposed approach, sensor boxes equipped with a microphone, a tri-axial accelerometer and a GPS 
receiver are installed in the trunk of a fleet of passenger cars. For the present study, seven cars are used for a 
duration of about six months. Based on the raw accelerometer and microphone signals, 1/3-octave band spectra 
are calculated, in bands with central (temporal) frequency ranging from 1 Hz to 40 Hz for vibrations and from 25 
Hz to 4 kHz for sound, in timeframes with a duration of 20ms. Both spectra are then concatenated, per timeframe, 
into a combined vibroacoustic spectrum, using linear weighting for the three overlapping 1/3-octave bands. 
Subsequently, these geo-located features are sent over a 3G connection to a server for further processing. 
 
The response of the tire/car combination to the road surface texture obviously depends on the spatial wavelength 
𝜆, measured in m (or equivalent, the spatial frequency 𝜉  1 𝜆⁄ , measured in cycles/m) and the driving speed 𝜐 
(measured in m/s). Irregularities in road surface with a spatial frequency 𝜉 will give rise to sound/vibration at 
temporal frequency 𝑓 𝜐 ∙ 𝜉 𝜐 𝜆⁄ , when driven over at speed 𝜐. The two most important modifiers, i.e. the 
transfer function of the vehicle and the driving speed, are removed from the measurements. The car transfer 
function relates the excitation of the tire to the measurement inside the trunk of the car, and is estimated, for each 
car individually, based on a large number of trips over a wide range of road surfaces. This approximation relies on 
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the assumption that the tire excitation will be close to white noise if a random sample of the distribution of road 
surfaces, driving conditions and speeds is considered. After calibration, the estimated texture level 𝑇′′ 𝑖, 𝜆 , 
measured in dB (reference 1 μm), is obtained for every road segment 𝑖, and for a range of spatial wavelengths 𝜆. 
As speeds between 30 km/h and 120 km/h are considered, and given the range of 1/3-octave bands mentioned 
above, the present approach focuses on the spatial wavelength range between 5cm (megatexture) and 10m 
(irregularity). 
 

3. Results and discussion 

Megastructure obtained from the system has been compared with results obtained through longitudinal laser 
measurements along the track of the right wheel of a measurement vehicle operated by the Belgian Road Research 
Institute (BRRI). These measurements were performed on 9 tracks of 1 km with different pavement types and 
different uses (local roads, major roads and highways). Results are shown as a function of spatial frequency per 
1/3-octave band in Figure 1. The left pane shows the opportunistic sensing measurements T”, whereas the right 
pane shows the results directly obtained through the laser measurements Tl. 
 

 

 
Figure 1: Texture level 𝑻 (in dB, reference 1 μm), as a function of spatial frequency (calculated in 1/3-octave bands). Left: results of 
opportunistic measurements 𝑻′′ 𝒊,𝝀 , right: laser measurements 𝑻𝒍 𝒊, 𝝀 . Results are shown for a range of road segments with different 
types of surfaces: dense asphalt concrete (A, B, C, D, F, H, I), stone mastic asphalt (G) and concrete plate pavement (E). 

 
The laser measurements show a peak at 1 cycle/m which is due to resonance of the suspension of the measurement 
vehicle. Measurements close to 100 cycles/m made by the opportunistic method cannot be trusted due to the 
contact surface of the car tire. The outlier road stretch E is obvious in both measurements and corresponds to a 
rather old concrete plate pavement. At high frequencies, the laser measurements give a slightly lower texture 
amplitude due to a painted bicycle section that coincides with the laser measurement line. Road stretch G, a 
recently resurfaced stone mastic asphalt (SMA) on a local road, has a rather smooth megastructure at high 
frequencies, clearly visible in both measurement methods, but also has a higher low frequency irregularity due to 
its foundation, again clearly visible in both measurements. Road stretch D is a worn dense asphalt concrete (DAC) 
on a local road with high megastructure due to raveling and alligator cracks, visible in both measurements. A 
similar observation can be made about the DAC on road stretch I, a secondary road. The highway measurements 
A, B, and C show larger differences. For segments A and B, the opportunistic measurement approach indicates a 
stronger megastructure than the laser measurements, particularly in the range 2 to 30 cycles/m. On highway stretch 
C, the megastructure amplitude estimated with the opportunistic method is lower than that estimated with the laser 
method. However, it should be noted that road stretch C covers a bridge with joints at set distances that are clearly 
influencing the laser method more strongly. Based on this comparison, it could be concluded that the opportunistic 
method is a valuable alternative for classifying road surfaces according to their megastructure. For spatial 
frequencies below 1 cycle/m, the comparison is also good, but the laser measurements cannot be regarded as a 
good reference measurement in this frequency range as they might be influenced by the dynamics of the 
measurement vehicle. 
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As stated in the introduction, the opportunistic measurement method has the advantage that large amounts of data 
can be gathered at a relatively low cost. With approximately 7 cars of people living in the Ghent area, equipped 
with the measurement device, a good coverage could already be obtained for all major roads in the Ghent area in 
about three months. The amplitude in dB (ref 1mm) of the road structure at different wavelengths is shown in the 
maps of Figure 2. The maps also contain a classification of road segments according to the rolling noise an average 
vehicle would produce while driving on these roads. The road noisiness label is defined based on the sum of 
differences in dB over the 1/3-octave bands 350 Hz to 1250 Hz (David et al., 2019). 
 

 

 
Figure 2: Examples of maps obtained from the opportunistic sensing method in the city of Ghent (clockwise from top right): megastructure 
level at 𝝀 𝟎.𝟏𝐦, at 𝝀 𝟎.𝟓𝐦, at 𝝀 𝟐.𝟓𝐦, and the road nosiness class. 

 

4. Conclusions 

Monitoring road pavement and foundation classically requires a large effort and therefore is not repeated very 
regularly and/or only on the primary roads. This paper introduced an opportunistic sensing method that is based 
on noise and vibration measurement on board vehicles that are on the road anyhow, combined with big data 
analysis. The presented approach makes use of small, dedicated sensor devices (microphone, accelerometer, GPS) 
placed in the trunk of vehicles, close to the rear wheel base, sturdily attached to the vehicle frame with well-known 
3D accelerometer axes orientation. It is shown that, with the presented approach, the megastructure amplitude 
obtained corresponds to single-line laser measurements sufficiently good for a first classification to be a useful 
indicator of road surface state. At the same time a classification of road pavements with respect to their influence 
on rolling noise is obtained. 
 
Installing the dedicated devices requires more initial effort than simply using smartphone apps (e.g. Roadroid), but 
once installed, the approach is effortless, as compared to current state-of-the-art measurement techniques such as 
laser scanning, which require dedicated driving campaigns. The main challenge with the presented approach is to 
find suitable vehicles to cover a spatial area; one could think of vehicle fleets of car sharing or taxi companies. 
Introducing the noise and vibration equipment in cars is on the other hand less intrusive and requires less 
maintenance than previously developed systems based on visual inspection (Van Geem et al., 2016). When 
compared to smartphone-based approaches, observations are obtained with a significantly higher continuity and 
reliability. Furthermore, thanks to the location of the microphone close to the wheel base, tire-road noise can be 
analyzed next to 3D acceleration, hereby significantly increasing the spatial frequency range (i.e. down to spatial 
wavelengths of 5cm). 
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Future work will include adding an expert system based on data driven machine learning to identify and localize 
specific road defects such as potholes, alligator cracks, etc. In a later stage, also an expert system can be added, 
which provides guidance to select the best road remediation approach, based on the measured state of the road 
pavement. 
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