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Abstract: Agricultural intensification has stimulated the economy in the Guayas River basin in 
Ecuador, but also affected several ecosystems. The increased use of pesticides poses a serious threat 
to the freshwater ecosystem, which urgently calls for an improved knowledge about the impact of 
pesticide practices in this study area. Several studies have shown that models can be appropriate 
tools to simulate pesticide dynamics in order to obtain this knowledge. This study tested the 
suitability of the Soil and Water Assessment Tool (SWAT) to simulate the dynamics of two different 
pesticides in the data scarce Guayas River basin. First, we set up, calibrated and validated the model 
using the streamflow data. Subsequently, we set up the model for the simulation of the selected 
pesticides (i.e., pendimethalin and fenpropimorph). While the hydrology was represented soundly 
by the model considering the data scare conditions, the simulation of the pesticides should be taken 
with care due to uncertainties behind essential drivers, e.g., application rates. Among the insights 
obtained from the pesticide simulations are the identification of critical zones for prioritisation, the 
dominant areas of pesticide sources and the impact of the different land uses. SWAT has been 
evaluated to be a suitable tool to investigate the impact of pesticide use under data scarcity in the 
Guayas River basin. The strengths of SWAT are its semi-distributed structure, availability of 
extensive online documentation, internal pesticide databases and user support while the limitations 
are high data requirements, time-intensive model development and challenging streamflow 
calibration. The results can also be helpful to design future water quality monitoring strategies. 
However, for future studies, we highly recommend extended monitoring of pesticide 
concentrations and sediment loads. Moreover, to substantially improve the model performance, the 
availability of better input data is needed such as higher resolution soil maps, more accurate 
pesticide application rate and actual land management programs. Provided that key suggestions for 
further improvement are considered, the model is valuable for applications in river ecosystem 
management of the Guayas River basin. 

Keywords: pesticide dynamics; Guayas River basin; agricultural intensification; Soil and Water 
Assessment Tool; data scarcity; freshwater ecosystem management 
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1. Introduction 

Agricultural intensification in South America is leading to severe pollution of the river 
ecosystems by pesticides [1–3]. An example of this is the Guayas River basin in Ecuador wherein key 
ecosystems are at risk due to an increased application of pesticides. The current intensification of the 
human activities within the basin (agriculture, fishery, hydropower and industry) is a severe threat 
to the aquatic ecosystem and causes the impairment of many important ecosystem services, including 
habitat provision (affecting biodiversity), water provision and the safety of potable water [4–6]. 
Moreover, the changes in tillage practices negatively affected pesticide adsorption and have caused 
an increasing degradation of soils. Reported effects of pesticides in surface water are the reduction of 
activity and reproduction and biomass of aquatic organisms [7]. The use of pesticides in developing 
countries is especially of concern because of weak legislation, the use of highly hazardous pesticides 
and the lack of adequate information [8,9]. The reduction of the current anthropogenic pressure on 
freshwater resources requires the development and application of effective tools that provide insight 
into pollutant transport, even under data-poor conditions. Computer models, simulating the system’s 
hydrology, sediment transport and ultimately pesticide dynamics can be of use in this situation. 

There is a wide variety of models simulating surface water pesticide concentrations, ranging 
from simple, data-driven tools to complex watershed models [10,11]. These models differ in scale, 
model complexity, input data requirements and spatial and temporal output detail [12]. Studying the 
effect of pesticide application on water quality at the watershed scale requires a long-term 
hydrological watershed model that includes a land use and management module and provides 
sufficient spatial detail [13]. The flows simulated by the hydrological model can be used to estimate 
pesticide transport and dilution processes, at a temporal resolution that captures the dynamic 
character of pesticide concentrations. Such a model allows an extensive analysis of a given system, 
enabling to pinpoint major polluting sources, priority areas, main transfer pathways and data gaps. 
Moreover, it allows an assessment of water quality parameters (e.g., distributed pollutant fluxes) and 
provides valuable insights for monitoring campaigns [14]. It also allows comparing different 
scenarios (e.g., best management practices and land use) and supports cost–benefit analyses [11,15]. 
Hence, these models are valuable tools to get an understanding of system functioning and to support 
decision making. Especially in developing countries, the application of these models can be beneficial 
to provide insights into the spatial and temporal impact of pesticide application on ecosystems. 
However, data scarcity in many developing countries hinders the simulation of pesticide dynamics. 
Therefore, the aim of this study was to investigate whether these watershed models have the potential 
to provide valuable insights into the pesticide dynamics under data scarcity. 

To answer this question, a benchmarking study of potentially useful non-point source pollution 
watershed models was carried out (see Section 2 and Section A.1., Tables A1 and A2 in 
Supplementary A). As a result, the Soil and Water Assessment Tool (SWAT) was considered as 
potentially suitable for a simulation of the pesticide dynamics in the Guayas River case study. The 
SWAT literature database [16] shows that 79 papers dealing with pesticide simulations were 
published between 1998 and 2018. In this study, the model was applied to simulate pesticide fate in 
the Guayas River basin, the largest watershed and main agricultural region in Ecuador. We 
investigated: (1) the main data gaps of the basin; (2) the ability of SWAT to reflect the hydrologic 
processes in the basin; and (3) opportunities and limitations of the model to simulate pesticide 
dynamics under data scarcity. 

2. Materials and Methods 

2.1. Study Area 

Due to its size, high agricultural productivity and economic contributions, the Guayas River 
basin is the most important watershed of the coastal region in Ecuador. It has a drainage area of 
approximately 34,000 km2 and a population of 4.8 million inhabitants [17,18]. The basin is located in 
the central, western part of the country (Figure 1a) and is characterised by a wide variation in 
elevation, ranging 0–6310 m a.s.l. wherein 46% of the basin’s surface is lower than 200 m a.s.l. [19]. 
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The basin has a humid tropical climate with a rainy season from December to May with an average 
annual precipitation of 1849 mm. The mean precipitation during the rainy season is 1130 mm [19] 
and the mean temperature varies between 22 and 27 °C [20]. The two main tributaries of the basin 
are the Daule and Babahoyo Rivers, forming the Guayas River at their confluence. The average 
discharge at the outlet of the basin is 974 m3൉ sିଵ [21]. The soil types of the basin consist of 23% loam, 
20% clay loam, 15.3% sandy loam and 41.6% other types (e.g., heavy clay, sand and sandy loam). In 
the northern part of the basin, a dam is constructed at the Daule River (Figure 1b, Point 1). This dam, 
named Daule Peripa, is built for hydropower generation, irrigation, drinking water and river control 
purposes [17]. 

Being the most productive agricultural region in Ecuador (providing 70% of the national crop 
production), the watershed is indispensable for the country’s economy [19]. The most produced crops 
in Ecuador (sugar cane, banana, palm oil, cacao, rice and corn) are cultivated on the numerous arable 
lands and plantations of the basin (Figure 1b). Maize represents 11.50% of total land use cover of the 
basin, followed closely by rice (9.34%), cacao (9.19%), cane (3.45%) and banana (3.02%). As this 
intensification in agricultural production is promoted by the Ecuadorian government, ecosystem 
management should be included in the economic growth assessment. Therefore, it is urgent to 
improve the knowledge about these pressures and find proper management tools to mitigate their 
negative ecological impacts. 

 
Figure 1. Location of the Guayas River basin in Ecuador (a). Land use, river network and streamflow 
stations (b). Numbers indicate the Daule Peripa Dam (1) and the main rivers, being Daule (2), Vinces 
(3), Babahoyo (4), Chimbo (5) and Guayas (6). Letters indicate the streamflow stations, being Baba 
dam (A), Quevedo en Quevedo (B), Zapotal en Lechugal (C), Vinces en Vinces (D) and Daule en La 
Capilla (E). 

The agricultural intensification in the basin leads to the application of numerous pesticides. In 
particular, banana and rice plantations were identified as the major sources of pesticide pollution in 
water [1] while almost no pesticides are applied to cacao and palm. Only two pesticides were selected 
to simulate their dynamics. This selection was first based on prior estimated importance (risk of 
polluting the surface water). This risk was estimated in consultation with local river managers and 
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farmers. Moreover, the analysis results of a sampling campaign (cf. Section B.1. in Supplementary B) 
gave an indication of which pesticides are both frequently applied throughout the basin and have the 
characteristics (e.g., solubility and decay rate) to persist in the water phase. The second criterion for 
the pesticide selection was the availability of application data. These data were scarce (see Section 
B.1.–B.4. in Supplementary B) but there were sufficient available application data for two 
(pendimethalin and fenpropimorph) of the six abundant pesticides. 

2.2. Tools to Simulate Pesticide Dynamics 

In the presented research, a benchmarking study was conducted to select an appropriate model 
to simulate the pesticide dynamics in the Guayas River basin. The tools that were reviewed are 
Annualized Agricultural Non-Point Source (AnnAGNPS) [22], Hydrological Simulation Program—
FORTRAN (HSPF) [23], MIKE SHE [24] and SWAT (Soil and Water Assessment Tool) (see details in 
Section A.1. in Supplementary A). A useful feature of AnnAGNPS is the ability to identify the 
contribution of land or reach components to the output loadings (source accounting) [25]. However, 
its limitation is the routing of the loads to the watershed outlet before simulating the next day. 
Furthermore, no groundwater flow is simulated and the precipitation is considered to be 
homogeneously distributed throughout the study area. In addition, the documentation of the tool is 
limited [15,25]. Although AnnAGNPS has a reservoir compound, management options are not 
available. HSPF simulates interaction between the spatial units by routing the output of one unit to 
the next one downstream, where it is subject to the processes of that unit, instead of routing it 
immediately into a reach segment [10]. HSPF allows the implementation of impervious land zones, 
making it an attractive tool to model the influence of urbanisation [26]. The major disadvantage of 
the tool is its complexity, being highly demanding with respect to expertise, available data (e.g., 
hourly precipitation inputs) and calibration efforts [11,27]. In addition, reservoirs are treated the same 
as channel reaches and no reservoir management options are available [28,29]. MIKE SHE uses a 
distributed structure by dividing the watersheds into rectangular or square grids, each consisting of 
several horizontal layers [24]. This structure, combined with detailed process descriptions and multi-
dimensional flow equations, makes the developed model computationally and data intensive. The 
advantages of MIKE SHE are the broad range of agricultural practices and water control structures 
that can be simulated [30] and the possibility of flexible reservoir management implementations by 
means of user-defined functions in the MIKE 11 module [31] while the disadvantages are its 
complexity and the occurrence of numerical instabilities [26]. Although holding several 
disadvantages such as the requirement of numerous parameters, no spatial linkage between the 
subunits and the routing of only one pesticide per simulation, SWAT was assessed to be the better 
option. The reasons for this selection are its flexibility, the opportunity for further development (open 
source, both the software and the source code), the semi-distributed approach, the scale of 
application, its continuous development by the USDA-ARS and its worldwide user and developer 
community (see Section A.1. in Supplementary A) [32,33]. 

2.3. Soil and Water Assessment Tool 

SWAT represents the watershed by spatially explicit subbasins, further subdivided into lumped, 
non-interacting Hydrologic Response Units (HRUs). HRUs are the unique combinations of land use, 
soil and slope within a subbasin. Simulations consist of two main parts: a land phase and a routing 
phase. During the land phase, the daily loadings of water and pollutants are calculated for each 
subbasin. In the second phase, which is the routing phase, these loadings are routed via the main 
channel network to the outlet of the basin. With respect to pesticide fate, first, the amount available 
for transport is calculated considering a certain application efficiency, wash-off and degradation. 
Subsequently, pesticides are transported to the channels via surface runoff and lateral flow to the 
stream channels. Surface runoff or overland flow is generally considered to be the most important 
transport route [34–37]. During runoff events, pesticides are transported both in solution and 
attached to sediment particles. The detachment and entrainment of particles, also called soil erosion, 
is caused by the combined effect of rainfall impact and runoff flow. Where the fraction of pesticides 



Water 2020, 12, 696 5 of 21 

 

transported in the dissolved phase mostly dominates, the transfer via erosion is non-negligible for 
pesticides with a high adsorption capacity [15,38]. Additionally, rapid pesticide transfer via drains 
can cause temporary peak concentrations in small streams [39,40]. During the routing phase, solid–
liquid partitioning, settling and degradation processes are simulated. Next to the water 
concentration, the fraction adsorbed to the sediment is important as well. Sediments can be an 
important sink of contamination, thereby slowing down degradation rates and forming a secondary 
source [41]. Groundwater pollution is less common but can persist longer [42,43]. In this study, 
pesticide transport via groundwater was not implemented. The implementation technique of 
important processes is indicated in Table A1 and extensive theoretical documentation is provided by 
Neitsch et al. [44]. For this study, the ArcGIS interface of SWAT was used [45]. This GIS interface 
facilitates the pre-processing of input data, the determination and calibration of model parameters 
and the visualisation and analysis of model outputs [46]. 

The number of SWAT applications is extensive (Table A2), as is their diversity [32]. Pesticide-
related studies include the simulation of pesticide transport and fate [35,47–50], comparison of best 
management practices [51–53], land use change analysis [42] and climate change research [54]. These 
studies illustrate that SWAT is a useful and versatile tool for pesticide simulations for large-scale 
watersheds. However, a challenge that was encountered by multiple studies is to obtain reliable data 
on pesticide practices. Fohrer et al. [50] stressed the importance of having detailed data on application 
timing but underlined the difficulty to obtain these data. To cope with this, the authors recommended 
varying the date of application throughout the basin. Alternatively, pesticide application rate (AR) 
and timing can be considered as calibration parameters [47,48]. A second challenge is to obtain 
pesticide concentration data [42,51]. These challenges explain why, at the moment, the applications 
are almost completely concentrated in developed countries. Only seven pesticide applications in 
developing countries were found, simulating pesticide fate in small watersheds [47,48,55–59]. 

2.4. Model Inputs and Setup 

Table 1 provides an overview of the used model input data. The digital elevation model (DEM) 
(see Figure C1) was used to define the stream network and delineate the subbasins of the watershed. 
To improve this process, the river network was “burned” into the DEM, as recommended by Luo et 
al. [60]. Important during this step is the choice of the threshold drainage area. This is the minimum 
drainage area required to form the “origin” of a stream and it determines the degree of detail of the 
delineation [61]. In addition, it affects the spatial resolution of the input data. A threshold of 3% 
(102,000 ha) of the total watershed area was chosen, following the suggestions of Jha et al. [62]. In 
total, 29 subbasins were delineated with an average area of 1092 km2. With respect to the subdivision 
of the subbasins, only two slope classes were used in order to avoid the generation of a too large 
number of HRUs. The limit between the two classes was arbitrarily set at 10%. The HRU thresholds 
were chosen to be 5% for land use and 20% for soil and slope, as suggested in the SWAT tutorial. 

A satellite image-based classification of land cover, developed by MAGAP [63], was used to 
differentiate land use in the SWAT model setup. Agricultural land (69%) was the most important 
land use next to native forests (15.3%), urban (2.9%) and shrub vegetation (2.7%). Based on the land 
cover data, agricultural land was further differentiated into nine classes of cultivated crops, wherein 
the most important crops are maize, rice and sugar cane. Parameterisation of land use and cultivated 
crops was taken from the SWAT crop database (see Figure C2). As information on pesticide 
application practices within the basin is scarce, these data were compiled via farmer consultation and 
interviews, agricultural guidelines and by using a national database of registered products (see Table 
B1–B3 and Section B.1. in Supplementary B). Due to data scarcity and the consultation of only a 
limited number of farmers, the resulting application schedules simplify the reality and thus include 
a certain degree of uncertainty. Information on the soil type was extracted from the Harmonized 
World Soil Database (HWSD) map (Table 1 and Figure C3) as the associated database contains many 
soil parameters required by SWAT. The methods to obtain the remaining parameters are presented 
in Table C1. Studies that used similar methods are presented by Nielsen et al. [64] and Stehr et al. 
[65]. To consider the effects of the Daule Peripa dam on the hydrology, properties of the dam and 
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reservoir were used as input data such as maximal and normal surface area and volume and 
minimum and maximum water level (Table C2). The remaining reservoir parameters, such as 
equilibrium sediment concentration and the hydraulic conductivity of the bottom, were set to default 
values (i.e., values suggested by the tool). As operational input, daily outflow measurements of the 
Instituto Nacional de Meteorología e Hidrología (national meteorological and hydrological institute) 
(INAMHI) were used. Besides the dam, many natural lakes are present in the basin. For the Abras de 
Mantequilla wetland, which is located in the central part of the basin, topographical data were 
available from a local survey [66]. The lakes were implemented in SWAT as ponds, being conceptual 
water bodies that aggregate the lakes per subbasin [44]. The lake area was obtained from the river 
basin map and the volume was estimated using a volume-area ratio of 2 m, which is in agreement 
with the data from the Abras de Mantequilla survey. Several other lakes are present in the river basin. 
Unfortunately, no information about the dimensions of these lakes is available. Since these lakes are 
rather small, it was assumed that the influence on the hydrologic cycle is rather limited, considering 
the size of the catchment. 

Table 1. Model input data sources for the Guayas River basin. Gaps refer to missing data in the time 
series, whereas clustered refers to measurements obtained from stations that are heterogeneously 
distributed throughout the basin. Details can be found in Section C.1. of Supplementary C. 

Name 
Resolution, Number of 

Stations 
Year/Period Source Remarks 

Digital elevation 
model 

30 m (resampled from 90 m) 2000 SRTM 1 
Post-processed 

version 4.1 

Land use 1:100,000 2014 
Geoservicios Ecuador, 

MAGAP 2 
Based on 

satellite images 

Soil 1:5,000,000 
Update of map from 1971–

1981 
HWSD 3  

River network Vector 2014 IGM 4  

Precipitation 56 km 
3-hourly time steps; daily 
average values, 1979–2013 

WFDEI 5 
Reanalysis 

product 
Temperature 20 stations Daily, 1982–2015 SENAGUA 6 Gaps, clustered 

Relative humidity 16 stations Daily, 1982–2015 SENAGUA 6 Gaps, clustered 
Solar radiation 3 stations Daily, 2003–2009 SENAGUA 6 Gaps, clustered 
Winds speed 11 station Daily, 1987–2015 SENAGUA 6 Gaps, clustered 

Potential 
evapotranspiration 

13 stations Daily, 1972–2015 SENAGUA 6 Gaps, clustered 

Discharge 5 stations Daily, 1962–2015 INAMHI 7  
1 Shuttle Radar Topography Mission [67]; 2 Ministerio de Agricultura, Ganadería, Acuacultura y Pesca 
(Ministry of Agriculture, Livestock, Aquaculture and Fisheries of Ecuador) [63]; 3 Harmonized World 
Soil Database [68]; 4 Instituto Geográfico Militar (Geographic Military Institute of Ecuador) [69]; 5 
WATCH Forcing Data methodology applied to ERA-Interim [70]; 6 Secretaría Nacional del Agua 
(National Ministry of Water)[71]; 7 Instituto Nacional de Meteorología e Hidrología (national 
meteorological and hydrological institute) [72]. 

Besides information on pesticide application, precipitation data are a key input for a reliable 
simulation of the water balance and of pesticide dynamics. As such, an accurate description of rainfall 
patterns is required. For this study, two types of precipitation data are available for the basin: in-situ 
measurement and reanalysis data. The in-situ measurements are expected to provide accurate and 
precise daily values but measurement periods, number and spatial coverage of the stations are 
limited. Especially in the mountainous region of the basin, stations are scarce. Reanalysis products, 
on the other hand, are large datasets based on analysis and interpolation of the station, forecast and/or 
satellite data [73]. These products were preferred for use in this study due to their larger spatial 
coverage, the use of one method for the whole period and the absence of data gaps. However, their 
performance is location dependent; thus, it is important to compare them with the ground station 
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data before use [74]. To do so, the measurements of 14 ground stations with data gaps smaller than 
20% during the period of 1990–2015 were compared with four reanalysis products: CFSR, CHIRPS, 
ERA-Interim and WFDEI. The reanalysis product was selected based on resolution and period by 
using four statistics (for formulation, see Section D.1. in Suplementary D), calculated on a monthly 
basis. The results of this comparison show that the WFDEI dataset corresponds the best with the 
ground station precipitation data (Table D1). Consequently, the WFDEI dataset was selected as input 
for the SWAT model. To further improve its agreement with the station data, the WFDEI values were 
multiplied by 1.32. This correction factor was obtained as an average of the 12 × 14 monthly, station-
specific correction factors: 

CFୱ୲ୟ୲୧୭୬ ୶,୫୭୬୲୦ ୨ = ∑ Ŷ୧,୫୭୬୲୦ ୨୬୧ୀଵ n∑ Y୧,୫୭୬୲୦ ୨୬୧ୀଵ n = ∑ Ŷ୧,୫୭୬୲୦ ୨୬୧ୀଵ∑ Y୧,୫୭୬୲୦୨ ୬୧ୀଵ  (1) 

where CFୱ୲ୟ୲୧୭୬ ଡ଼,୫୭୬୲୦ ୨ is the correction factor for station X for month j (-), Y෡୧,୫୭୬୲୦ ୨ is the registered 
monthly average of the total daily precipitation for month j of year i at station X (mm·day−1), Y୧,୫୭୬୲୦ ୨ 
is the WFDEI monthly average of the total daily precipitation for month j of year i in cell X (the cell 
where station X is located) (mm·day−1) and n is the total number of years for which both the station 
and the reanalysis dataset contain a precipitation value for month j (-). Alternatively, a spatially 
and/or temporally variable CF could have been applied, as was done by Monteiro et al. [73]. 
However, as no trend was observed for the CF as a function of elevation, location or month, it was 
decided to apply one constant CF. 

With respect to the air temperature, station data were used because of a poor agreement between 
the WFDEI data and the stations’ measurements. The station data indicate that the temperature is 
rather constant throughout the basin (for regions of the same elevation) but strongly dependent on 
the elevation. Therefore, five equally represented elevation bands for each subbasin were defined. 
The temperature lapse rate was calculated by linear regression between the yearly average 
temperature registered at a station and its elevation. The monthly statistics of the remaining weather 
variables, i.e., relative humidity, solar radiation and wind speed, were calculated by station data and 
using the weather generator function to generate the daily values since the measured time series 
contained numerous gaps. 

2.5. Model Calibration 

For the calibration of SWAT for the Guayas River basin, streamflow data for 17 gauges were 
provided by INAMHI. Only five of the gauges had a percentage of data gaps smaller than 20% for 
the period from 1990 to 2015. These gauges, which are rather well-distributed throughout the basin 
(Figure 1), were used to calibrate the streamflow. An important limitation is the lack of a streamflow 
gauge at the outlet of the basin. As no sediment or pesticide concentration time series were available 
(i.e., a data scarce area), the calibration is limited to streamflow. However, pesticide concentration 
data in river water from a sampling campaign in 2016 (Section B.1. in Supplementary B) can provide 
at least minimal support for the model simulations. Manual streamflow calibration was performed 
on a monthly basis for the period 1993–2000, which is longer than the recommended minimum of 
five years. In addition, it includes dry, e.g., 1996, and wet years, e.g., 1997–1998 associated with an El 
Niño event [75]. A warm-up period of three years (1990–1992) was used to estimate initial conditions 
for soil water and groundwater storage. We decided to calibrate manually as this allows obtaining a 
better understanding of the dynamics and the effect of parameter values on the simulated 
streamflow. Nash–Sutcliffe efficiency (NSE) (Equation (2)), frequently used and recommended by 
several authors, was selected as objective function [76,77]: NSE = 1 − ∑ (Q୧୭ୠୱ − Q୧ୱ୧୫)ଶ୬୧ୀଵ∑ (Q୧୭ୠୱ − Q୭ୠୱതതതതതത)ଶ୬୧ୀଵ  (2) 
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where NSE is the Nash-Sutcliffe efficiency (-), Q୧୭ୠୱ is the observed streamflow (m3· sିଵ), Q୧ୱ୧୫ is the 
simulated streamflow (m3· sିଵ), Q୭ୠୱതതതതതത is the average value of the observed streamflow (m3· sିଵ) and n is the total number of observations (-). To avoid systematic over- or underestimation, the percent 
bias (PBIAS) (Equation (3)) was used as a second criterion during manual calibration and parameters 
that maximise NSE while minimising PBIAS were sought for. PBIAS (%） = ∑ (Q୧୭ୠୱ − Q୧ୱ୧୫)୬୧ୀଵ × 100∑ Q୧୭ୠୱ୬୧ୀଵ  (3) 

First, a preliminary selection of 11 parameters relevant to streamflow processes was composed 
based on a number of pilot runs and on the literature [15,44,78–81] (see Suplementary E). For each of 
these parameters the initial value, being a default value or value based on the pilot runs, was changed 
by 50% to assess the effect on the streamflow simulations. Subsequently, the seven most influential 
parameters were selected. This selection consists of four groundwater parameters, one parameter 
influencing actual evapotranspiration, one governing streamflow routing and the last parameter 
influencing runoff (see Table E1). A multi-site approach was used to improve the reliability of the 
large-scale model [49]. Hence, the delineated subbasins were divided into three drainage areas of the 
three main rivers (Daule, Vince and Babayoho Rivers, Figure 1). The drainage area of the Chimbo 
River, where no station is located, was joined to the adjacent drainage area of the Babahoyo River. 
Within each of these regions, the same parameter values for the different subbasins were used and 
the flow stations located the most downstream were selected for calibration. 

To evaluate the calibrated model, NSE and PBIAS (Equations (2) and (3)) were calculated on 
both a daily and a monthly basis for the calibration (1993–2000) and validation (2001–2009) period 
for each of the five selected stations (Figure 1). These daily and monthly NSE and PBIAS values were 
compared with the values for watershed-scale models recommended by Moriasi et al. [82]. As such, 
model performance was classified as “very good”, “good” and “satisfactory” when daily or monthly 
NSE values exceeded 0.80, 0.70 and 0.50, respectively. With respect to daily and monthly PBIAS, the 
model was rated as “very good”, “good” and “satisfactory” for values smaller than or equal to 5%, 
10%, and 15%, respectively. When the model performance was appointed a different rating based on 
the two statistics, the most conservative rating was used. In addition, the simulated discharge at the 
outlet of the basin was compared with the reported average value. 

2.6. Pesticide Simulation 

The aim of the pesticide simulations was to investigate the related system dynamics and model 
functioning. As no calibration of the pesticide loads could be carried out, the analysis of the results 
focuses on simulated trends instead of predicted concentrations. As such, values should be 
interpreted as relative values, rather than absolute. Pesticide applications were implemented 
according to the schedules presented in Table B2, considering the spatial variation for corn (one or 
two cultivation cycles) and rice (the application rate (AR) in Los Rios is twice the amount of the one 
in Guayas). Pesticide properties influencing the land use phase of the pesticide simulations were 
taken from the SWAT database or online databases. Default parameters values were used for the 
routing of the pesticides (Table C3). The model was run using monthly time steps, as the hydrological 
model performance was rated as unsatisfactory on a daily basis. As agricultural activities are roughly 
defined on a monthly basis, the monthly time steps are considered as an acceptable resolution. The 
year 2009 was used for the simulations, assuming that this year represents normal conditions with 
respect to pesticide transport and fate, as the average daily precipitation during this year (4 mm) is 
the median value of the yearly averages of the nine validation years. Four simulations were carried 
out: pendimethalin application practices at cornfields (Simulation 1), at corn and rice fields 
(Simulation 2) and at corn, rice and sugar cane fields (Simulation 3) and fenpropimorph application 
practices at banana and cornfields (Simulation 4). Then, the temporal and spatial variations of the 
results were analysed. The pesticide output of a subbasin, given in total load of dissolved pesticides 
transported with the streamflow, was recalculated to concentration using the simulated streamflow 
(Equation (4)). 
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C = MQ ×  S (4) 

where C the average pesticide concentration at the outlet of a subbasin for a given month (mg · mିଷ) 
or (µg · Lି ଵ), M the total simulated dissolved pesticide load at that subbasin’s outlet during that month 
(mg · monthିଵ), Q the average monthly streamflow at the subbasin’s outlet during the month (m³ ·sିଵ) and S the number of seconds in that month (s · monthିଵ). 

3. Results 

3.1 Hydrology 

The performance statistics for the model calibration and validation of streamflow are presented 
in Tables 2 and 3 respectively. The model performance on a monthly basis is assessed as very good 
during the calibration period for “Daule en La Capilla” and “Quevedo en Quevedo”. The 
performance is classified as satisfactory for “Baba dam” and “Vinces en Vinces” and unsatisfactory 
for “Zapotal en Lechugal” for the calibration period. The validation is rated as very good for “Vinces 
en Vinces” and “Zapotal en Lechugal”, as good for “Daule en La Capilla” and as unsatisfactory for 
“Baba dam” and “Quevedo en Quevedo”. It has to be noted that the difference in average registered 
streamflow during the calibration and validation period (Tables 2 and 3) is explained by the 
occurrence of an El Niño event during the calibration period. 

Table 2. Evaluation statistics with model performance assessment according to Moriasi et al. [82] and 
average registered streamflows (Qav, whole period; dry, dry season; rainy, rainy season) for the 
calibration period (1993–2000). The stations for which manual calibration was done are indicated in 
grey. NSE, Nash–Sutcliffe efficiency (Equation (2)); PBIAS, percent bias (Equation (3)); VG, very good; 
G, good; S, satisfactory; US, unsatisfactory. 

Station NSE Daily 
PBIAS 

Daily (%) 
NSE 

Monthly 

PBIAS 
Monthly  

(%) 

Qav  
(m3·s−1) Qav Dry 

 (m3·s−1) Qav Rainy 
(m3·s−1) 

Baba dam 0.26 (US) 14.84 (S) 0.71 (G) 14.48 (S) 126.21 57.39 195.31 

Daule en La Capilla 0.52 (S) −0.73 (VG) 0.82 (VG) −1.07 (VG) 411.96 255.79 561.46 

Quevedo en Quevedo 0.35 (US) 3.78 (VG) 0.80 (VG) 3.92 (VG) 260.37 92.96 430.58 

Vinces en Vinces 0.29 (US) −14.60 (S) 0.62 (S) −14.03 (S) 267.24 120.34 411.88 

Zapotal en Lechugal 0.44 (US) 15.78 (US) 0.80 (VG) 15.95 (US) 235.15 91.13 379.26 
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Table 3. Evaluation statistics with model performance assessment according to Moriasi et al. [82] and 
average registered streamflows (Qav, whole period; dry, dry season; rainy, rainy season) for the 
validation period (2001–2009). The stations for which manual calibration was done are indicated in 
grey. NSE, Nash–Sutcliffe efficiency (Equation (2)); PBIAS, percent bias (Equation (3)); VG, very good; 
G, good; S, satisfactory; US, unsatisfactory. 

Station NSE Daily 
PBIAS 

 Daily (%) 
NSE 

Monthly 

PBIAS  
Monthly 

 (%) 

Qav 
 (m3·s−1) Qav Dry 

 (m3·s−1) Qav Rainy 
(m3·s−1) 

Baba dam 0.29 (US) 18.90 (US) 0.79 (G) 18.61 (US) 91.01 26.58 155.45 
Daule en La 

Capilla 
0.45 (US) −1.34 (VG) 0.70 (G) −1.64 (VG) 220.32 113.06 327.98 

Quevedo en 
Quevedo 

0.38 (US) 21.02 (US) 0.68 (S) 20.35 (US) 199.49 45.8 357.08 

Vinces en 
Vinces 

0.61 (S) 6.07 (G) 0.87 (VG) 4.80 (VG) 184.7 50.9 312.18 

Zapotal en 
Lechugal 

0.41 (US) −2.30 (VG) 0.83 (VG) −1.99 (VG) 128 26.16 230.29 

The comparison between the observed and simulated monthly average streamflow is 
exemplified for two stations for the calibration in Figure 2. The visual comparison suggests that the 
simulated streamflow at the “Daule en La Capilla” station follows the observed trends quite well. 
This agrees with the ratings based on the monthly statistics (very good) (Table 2). However, an 
underestimation of the streamflow during low flow periods can be observed. This is also the case at 
other stations, especially at the “Baba dam” station. Despite this underestimation, PBIAS values for 
the “Daule en La Capilla” station are negative, which can be explained by the overestimation of the 
peak flow in 1998 (Figure 2a). During other years, the peak flow volume agrees well with the 
observations (in 1995 and 1996) or is underestimated (e.g., in 1993). The overestimation of the peak 
flow during the 1998 El Niño event and the underestimation of peak flows during the other 
calibration years are observed at all other stations. A last remark with respect to the monthly time 
series for the calibration period is that the slope of the recession curve is sometimes not steep enough 
(e.g., in 1998). Simulated flows at the “Zapotal en Lechugal” station fit the observations less well 
(Figure 2b), as was also pointed out by a poor PBIAS value (Table 2). This is especially because of the 
large underestimation of the peak flows, resulting in a highly positive PBIAS. Moreover, a slight 
underestimation during the low flow periods can be observed. The average simulated discharge at 
the outlet amounts to 1353, 770 and 1045 m3·s−1 for the calibration, validation and whole simulation 
periods, respectively. Especially the simulated average for the whole simulation period is close to the 
reported value of 974 m3·s−1. This gives an indication that the order of magnitude of the simulated 
flow at the tributary of the Guayas where no station is located (i.e., the Chimbo River) is realistic. 

3.2 Pesticide 

A general observation related to the pesticide simulations is the relationship between the 
simulated runoff for a certain subbasin and its pesticide output. This relationship is the most 
pronounced for subbasin outlets located directly downstream of the main cultivation area. For 
example at the “Vinces en Vinces” station that is located downstream of the main corn cultivation 
region, the pendimethalin outputs are clearly related to the simulated runoff values (Figure 3a,c). The 
absence of a pendimethalin peak in May can be explained by the long time interval after the 
application occurred. In December, moreover, no pesticide transport occurs because the precipitation 
does not exceed the 2.54 mm·day−1 threshold for wash-off of the pesticides from the crops to the soil. 
The relationship between runoff and pesticide load becomes less clear when the distance to the 
pesticide source increases. Pesticide concentration trends differ from the simulated pesticide load due 
to dilution or increased concentration effects. These effects explain the decline in concentration in 
February and the small concentration peak in May, respectively (Figure 3b,d). As such, a decrease in 
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streamflow can cause a large concentration peak even when the simulated pesticide load is rather 
low, as observed for the fenpropimorph simulations. A second aspect that is a characteristic of the 
simulation results is the seasonal variation. Pesticide outputs are maximal during the rainy season 
(mostly in February or March) and low (Daule River) or zero (Babahoyo and Chimbo Rivers) during 
the dry season. Pesticide peaks start earlier in the eastern part of the basin, where orographic effects 
cause higher and earlier rainfalls. 

 
Figure 2. Monthly time series for the “Daule en la Capilla” (a) and “Zapotal en Lechugal” (b) stations 
during the calibration period (1993–2000). 

Pesticide application practices were simulated for each land use type to identify their respective 
impact. For instance, the cultivation of corn, first, causes a widespread presence of pesticides in the 
rivers. Pendimethalin application affects all the three main rivers (Daule, Vinces and Babahoyo) with 
the highest concentrations occurring immediately downstream of the main corn cultivation region. 
Further downstream, the simulated concentrations gradually decrease because of dilution, 
degradation and diffusion processes. The maximal pendimethalin concentration was simulated at the 
“Vinces en Vinces” station. The cultivation of rice, on the contrary, has a negligible contribution to 
the simulated pendimethalin input into the rivers. This is because the simulated application to rice 
fields happens at a low rate and only during the dry season. In addition, rice is cultivated in flat areas 
and, consequently, all HRUs where rice is grown have a slope class lower than 10% (Table B4), which 
implies low runoff rates. Nevertheless, a high pendimethalin concentration was measured at the 
Babahoyo River in the middle of the rice cultivation region, which might indicate that the simulations 
underestimate the contribution of the pesticide application at rice farms. Pesticide practices at sugar 
cane farms, thirdly, have major but localised contributions to the pesticide input into the rivers. These 
are explained by the high AR and application frequency and the large fraction of HRUs with a slope 
above 10% (Table B4). There is no influence of the sugar cane practices on the simulated pesticide 
concentration in the Daule and Vinces Rivers, due to the absence of sugar cane fields in the drainage 
area of these rivers (Figure 1). With respect to the fenpropimorph application, the contribution of 
corn farms practices to the river pesticide concentrations is negligible. This is because fenpropimorph 
is (according to the available data) only applied during the dry season on corn fields. As such, the 
simulated concentrations in the Daule River are zero. This does not agree with the many observations 
in the upstream region of the Daule River during the sampling campaign (cf. [1]), which might 
indicate that the available data about the timing of fenpropimorph application at corn fields (only 
during the dry season when pesticide transport is negligible) are not correct. Another plausible 
explanation is that fenpropimorph is also applied to crops other than banana and corn, which is 
suggested by the two highest measured concentrations, both sampled in the vicinity of cocoa farms. 
The application on banana plantations has a larger contribution. Simulated fenpropimorph 
concentrations are highest upstream of the Vinces River and downstream of the Babahoyo River, 
associated with the location of the banana plantations. The simulated fenpropimorph concentrations 
are lower compared to pendimethalin concentrations, which also holds true for the measured 
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concentrations (see Supplementary B). This can be explained by the small area of the banana fields 
(Figure 1). 

 
Figure 3. Monthly average precipitation, runoff and lateral flow normalised by the subbasin area (a); 
monthly average streamflow (b); total dissolved pendimethalin load transported with streamflow 
and indication of application rate, where dotted line indicates that the application occurs only at a 
fraction of the HRUs (c); and calculated monthly average pendimethalin concentrations (d) at the 
“Vinces en Vinces” station for pendimethalin application at corn farms. 

4. Discussion 

4.1. Pesticide Dynamics in the Guayas River Basin 

Based on the results of analysing the pesticide simulations, the following implications for the 
Guayas River basin can be formulated. First, the drainage area of the Vinces river was identified as a 
critical zone that should be prioritised in future research and management. For the “Vinces en 
Vinces” station, high concentrations were simulated, which is caused by its location downstream of 
the main corn cultivation area. It was observed that the pesticide application at banana farms, located 
more upstream, affects the same catchment. Unfortunately, during the sampling campaign of 2016 
(Section B.1. in Supplementary B) only five samples were taken for this river, being insufficient to 
confirm the catchment as a risk area. Therefore, it is recommended for future campaigns to increase 
the sampling density along the Vinces River, especially in the vicinity of banana and corn fields. It is 
important to note that these conclusions are based on the simulation of the pesticide pendimethalin 
and fenpropimorph. Deknock et al. [1] analysed all pesticide detections observed in the Guayas River 
basin and concluded that soluble concentrations of pesticides mainly increased from the upstream to 
downstream the catchment. Contrary to our study, Deknock et al. [1] were not able to consider 
seasonality, which potentially affects the identification of priority zones. As such, future samples 
should be taken in other months [83], as model simulations indicate pesticide concentrations can be 
higher in months other than those considered in the study of Deknock et al. [1]. This second fact, 
being the seasonal variation of the pesticide concentrations, is, in general, a valuable insight that can 
optimise future sampling campaigns. With respect to river management, it could be used as an 
argument to impose limitations on pesticide use during the rainy season. Third, the importance of 
runoff as a transport route was confirmed by the simulations. Thus, a suggestion for river 
management is the implementation of runoff control measurements, especially at fields with a high 
slope (e.g., sugar cane farms). Fourth, the simulations gave an insight into the dominant areas of 
pesticide sources and the impact of the different land uses. However, samples should be taken at the 
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downstream region of the Babahoyo River to verify the low simulated contribution of pesticide 
application at rice farms. Additionally, as reported by Arias-Hidalgo et al. [66], the use of toxic 
pesticides within the basin should be prohibited. 

4.2. Mechanistic Modelling of Pesticide Dynamics under Data Scarcity 

This case study demonstrated that SWAT is able to sufficiently represent the hydrological 
conditions of a complex and large watershed with limited data availability. An insight into pesticide 
transport and fate could also be obtained. Unfortunately, the accuracy and precision of these pesticide 
simulations could not be estimated as calibration or validation data were not available at the 
simulated locations. As such, we suspect the accuracy and precision of the pesticide simulations are 
low. Nonetheless, the simulations show gaps in knowledge and can be used to steer future sampling 
campaigns. 

It can be concluded that the streamflow component of the model performs well on a monthly 
basis based on: (1) the satisfactory or better performance ratings for most of the stations (Tables 2 and 
3); (2) the good ratings for the station with the largest discharge (“Daule en La Capilla”); and (3) the 
fact that none of the statistics is close to the thresholds that define unacceptable model performance 
(NSE < 0 and PBIAS > 30%). The lack of data at the watershed outlet, however, impedes to estimate 
the model performance at locations more downstream than the streamflow stations. A main reason 
for the good performance is probably the good monthly performance of the WFDEI dataset. It should 
be noted, however, that the use of this dataset provides a plausible reason for the overestimated 
streamflow during the 1998 El Niño event at all stations. Indeed, the average daily corrected WFDEI 
precipitation during this year (12.6 mm) is twice as much compared to the stations (5.9 mm). This is 
due to the fact that the application of the correction factor (i.e., 1.32) to the WFDEI precipitation values 
might lead to an overestimation of the rainfall with respect to the station measurements. As the 
measured precipitation is only representative for one point (the location of the rain gauge), the 
measured value is expected to be higher than the precipitation values averaged over a whole grid 
(i.e., the WFDEI precipitation); therefore, a correction factor was used to the WFDEI precipitation 
values. The high positive percent bias (PBIAS) values that were obtained at some stations indicate an 
underestimation of the streamflow simulations. This suggests some shortcomings of the model, e.g., 
inadequate simulation of the groundwater processes. However, measurement errors might also 
contribute to the high PBIAS. The increasing trend of the streamflow registered at the “Quevedo en 
Quevedo” station, for example, might indicate some data inaccuracies (e.g., outdated Q,h-
relationships). In addition, a better balance between the NSE and PBIAS values during calibration 
might reduce the high PBIAS values. 

The calibration of the hydrological model, lastly, is challenged by the presence of a complex 
stream network, the limited availability of (spatially distributed) information and the absence of an 
outlet station. When using SWAT, the aim is to include spatial variability into the model as was done 
during model setup, e.g., with respect to land use and management. During the calibration, however, 
achieving this aim is limited by the low density of the streamflow stations network. Since it is not 
possible to calibrate each of the 29 subbasins separately, the subbasins need to be grouped into larger 
regions that are calibrated together. A question here is how to handle large areas without streamflow 
stations (e.g., Chimbo River). As it is useful to have an indication of the model performance at 
locations not used for calibration, specifically in the availability of large areas without stations, the 
number of stations used for calibration in this study was intentionally limited, in contrast to the 
approach of Neitsch et al. [84]. If data from all stations would have been used for calibration, good 
statistics for these stations could give a misleading idea of the model performance at other locations 
without stations. Therefore, the multi-site approach is considered to be a more powerful validation 
strategy than the split sample in time methodology [85]. Nevertheless, it should be noted that good 
validation statistics do not necessarily guarantee good model performance in regions where no 
station is located. To further improve the model performance, the effect of different calibration 
approaches should be investigated. For instance, the subdivision of the subbasins into different 
calibration regions and the number of stations used for calibration could be considered. The use of 
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more streamflow stations can refine the spatial variability of the model, ideally in combination with 
the collection of more data and the refinement of the delineated network, e.g., via a smaller threshold 
drainage area. Meanwhile, the arguments for not using all the stations during calibration remain 
valid. The calibration could focus on a smaller time step, in order to improve the performance at a 
smaller time scale. 

The question remains if a data intensive hydrological model is an optimal way to investigate 
pesticide pollution in data-poor regions. The development of such complex models is ambitious and 
involves a number of assumptions. Especially when data availability is low, the models are a strong 
simplification of reality. It can be argued that there is no point in simulating spatial variable and 
dynamic outputs while data limitations impede verifying the accuracy of these simulations. The use 
of alternative tools, e.g., simple screening tools that assume steady-state conditions, might be more 
appropriate in developing countries. Nevertheless, these simpler tools impede capturing the real 
pesticide dynamics or gaining an understanding of the underlying processes. As it is crucial, 
especially in developing countries where effective management decisions are urgent, to improve this 
understanding, the use of more complex hydrological tools seems legitimate. In addition, 
hydrological tools enable developing a well-performing hydrological model, in contrast to simpler 
tools. However, to unlock the full potential of the hydrological tools, monitoring efforts are 
indispensable. As such, a good balancing of monitoring and hydrological modelling efforts arises as 
an important contribution to the establishment of integrated management and thus the protection of 
valuable freshwater ecosystems. 

4.3. Case-Specific Strengths and Limitations to SWAT 

The application of SWAT for the Guayas River basin made it possible to identify case-specific 
strengths and shortcomings of the tool. A first strength is its semi-distributed structure. This balance 
among model complexity, spatial variation, data requirements and computational efficiency was 
experienced as very useful for this case study. On the one hand, it enables differentiating between 
different land use and slope classes, which are required to implement the application practices, and 
observing the effect of slope on pesticide dynamics. On the other hand, the model was experienced 
as computationally efficient, opposed to distributed models (e.g., AnnAGNPS and MIKE SHE, based 
on the benchmarking study, cf. Table A1). Moreover, these tools would require more data, which was 
already a limitation for SWAT. Compared to a lumped model that is limited to the generation of 
outputs at the outlet of a watershed, the semi-distributed model allows investigating the pesticide 
dynamics within a watershed and identifying problematic areas. The second strength of SWAT that 
was experienced during the case study is the availability of extensive online documentations, internal 
databases (e.g., pesticide properties) [48] and user support. In addition, many new tools and the 
model itself are constantly being developed [86]; however, only the ArcGIS interface tool was tested 
during this study. This interface was found to be convenient for manipulating the input data layers. 
A third strength is the possibility to implement reservoirs into the model. To end, SWAT has a broad 
range of potential applications, being, however, constrained by case-specific limitations. The main 
limitation that is often encountered during SWAT applications, certainly in developing countries, is 
the high data requirement of the tool [87]. First, the development of a physically-based, semi-
distributed model imposes high data requirements with respect to data quantity, variety, accuracy 
and precision [13]. In addition, SWAT is developed primarily with regard to application in the United 
States, implying that climate and soil databases need to be extended or adapted if used elsewhere 
[46]. Especially the objective to simulate pesticide dynamics is highly data demanding, e.g., 
necessitating a detailed application data. The second disadvantage of mechanistic models in general, 
and SWAT more specifically, is the time-intensive model development and challenging streamflow 
calibration. The model development was found to be inflexible with respect to the delineation of the 
watershed and the river network, which could not be adjusted apart from choosing another threshold 
drainage area. This limitation is in contrast with the flexibility towards the number of subbasins 
mentioned above. Because of the difficult code and a high number of parameters, expertise is 
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required to run the tool and calibrate the model [88]. Despite the importance of these limitations, 
especially the first one, SWAT enabled to obtain insights into the system functioning. 

 

4.4. Recommendations for Pesticide Monitoring and Model Developments 

This case study demonstrated that the developed model can provide useful insights into the 
system functioning. A key boundary condition for use of the model is that it is further refined and 
under continuous critical review and revision. At this stage of model development, the availability 
of sufficient qualitative data is identified as the main bottleneck for further improvements. In this 
section, specific suggestions for further data collection and model improvements are explored, 
together with alternative uses. To structure the discussion, an adapted version of the model building 
steps of Jakeman et al. [89] is used (Figure 4). 

This study applied SWAT to determine its potential in providing valuable insights into pesticide 
dynamics under data-poor circumstances. One could question whether the goal of developing or 
setting up a pesticide model is justified (Step 1). The data required to calibrate such a model are 
tedious to collect, without the limited possibility for automatisation. As such, SWAT can also be 
employed for an alternative use in water resource management, e.g., modelling of nutrients to steer 
wastewater management or refined hydrological modelling for irrigation management. SWAT can 
also serve these purposes if the model is evaluated in this context. Consequently, it is important to 
indicate that these alternative uses are available, before further tuning modelling efforts. 

The quality of the input data must be improved (Step 2). For instance, the availability of better 
data (e.g., precipitation) can enhance streamflow simulations and model calibration. Considering the 
importance of precipitation data for hydrological modelling and the limitations of both the station 
and the WFDEI datasets, it would be interesting to compare the current model performance with the 
one obtained using the stations’ data. The accuracy of the WFDEI dataset might be too low to obtain 
good performance on a daily basis. Besides, the precipitation data could potentially be improved by 
including elevation bands and accounting for orographic effects, using the methodology outlined by 
Strauch et al. [90]. Second, the available HWSD soil map is possibly outdated and has a coarse spatial 
resolution (Figure C3). In addition, measurements were not available for some of the required soil 
parameters (Table C1). As most of the hydrologic process during the land phase, e.g., evaporation 
and runoff, are influenced by soil parameters, an improvement in soil data is expected to increase the 
model performance [91]. Moreover, the collection of qualitative pesticide input data is required if a 
deeper mechanistic insight is needed. In essence, one is required to know when and where specific 
pesticides are applied. This encloses the collection of the type of applied pesticide (active ingredient), 
the application timing, application rate (AR) (i.e., kilogram of active ingredient per hectare) and 
application type (by hand or airplane). This step is as important as it is difficult to take. The gathering 
of pesticide application data is a challenging task because strict application schemes do often not 
exist, pesticide application being driven by a variety of factors [48]. In addition, farmers do not always 
keep track of the amounts they apply or do not want to share that information (personal 
communication). The collected information used in this study is associated with a high uncertainty 
because only one interview per land use was conducted, impeding to obtain spatially distributed 
information. For sugar cane, the spatial variation can be assumed to be limited as the cultivation area 
is concentrated in two regions and the farmer that was interviewed possesses one-third of the total 
sugarcane cultivation area within the basin. Besides, the interviews were conducted at big farms, so 
no information was gathered about the practices at small farms. The approximated AR suffices, 
however, to learn how the system functions. Furthermore, the accuracy of the application timing is 
less important due to the monthly time step and to the coarse model setup. This model setup makes 
that the subbasins have large times of concentration, smoothening the pesticide transfer from the 
field to the outlet of the basin out over multiple days. Nevertheless, to simulate pesticide dynamics 
at a smaller time step, more reliable information on pesticide application practices for the different 
land uses should be gathered. As such, it is suggested to standardise the survey and expand it to 
other areas in the Guayas River basin. Information on organic carbon adsorption rates can determine 
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whether the sediment layer of the river should be targeted and modelled (Step 3). More ideally, the 
sediment layer is considered by default, and monitoring schemes for measuring sediment loads are 
implemented. Not only would it greatly benefit insight in cumulated pesticide loads in the ecosystem, 
but it would also serve as a proxy for problematic areas with respect to erosion and sub-optimal soil 
management. 

 
Figure 4. Revisited model building steps to further refine the Guayas River basin SWAT model 
(adapted from Jakeman et al. [89]). For concrete suggestions for each step, the reader is referred to the 
main text in Section 4.4. 

Based on the input data and pesticide properties, specific areas should be targeted and 
additional river water and sediment samples, as well as land management (e.g., crops, planting dates, 
tillage practices and harvesting dates) that can be used for model development, should be collected 
(Step 4). Continuous monitoring (with passive samplers) during and shortly after pesticide 
application at hotspots is advised, as cumulative loads can be used to calibrate the model running at 
a resolution of one month. Following the number of adaptations in Steps 2 and 4, the model should 
be recalibrated and re-evaluated (Steps 5 and 6). Subsequent the recalibration of the model with better 
input data and when the model performance is evaluated as sufficient, management 
recommendations can be formulated and formalised in order to decrease the impact of pesticide use 
on the river ecosystem. Revisiting and evaluating the defined steps is key to further advance in 
system knowledge of the Guayas River basin. 

5. Conclusions 

In this case study, several strengths of SWAT were identified, being its semi-distributed 
structure, the availability of extensive online documentation and user support, the constant 
development of the tool and the possibility of implementing reservoirs into the model. Limitations 
are high data requirements, the time-intensive model development and challenging streamflow 
calibration. Despite being constraint by data limitations, the application of SWAT improved the 
understanding of its functioning and of the system dynamics in the Guayas River basin. However, to 
substantially improve model performance, the availability of better input data such as higher 
resolution soil maps, more accurate pesticide application rates and actual land management 
programs would be needed. The insights gained from this case study can be used to optimise future 
sampling campaigns and designate zones that require in-depth research and priority management. 
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Currently, the use of the developed model has a number of limitations. Notwithstanding, this 
research has provided a solid basis for further development and outlined a number of priorities in 
this development. Having in mind its limitations, the model can be used for the Guayas River basin 
to analyse the system’s functioning, design future hypothesis and steer future sampling efforts. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure C1: Digital 
elevation model and river network of the basin, Figure C2: Illustration of the land use reclassification, Figure C3: 
Soil types within the Guayas River basin, Table A1: Comparison of four tools to develop hydrological watershed 
models extended for pesticide modelling, Table A2: Total number and relative importance per continent of Web 
of Science studies using AnnAGNPS, HSPF, MIKE SHE or SWAT for hydrological modelling and pesticide fate 
modeling, Table B1: Application data for pendimethalin, Table B2: Application data for fenpropimorph, Table 
B3: Concentrations of active ingredient (AI) in commercial pesticide products, Table B4: Pesticide application 
timing, application rates (AR), cultivation area and slope classes for the different crops for which pesticide 
application was implemented, Table C1: Methods to obtain the required soil parameter for SWAT, Table C2: 
Available data for the Daule Peripa Dam, Table C3: Pesticide properties for fenpropimorph (F) and 
pendimathalin (P) as implemented in the model, Table D1: Statistics for the monthly average of daily 
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calibration based on pilot runs and literature. 
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