
University of Massachusetts Medical School University of Massachusetts Medical School 

eScholarship@UMMS eScholarship@UMMS 

Open Access Articles Open Access Publications by UMMS Authors 

2020-02-25 

Adaptive Evolution Targets a piRNA Precursor Transcription Adaptive Evolution Targets a piRNA Precursor Transcription 

Network Network 

Swapnil Parhad 
University of Massachusetts Medical School 

Et al. 

Let us know how access to this document benefits you. 
Follow this and additional works at: https://escholarship.umassmed.edu/oapubs 

 Part of the Bioinformatics Commons, Ecology and Evolutionary Biology Commons, Genetic 

Phenomena Commons, Genomics Commons, Integrative Biology Commons, Investigative Techniques 

Commons, and the Nucleic Acids, Nucleotides, and Nucleosides Commons 

Repository Citation Repository Citation 
Parhad S, Yu T, Zhang G, Rice NP, Weng Z, Theurkauf WE. (2020). Adaptive Evolution Targets a piRNA 
Precursor Transcription Network. Open Access Articles. https://doi.org/10.1016/j.celrep.2020.01.109. 
Retrieved from https://escholarship.umassmed.edu/oapubs/4153 

Creative Commons License 

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. 
This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in Open Access Articles 
by an authorized administrator of eScholarship@UMMS. For more information, please contact 
Lisa.Palmer@umassmed.edu. 

https://escholarship.umassmed.edu/
https://escholarship.umassmed.edu/oapubs
https://escholarship.umassmed.edu/oa
https://arcsapps.umassmed.edu/redcap/surveys/?s=XWRHNF9EJE
https://escholarship.umassmed.edu/oapubs?utm_source=escholarship.umassmed.edu%2Foapubs%2F4153&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/110?utm_source=escholarship.umassmed.edu%2Foapubs%2F4153&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/14?utm_source=escholarship.umassmed.edu%2Foapubs%2F4153&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/934?utm_source=escholarship.umassmed.edu%2Foapubs%2F4153&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/934?utm_source=escholarship.umassmed.edu%2Foapubs%2F4153&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/30?utm_source=escholarship.umassmed.edu%2Foapubs%2F4153&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1302?utm_source=escholarship.umassmed.edu%2Foapubs%2F4153&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/922?utm_source=escholarship.umassmed.edu%2Foapubs%2F4153&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/922?utm_source=escholarship.umassmed.edu%2Foapubs%2F4153&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/935?utm_source=escholarship.umassmed.edu%2Foapubs%2F4153&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1016/j.celrep.2020.01.109
https://escholarship.umassmed.edu/oapubs/4153?utm_source=escholarship.umassmed.edu%2Foapubs%2F4153&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:Lisa.Palmer@umassmed.edu


Article

Adaptive Evolution Targets a piRNA Precursor
Transcription Network

Graphical Abstract

Highlights

d Adaptive evolution produces a dominant-negative allele of

the piRNA gene cuff

d Cutoff balances interlinked canonical and non-canonical

piRNA cluster transcription

d CtBP suppresses canonical transcription of both piRNA

clusters and transposons

Authors

Swapnil S. Parhad, Tianxiong Yu,

Gen Zhang, Nicholas P. Rice,

Zhiping Weng, William E. Theurkauf

Correspondence
zhiping.weng@umassmed.edu (Z.W.),
william.theurkauf@umassmed.edu
(W.E.T.)

In Brief

Parhad et al. use cross-species

complementation to determine the

functional impact of adaptive evolution.

These studies show that adaptive

evolution of the piRNA pathway protein

Cutoff, which is required for transposon

silencing and genome maintenance,

targets interactions with conserved

canonical and non-canonical

transcription factors that regulate piRNA

precursor expression.

CtBP TRF2

C
an

on
ic

al
tra

ns
cr

ip
tio

n N
on-canonical
transcription

Cutoff
(Master regulator)

piRNA loci

Parhad et al., 2020, Cell Reports 30, 2672–2685
February 25, 2020 ª 2020 The Authors.
https://doi.org/10.1016/j.celrep.2020.01.109

mailto:zhiping.weng@umassmed.edu
mailto:william.theurkauf@umassmed.edu
https://doi.org/10.1016/j.celrep.2020.01.109
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2020.01.109&domain=pdf


Cell Reports

Article

Adaptive Evolution Targets a piRNA
Precursor Transcription Network
Swapnil S. Parhad,1,4 Tianxiong Yu,2,3 Gen Zhang,1 Nicholas P. Rice,1 Zhiping Weng,2,* and William E. Theurkauf1,5,*
1Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
2Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
3School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
4Present address: Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
5Lead Contact
*Correspondence: zhiping.weng@umassmed.edu (Z.W.), william.theurkauf@umassmed.edu (W.E.T.)

https://doi.org/10.1016/j.celrep.2020.01.109

SUMMARY

In Drosophila, transposon-silencing piRNAs are
derived from heterochromatic clusters and a subset
of euchromatic transposon insertions, which are
bound by the Rhino-Deadlock-Cutoff complex. The
HP1 homolog Rhino binds to Deadlock, which re-
cruits TRF2 to promote non-canonical transcription
from both genomic strands. Cuff function is less
well understood, but this Rai1 homolog shows hall-
marks of adaptive evolution, which can remodel
functional interactions within host defense systems.
Supporting this hypothesis, Drosophila simulans
Cutoff is a dominant-negative allele when expressed
in Drosophila melanogaster, in which it traps
Deadlock, TRF2, and the conserved transcriptional
co-repressor CtBP in stable complexes. Cutoff func-
tions with Rhino and Deadlock to drive non-canoni-
cal transcription. In contrast, CtBP suppresses
canonical transcription of transposons and pro-
moters flanking the major germline clusters, and ca-
nonical transcription interferes with downstream
non-canonical transcription and piRNA production.
Adaptive evolution thus targets interactions among
Cutoff, TRF2, and CtBP that balance canonical and
non-canonical piRNA precursor transcription.

INTRODUCTION

Transposable elements (TEs) are major genome components

that can induce mutations and facilitate ectopic recombination,

but transposons have also been co-opted for normal cellular

functions, and transposon mobilization has rewired transcrip-

tional networks to drive evolution (Ayarpadikannan and Kim,

2014; Chuong et al., 2017; Hedges and Deininger, 2007; Horváth

et al., 2017; Jangam et al., 2017; Piacentini et al., 2014). Species

survival may therefore depend on a balance of transposon

silencing and activation. The Piwi interacting RNA (piRNA)

pathway transcriptionally and post-transcriptionally silences

transposons in the germline (Biémont and Vieira, 2006; Canapa

et al., 2015; Ghildiyal and Zamore, 2009; Parhad and Theurkauf,

2019; Weick and Miska, 2014). However, how this pathway is

regulated is not completely understood.

In Drosophila, piRNAs are produced from heterochromatic

clusters composed of complex arrays of nested transposon

fragments, which appear to provide genetic memory of past

genome invaders (Bergman et al., 2006; Brennecke et al.,

2007). Adaptation to new genome invaders is proposed to

involve transposition into a cluster, which leads to sequence

incorporation into precursors that are processed into trans-

silencing anti-sense piRNAs (Khurana et al., 2011; Parhad and

Theurkauf, 2019). However, a subset of isolated transposon in-

sertions also produce sense and anti-sense piRNAs (Mohn

et al., 2014), providing an independent adaptation mechanism

and epigenetic memory of genome invaders. Expression of piR-

NAs from these loci is disrupted by piwi mutations (Mohn et al.,

2014), but Piwi-bound piRNAs map to all insertions, not just the

subset that function in piRNA biogenesis. The mechanism that

defines these ‘‘mini-cluster’’ thus remains to be determined.

In Drosophila, germline piRNA clusters and transposon mini-

clusters are bound by the RDC complex, which is composed

of the HP1 homolog Rhino (Rhi), which co-localizes with the

linker protein Deadlock (Del) and the Rai1 homolog Cutoff

(Cuff) (Chang et al., 2019; Chen et al., 2016; Le Thomas et al.,

2014; Mohn et al., 2014; Pane et al., 2011; Parhad et al., 2017;

Yu et al., 2015; Zhang et al., 2014, 2018). The three components

of the RDC are co-dependent for localization to clusters and

essential to germline piRNA production. Rhi is composed of

chromo, hinge, and shadow domains (Vermaak et al., 2005).

The chromo domain binds to H3K9me3-modified histones, and

the shadow domain binds Del, which recruits Moonshiner

(Moon) and TATA box binding protein-related factor 2 (TRF2),

promoting ‘‘non-canonical’’ transcription from both genomic

strands (Andersen et al., 2017; Le Thomas et al., 2014; Mohn

et al., 2014).

The third RDC component, Cuff, was identified in a screen for

female sterile mutations (Sch€upbach and Wieschaus, 1989) and

found to encode a homolog of the decapping exonuclease Rai1

required for transposon silencing and piRNA biogenesis (Chen

et al., 2007; Pane et al., 2011). Critical residues in the catalytic

pocket of Rai1 are not conserved in Cuff, but sidechains that

bind the RNA backbone are retained, suggesting that Cuff may

be an RNA 50 end-binding protein (Pane et al., 2011; Zhang

et al., 2014). Intriguingly, germline piRNAs in Drosophila are

preferentially produced from unspliced transcripts, and cuff

2672 Cell Reports 30, 2672–2685, February 25, 2020 ª 2020 The Authors.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:zhiping.weng@umassmed.edu
mailto:william.theurkauf@umassmed.edu
https://doi.org/10.1016/j.celrep.2020.01.109
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2020.01.109&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


A
B

C D E F

G

H

J

I

Figure 1. sim-Cuff Does Not Complement D. melanogaster cuff Mutations

(A) Genetic complementation strategy. The sim-cuff ormel-cuff genes were expressed in D. melanogaster cuffmutants using the germline-specific rhi promoter

and assayed for phenotypic rescue.

(B) Bar graphs showing number of eggs laid per female per day, percentage of eggs with two appendages, and percentage of hatched eggs produced by OrR

(wild-type [WT] control), cuffmutants, and cuff mutants expressing either mel-cuff or sim-cuff. Error bars show standard deviation of three biological replicates,

with a minimum of 500 embryos scored per replicate, except for cuffmutants and cuffmutants rescued by sim-cuff, for which average of 230 and 23 eggs were

scored, respectively.

(legend continued on next page)
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mutations significantly increase piRNA precursor splicing, and 50

cap binding by the nuclear cap binding complex (CBC) promotes

splicing. Together, these findings suggest that that Cuff com-

petes with the CBC for binding to capped cluster transcripts,

suppressing splicing and promoting piRNA biogenesis. Howev-

er, tethering Cuff to a reporter transcript increases read-through

transcription (Chen et al., 2016), consistent with suppression of

transcription termination. The molecular function for Cuff in

piRNA biogenesis thus remains enigmatic.

All three RDC genes are rapidly evolving under positive se-

lection, suggesting that adaptive evolution of the complex is

driven by a genetic conflict with the transposons the piRNA

pathway silences, but other mechanisms are possible (Blu-

menstiel et al., 2016; Lee and Langley, 2012; Parhad and The-

urkauf, 2019; Simkin et al., 2013). We previously found that

rapid evolution has modified the Rhi-Del interface, producing

orthologs that function as mutant alleles when moved across

species (Parhad et al., 2017; Yu et al., 2018). Analysis of these

cross-species incompatibilities defined an interaction be-

tween the Rhi shadow domain and Del that prevents ectopic

assembly of piRNA cluster chromatin. Crosses between

Drosophila melanogaster and Drosophila simulans, which are

sibling species, lead to hybrid sterility and are important

model for genetic control of reproductive isolation (Barbash,

2010). Significantly, sterile hybrids between these species

phenocopy piRNA pathway mutations (Kelleher et al., 2012).

Adaptive evolution of piRNA pathway genes may therefore

contribute to reproductive isolation and speciation (Barbash,

2010; Kelleher et al., 2012; Parhad and Theurkauf, 2019; Par-

had et al., 2017).

These findings also suggest that cross-species analysis of

rapidly evolving genes may provide a powerful genetic

approach to structure-function analysis. Here we apply this

approach to cuff. These studies indicate that adaptive evolution

has targeted direct or indirect interactions among Cuff, the Del-

TRF2 non-canonical transcriptional complex, and the transcrip-

tional co-repressor C-terminal binding protein (CtBP). CtBP

was first identified as a host binding partner of Adenovirus

E1A and subsequently implicated in diverse developmental

pathways and cancer (Boyd et al., 1993; Chinnadurai, 2002;

Dcona et al., 2017; Mani-Telang et al., 2007; Schaeper et al.,

1995; Stankiewicz et al., 2014). We show that Drosophila

CtBP suppresses canonical transcription from promoters in

transposon terminal repeats and from promoters flanking two

major germline piRNA clusters. Significantly, in both contexts,

activation of canonical transcription interferes with downstream

non-canonical transcription and piRNA production. Adaptive

evolution has therefore targeted interactions between Cuff

and two transcription regulators, which coordinately control

germline piRNA expression.

RESULTS

D. simulans cuff Is a Dominant Separation of Function
Allele in D. melanogaster

The heterochromatic clusters that produce germline piRNA pre-

cursors in Drosophila are bound by the HP1 homolog Rhi, which

anchors a complex containing a group of proteins that control

transcription and processing of piRNA precursors. Rhi binds

directly to Del, which recruits TRF2 through the linker protein

Moon (Andersen et al., 2017). This complex promotes non-ca-

nonical transcription from both strands. Del also interacts with

Cuff, and this Rai1 homolog suppresses cluster transcript

splicing and transcription termination. Adaptive evolution has re-

modeled an interface betweenRhi andDel that helps define clus-

ter location (Parhad et al., 2017). Strikingly, cuff,moon, and Trf2

are also evolving very rapidly (Figure S1B), suggesting that the

chromatin-bound protein complex that drives piRNA precursor

production is engaged in a genetic conflict.

Adaptive evolution, as opposed to genetic drift, is predicted to

alter functionally important domains. To determine if cuff evolu-

tion has altered functional domains, we expressed GFP-tagged

D. simulans Cuff (sim-Cuff) and GFP-tagged D. melanogaster

Cuff (mel-Cuff) in D. melanogaster cuff mutants and assayed

phenotypic rescue. Both Cuff variants were expressed using

the germline-specific rhi promoter and were integrated into the

same chromosomal location, using PhiC31-mediated transfor-

mation (Figure 1A). Direct visualization of GFP signal in egg

chambers, using identical imaging conditions, indicates that

sim-Cuff and mel-Cuff are both nuclear, and suggest that the

proteins are expressed at comparable levels (Figure 1I). Direct

analysis of protein production was not possible because Cuff

is expressed at low levels and neither fusion protein could be

detected by western blotting. However, comparable levels of

the two fusion proteins were recovered after affinity purification,

assayed using mass spectrometry (see below). The two fusion

proteins thus appear to be expressed at comparable levels. Mu-

tations in cuff lead to female sterility and production of eggs with

dorsal appendage defects, which reflect disruption of D-V

patterning in response to genome instability (Klattenhoff et al.,

2007). The mel-cuff transgene restored D-V patterning and

hatching, but the sim-cuff transgene failed to rescue hatching

or embryo patterning and was comparable with the null allelic

combination by these biological measures (Figure 1B).

To determine if sim-Cuff supports transposon silencing (Chen

et al., 2007; Pane et al., 2011), we used CapSeq (Gu et al., 2012)

and strand-specific RNA sequencing (RNA-seq) (Zhang et al.,

2012b) to assay steady-state expression of transposons and

genes. The mel-cuff transgene restored transposon silencing,

but overall transposon expression was comparable with the

null allelic combination on rescue with the sim-cuff transgene

(C–H) Scatterplots showing comparisons of RNA-seq (C and D), CapSeq (E and F), and small RNA-seq signal (G and H) for transposon families in cuffmutant or

cuff mutant expressing sim-cuff versus cuff mutant expressing mel-cuff. Each point on the scatterplots shows RPKM (long RNAs) or RPM (small RNAs) for a

transposon family in ovaries of the indicated genotype. For transposons, anti-sense piRNA abundance is plotted. Diagonal represents x = y. Points in red show y/x

> 3. p value for differences obtained using Wilcoxon test.

(I and J) Localization of GFP-tagged Cuff with respect to H3K9me3-marked chromatin in germline nuclei of cuffmutants expressing rhi promoter-drivenmel-Cuff

or sim-Cuff. Color assignments for merged images shown on top. Arrowheads and arrows denote locations of mel-Cuff and sim-Cuff foci, respectively.

Identical imaging conditions were used for all panels. Scale bar, 2 mm. Fluorescence intensities calculated across the white lines in the merged images (I) are

shown in (J).
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Figure 2. sim-Cuff Disrupts RDC Localization

(A) Localization of GFP-tagged Cuff with respect to Rhi and Del in the germline nuclei of cuffmutants expressing rhi promoter-drivenmel-Cuff or sim-Cuff. Color

assignments for merged images shown on top. Arrows and arrowheads denote locations of mel-Cuff and sim-Cuff foci, respectively. Scale bar, 2 mm.

(B–E) Scatterplots showing comparisons of RNA-seq signal (B and C) and small RNA-seq signal (D and E) at piRNA clusters in ovaries with genotypes cuffmutant

or cuff mutant expressing sim-cuff versus cuff mutant expressing mel-cuff. In (B) and (C), each point on the scatterplots shows RPKM value for a 1 kb piRNA

clusters bin. In (D) and (E), each point shows RPM value for an entire cluster. Diagonal represents x = y. p value for differences obtained using Wilcoxon test.

(F) Genome Browser view of GFP-Cuff (top) and Rhi (bottom) ChIP-seq profiles at 42AB piRNA cluster in the ovaries of cuff mutants expressing either mel-cuff

(blue) or sim-cuff (red).

(legend continued on next page)
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(Figures 1C–1F, S2B, and S2D). Surprisingly, a number of trans-

poson families were more highly expressed in cuff mutant

expressing sim-cuff than in the cuff null mutant combination (Fig-

ures S2A–S2D). Cuff is required for piRNA biogenesis, and small

RNA-seq showed that the mel-cuff transgene restored trans-

poson and cluster mapping piRNA expression (Figures 1G and

2D). We anticipated that sim-cuff would also fail to support

piRNA expression, but median transposon and cluster mapping

piRNA levels were restored to 45% and 70% of control levels by

the sim-cuff transgene, and many clusters and transposons

showed essentially wild-type piRNA profiles (Figures 1H, S2E,

2E, and S3C). The D. simulans ortholog is therefore a partial sep-

aration-of-function allele inD.melanogaster, which supports sig-

nificant piRNA expression but not transposon silencing.

Cuff, Rhi, and Del associate with peri-centromeric piRNA clus-

ters and localize to cytologically distinct nuclear foci that are

frequently adjacent to large domains of constitutive heterochro-

matin, marked by H3K9me3 (Mohn et al., 2014; Parhad et al.,

2017). Consistent with the data presented above, the control

mel-Cuff:GFP fusion localizes to foci adjacent to these

H3K9me3 domains. In contrast, sim-Cuff:GFP broadly co-local-

izes with H3K9me3 and to distinct foci embedded within these

domains (Figures 1I and 1J). To determine if sim-Cuff disrupts

localization of other RDC components, we labeled ovaries ex-

pressing the Cuff:GFP fusions for Rhi and Del (Figure 2A). Both

proteins colocalized with both mel-Cuff and sim-Cuff, indicating

that sim-Cuff recruits the RDC to bulk heterochromatin.

To assay RDC localization at the genome level, we performed

chromatin immunoprecipitation sequencing (ChIP-seq) for Cuff

and Rhi in cuff mutants expressing mel-Cuff or sim-Cuff. As

shown in the Genome Browser view in Figure 2F, the sim-Cuff

fusion shows reduced binding to the 42AB cluster relative to

the mel-Cuff control, and this is accompanied by reduced Rhi

binding. The scatterplots in Figures 2G and 2H compare Cuff

and Rhi ChIP-seq enrichment at clusters, on rescue with sim-

cuff (y axis) relative to the mel-cuff control (x axis). Rescue with

sim-cuff leads to reduced cluster binding by Cuff and Rhi across

the genome. Consistent with our cytological observations (Fig-

ures 1I, 1J, and 2A), sim-Cuff also shows enhanced binding to

two A/T rich repeats associated with constitutive heterochro-

matin (Figure S2F).

D. simulans Cuff Traps a Cluster Transcription Complex
To identify protein interactions that are altered by amino acid

substitutions in the D. simulans ortholog, we expressed GFP-

tagged sim-Cuff and mel-Cuff in wild-type D. melanogaster

ovaries, affinity-purified the fusion proteins using GFP-Trap

beads, and identified differentially bound proteins using mass

spectrometry (see STAR Methods). To quantify differences in

binding, we calculated the ratio of iBAQ values relative to the

GFP tag (Figures 3A and 3B). Under our precipitation conditions,

which do not use cross-linkers, known piRNA pathway proteins

did not co-precipitate with mel-Cuff (Figure 3A). However, Cuff

co-localizes with Del and interacts with Del in yeast two-hybrid

assays (Mohn et al., 2014). Together, these observations sug-

gest that Cuff directly interacts with Del, but binding is relatively

weak and does not survive our immunoprecipitation protocol. In

striking contrast, Del was the second most abundant protein,

following Cuff itself, in precipitates of sim-Cuff (Figures 3A and

3B). In addition, TRF2, which interacts with Del through the

Moon, was the fourth most abundant co-precipitating protein.

We did not identify Moon in sim-Cuff or mel-Cuff, as the low

molecular weight of the protein makes detection using mass

spectrometry difficult. Substitutions in the sim-Cuff protein

thus stabilize a complex with D. melanogaster Del and TRF2,

which is likely to include Moon.

These findings suggest that sim-Cuff could sequester essen-

tial piRNA biogenesis factors in stable complexes, inhibiting

function. To test this hypothesis, we overexpressed sim-Cuff in

wild-type females and assayed fertility, piRNA production, and

gene and transposon expression. Relatively modest 2.6-fold

overexpression of sim-Cuff, using the germline-specific rhi pro-

moter, did not alter fertility (Figure 1B). However, 45-fold overex-

pression of sim-Cuff, using the UASp promoter and germline-

specific nanos-Gal4 driver, induced maternal-effect lethality

and embryonic dorsal appendage defects, which are character-

istic of piRNA pathway mutations (Figures 3E and S5A). In

contrast, overexpression of mel-Cuff did not compromise hatch

rate or embryo patterning (Figures 3E and S5A). The somatic fol-

licle cells that surround the developing Drosophila oocyte ex-

press piRNAs, which are produced through a Cuff-independent

mechanism. Mutations that disrupt this somatic piRNA pathway

arrest oogenesis and lead to production of rudimentary ovaries

(Lin and Spradling, 1997). However, the phenotype induced by

sim-Cuff overexpression in the germline and soma, using an

Act5C-Gal4 driver, was identical to the phenotype induced by

germline-specific overexpression. The sim-Cuff protein thus ap-

pears to disrupt a germline-specific function.

To determine if sim-cuff overexpression disrupts transposon

silencing and piRNA biogenesis, we performed small and long

RNA-seq. These studies show that sim-Cuff overexpression dis-

rupts transposon silencing (Figure S5C) but produces only a

modest reduction in transposon and cluster mapping piRNAs

(Figure S5D). Overexpression of sim-Cuff in wild-type thus trig-

gers genetically dominant defects in fertility, transposon

silencing, and piRNA biogenesis, which are nearly identical to

the recessive defects observed on rescue of cuff mutants with

sim-cuff (Figures 1D, 1H, S5C, and S5D).

To gain insight into the molecular basis for this unusual

combination of phenotypes, we immuno-precipitated the over-

expressed sim-Cuff andmel-Cuff proteins and identified associ-

ated proteins using mass spectrometry. As observed with the

rhino promoter-driven fusions, TRF2 co-precipitated with over-

expressed sim-Cuff but not with the mel-Cuff control

(Figure S4A). In addition, CtBP consistently showed enhanced

binding to sim-Cuff relative to mel-Cuff (Figure S4A). CtBP is a

conserved transcriptional co-repressor, initially identified as an

adenovirus E1A binding protein, and subsequently implicated

(G andH) Scatterplots showing comparisons of ChIP/Input values for GFP-Cuff (G) and Rhi (H) at piRNA clusters in ovaries with genotypes cuffmutant expressing

sim-cuff versus mel-cuff. The clusters with prominent Cuff or Rhi binding (RPKM > 2) in cuff mutant with mel-cuff control were used for analysis. Diagonal

represents x = y. p value for differences obtained using Wilcoxon test.

2676 Cell Reports 30, 2672–2685, February 25, 2020



A B C D

E F

G

Figure 3. D. simulans Cuff Traps Transcription Factors and Acts as a Dominant Negative

(A–D)Mass spectrometric analysis ofmel-Cuff (A), sim-Cuff (B), Del (C), andRhi (D) binding proteins. Graphs show ratios of iBAQ value of a bound protein in a RDC

protein IP versus tag control IP ranked by ratio values. RDC components are shown in red, TRF2 and CtBP in blue.

(E) Bar graphs showing percentages of hatched eggs produced by control (w1; Sp/CyO) and flies overexpressing eithermel-cuff or sim-cuff by either nanos-Gal4

(nG) or Act5C-Gal4 (Act-Gal4) drivers. Error bars show standard deviation of three biological replicates, with a minimum of 200 embryos scored per replicate,

except for nanos-Gal4-driven sim-cuff, for which an average of 50 eggs were scored.

(F) Localization of overexpressed GFP-tagged Cuff with respect to TRF2 in the germline nuclei of Act-Gal4-driven mel-Cuff or sim-Cuff. Color assignments for

merged images shown on top. Arrowheads and arrows denote locations of TRF2 foci. Scale bar, 2 mm.

(G) Localization of overexpressed GFP-tagged Cuff with respect to Rhi and Del in the germline nuclei of Act-Gal4-drivenmel-Cuff or sim-Cuff. Color assignments

for merged images shown on top. Arrows denote locations of RDC complex foci. Scale bar, 2 mm.

Cell Reports 30, 2672–2685, February 25, 2020 2677
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Figure 4. CtBP Suppresses Canonical Transcription at piRNA Clusters

(A and B) Scatterplots showing comparisons of RNA-seq signal for transposons (A) and piRNA clusters (B) inCtBP-kd versusw-kd ovaries. TEs with more than 3-

fold overexpression in CtBP-kd versus w-kd as shown in red.

(C and D) Scatterplots showing comparisons of small RNA-seq signal for transposons (C) and piRNA clusters (D) inCtBP-kd versusw-kd ovaries. For transposon

mapping plots, only anti-sense piRNAs are shown. Red points denote piRNA abundance for TEs that are overexpressed in CtBP-kd (A). Each point on the

scatterplots shows RPKM or RPM value for a transposon family or a piRNA cluster. Diagonal represents x = y. p value for differences obtained using Wilcoxon

test.

(E) Genome Browser view of RNA-seq (top), small RNA-seq (middle), and CapSeq (bottom) profiles at 42AB piRNA cluster fromw-kd and CtBP-kd ovaries. Pol II

ChIP-seq peak in nanos-Gal4-drivenmel-Cuff ovaries marks the cluster promoter (blue). Arrows and arrowheads show the increase in canonical transcripts and

decrease in non-canonical transcripts respectively after CtBP-kd. CapSeq profiles are saturated at promoters. The peak heights of CapSeq promoters are

denoted by numbers next to the peaks.

(legend continued on next page)
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in cancer and control of developmentally regulated genes (Boyd

et al., 1993; Schaeper et al., 1995; Stankiewicz et al., 2014).

To determine if stable binding to sim-Cuff alters the distribu-

tion of these transcription factors, we immuno-localized TRF2

and CtBP in cuff mutants expressing low levels of mel-Cuff or

sim-Cuff and in wild-type ovaries overexpressing mel-Cuff or

sim-Cuff. In wild-type and cuff mutants expressing mel-Cuff,

TRF2 localized to a few large nuclear domains, which did not

overlap with RDC foci (Figures S4C and S4D). These large do-

mains may represent histone repeats, which are regulated by

TRF2 (Isogai et al., 2007). In cuff mutants expressing sim-Cuff,

in contrast, TRF2 was displaced from these large foci (Fig-

ure S4D), and in wild-type ovaries overexpressing sim-Cuff,

TRF2 colocalized with the overexpressed fusion protein (Fig-

ure 3F). Available primary antibodies did not allow direct co-

localization of TRF2 with sim-Cuff, Del, and Rhi. However, in

sim-Cuff overexpression background, sim-Cuff, Del, and Rhi

co-localize (Figure 3G). Overexpression of sim-Cuff thus drives

TRF2 into nuclear foci with the RDC. CtBP, in contrast, accumu-

lates in the nucleus but does not localize to foci, in all of these

backgrounds (data not shown). These cytological observations

suggest that sim-Cuff associates with TRF2, Rhi, and Del nuclear

foci, and with CtBP, in a distinct from, which is dispersed in the

nucleus.

CtBP Inhibits Canonical Transcription of piRNA Clusters
and Transposons
TRF2 linked to Del through Moon drives non-canonical cluster

transcription (Andersen et al., 2017). The role of CtBP in the

piRNA pathway, in contrast, has not been previously described.

CtBP null mutants are lethal (Poortinga et al., 1998), so we used

RNAi to knock down CtBP specifically in the germline. To

confirm specificity, we used three different CtBP knockdown

(CtBP-kd) lines, and a white knockdown (w-kd) control. The

VDRC KK107313 line showed the strongest knockdown effi-

ciency (Figure S6A), and the data obtained using this line are

shown. The vast majority (89.5%) of eggs produced by control

w-kd females hatch. In contrast, CtBP-kd reduced the hatch

rate to 0.5% (Figure S6B), and RNA-seq revealed significant

overexpression of 13 transposon families, but only modest

changes in gene expression, including expression of known

piRNA pathway genes (Figures 4A and S6C). This pattern is

typical of piRNA pathway mutations. However, small RNA-seq

showed that CtBP-kd produced only subtle reductions in cluster

and transposon mapping piRNAs (Figures 4C and 4D). piRNA

precursor transcripts also showed only modest reductions (Fig-

ure 4B). CtBP-kd, like sim-Cuff overexpression, thus disrupts

transposon silencing without blocking piRNA biogenesis. These

findings suggest that binding to sim-Cuff may inhibit CtBP,

contributing to dominant sterility.

Most germline piRNA clusters are transcribed from internal

non-canonical sites, but the right end of the 42AB cluster and

both ends of the 38C cluster are transcribed from canonical pro-

moters, which are marked by prominent RNA Pol II and TATA

binding protein (TBP) ChIP-seq peaks (Figures 4E, S6E, 6A,

and 6B). CtBP-kd produced relatively modest changes in total

cluster transcript and piRNA levels, but long RNA and piRNA dis-

tributions near the promoters flanking the 42AB and 38C germ-

line clusters were altered (Figures 4E and S6E). Close to the right

end of 42AB, CtBP-kd produced a significant increase in minus

strand long RNAs and piRNAs and a corresponding decrease in

long RNAs and piRNAs from both strands in regions further

downstream. A similar pattern was observed at both ends of

38C, where plus-strand long RNAs and piRNAs increased at

the left flank, while minus strand long RNAs and piRNAs increase

at the right flank (Figure S6E). To quantify these observations, we

divided the 42AB and 38C clusters into 1 kb bins and generated a

scatterplot comparing expression in each bin inw-kd and CtBP-

kd, with point size decreasing with increasing distance from the

flanking promoters (Figures 4F and 4G). For both long RNAs and

piRNAs, CtBP-kd increased expression in bins close to the ca-

nonical promoters (large points), and decreased expression in

bins away from promoters, which is driven by non-canonical

transcription (small points). In contrast, the 80F cluster lacks

flanking canonical promoters, and CtBP-kd did not change

long RNA or small RNA expression across this cluster (Fig-

ure S6F). Trf2 andmoonshiner knockdown also increase piRNAs

adjacent to the canonical promoter at the 42AB cluster, but these

knockdowns result in global reduction in non-canonical piRNAs,

including 80F cluster (Andersen et al., 2017). These findings sug-

gest that TRF2 andMoon could function with CtBP to control ca-

nonical transcription. Alternatively, non-canonical transcription

promoted by these proteins could inhibit canonical transcription.

To directly investigate the impact of CtBP on transcription initi-

ation, we usedCapSeq to quantify capped transcripts. OnCtBP-

kd, we observed a pronounced increase in capped transcripts

associated with promoters flanking 42AB and 38C clusters.

Significantly, we observed a similar increase in cuff mutant

ovaries expressing sim-Cuff (Figures 4E, 4H, and 4I). CtBP-kd

and replacement of mel-Cuff with the sim-Cuff ortholog thus

activate canonical promoters flanking 42AB and 38C, which is

associated with reduced non-canonical transcription from

downstream sequences.

Heterochromatic clusters are the major source of germline

piRNAs in Drosophila ovaries, but a subset of isolated euchro-

matic transposons function as ‘‘mini piRNA clusters’’ and are

bound by Rhi and produce sense and anti-sense piRNAs

(Figures 5A and 5B). Because transposonmobilization generates

nearly identical insertions, internal sequences cannot be

mapped to integration sites. However, Rhi spreads into flanking

unique sequences from these insertions, leading to non-canon-

ical transcription and piRNA production, resulting in a character-

istic ‘‘butterfly’’ piRNA profile. To identify these loci, we first used

paired-end genome sequencing to map all euchromatic

(F and G) Scatterplots showing comparisons of RPM values for 1 kb bins of piRNA clusters, which have RNA Pol II and TBP promoter peaks, for RNA-seq (F) and

small RNA-seq (G) inCtBP-kd versusw-kd. The bins close to promoters are shown by large circles and ones farther away by small circles. p value for differences

obtained using Wilcoxon test.

(H–K) Genome Browser views of CapSeq or RNA-seq signals at 42AB promoter for CtBP-kd versus w-kd (H) and cuffmutants expressing eithermel-cuff or sim-

cuff (I–K). (J) and (K) show RNA-seq profiles at different scales.
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Figure 5. CtBP Suppresses Canonical Transcription of Dispersed Transposon Insertions

(A and B) Genome Browser views of Rhi ChIP-seq and small RNA-seq profiles flanking dispersed transposons, Diver (A) and Blood (B), inCtBP-kd andw-kd. The

transposon insertion is shown at the top.

(C and D) Scatterplots showing comparisons of RPM values of Rhi ChIP-seq (C) and small RNAs (D), 0.5 kb upstream and downstream of new transposons in

CtBP-kd versus w-kd. The transposons insertions were identified by genomic sequencing with TEMP (Zhuang et al., 2014), and the graphs show the values for

new TEs (not present in the reference genome), which have both flanking piRNAs and Rhi signal. Red points denote expression of TEs overexpressed inCtBP-kd,

as shown in Figure 4A. p value for differences obtained using Wilcoxon test.

(E) Genome Browser view of CapSeq signal at Diver insertion in CtBP-kd versus w-kd. Arrow shows increased CapSeq signal at Diver 50 end in CtBP-kd. The

signal shows all Diver insertion mapping reads and are not specific to this insertion.

(F andG) Scatterplots showing comparisons of CapSeq signal for 1 kb binsmapping to transposons present outside clusters, (bins at 50 and 30 ends are excluded,
to remove canonical transcription peaks) forCtBP-kd versusw-kd. (F) shows sense strand and (G) shows anti-sense strand initiation. Points in red show x/y > 3. p

value for differences obtained using Wilcoxon test.
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transposon insertions and then identified the subset of insertions

with flanking Rhi ChIP-seq peaks and divergently expressed

piRNAs. Figures 5A and 5B show examples of Diver and Blood

insertions that function as mini-clusters in the control w-kd

line. In both cases, CtBP-kd reduced Rhi binding and triggered

a near collapse of flaking piRNA expression. The scatterplots

in Figures 5C and 5D summarize data for all of the new piRNA

producing insertions identified by genomic DNA sequencing,

showing that this loss of Rhi and piRNA production extends

across the genome. CapSeq shows that the loss of Rhi binding

and piRNA production is also associated with significant in-

creases in canonical transcription from promoters within the

long terminal repeats (LTRs) of the inserted elements (Figure 5E).

In contrast, transcription initiation from within the transposons,

which appears to reflect non-canonical transcription, is reduced

for both sense and anti-sense strands (Figures 5F and 5G). CtBP

thus suppresses canonical transcription from promoters linked

to clusters and euchromatic transposon insertions. In both

contexts, increased canonical transcription is associated with

reductions in both non-canonical transcription and piRNA

production.

Cuff Associates with Canonical and Non-canonical
Transcription Sites
These data, with previous studies, link Cuff to factors that regulate

canonical and non-canonical transcriptions of piRNA source loci.

Further supporting this link, ChIP-seq shows that endogenous

Cuff localizes with Pol II and TBP at canonical promoters flanking

major germline clusters and confirms that Cuff co-localizes with

Rhi and Del at sites of non-canonical transcription in the body of

piRNA clusters (Figures 6A; Figure 6B is a zoomed-in view of

the canonical transcription start in Figure 6A). Cuff, Rhi, and Del

are co-dependent for cluster binding (Chen et al., 2016; Mohn

et al., 2014). Consistent with these studies, longRNA andCapSeq

indicate that cuff mutations reduce transcription from both

strands of internal cluster sequences (Figure 6A), and ChIP-seq
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Figure 6. Role of Cuff in piRNA Cluster Transcription

(A and B) Genome Browser views at 42AB cluster. (A) Right side of the 42AB cluster, proximal to the flanking canonical promoter, showing Pol II, TBP (TATA

binding protein), Rhi, Del, and Cuff ChIP-seq, and RNA-seq and CapSeq signals. Rhi, Del, and Cuff localize throughout the clusters, while Cuff and Del also show

peaks that correspond to the flanking canonical promoter, marked by Pol II (arrow). (B) Zoomed-in view of the promoter region for all the tracks in (A). All the ChIP-

seq tracks are auto-scaled, except for input track. RNA-seq and CapSeq profiles shown in cuff mutants and cuff mutants expressing mel-cuff.
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indicates that this correlates with reduced Rhi binding to 42AB

and other germline piRNA clusters (Figures S7A and S7B). In

contrast, cuff mutants did not reduce CapSeq signal associated

with the canonical promoters flanking the 42AB (Figure 6B) or

38Cclusters (FigureS7C). However, the transcripts from these ca-

nonical promotersare terminatedshortly after initiation (Figure6B),

and tethering Cuff to the 30 end of a reporter transcript enhances

read-through transcription (Chen et al., 2016). These findings sug-

gest that endogenous Cuff suppresses termination of transcrip-

tion fromcanonical promoters flanking themajor germline clusters

but does not directly control transcription initiation from these pro-

moters. In contrast, rescue of cuff mutants with the sim-Cuff or-

tholog leads to 7.7- and 2.3-fold expression of capped transcripts

from the 42AB and 38C promoters, respectively (Figures 4I and

S7C). As CtBP-kd also increases initiation from these promoters,

we speculate that this increase is due to sim-Cuff binding toCtBP,

leading to partial inhibition.

DISCUSSION

Adaptive evolution is a hallmark of genes engaged in a genetic

conflict (Daugherty and Malik, 2012), which typically leads to

co-evolution of host-pathogen gene pairs that encode interact-

ing proteins (Elde and Malik, 2009). However, pathogens can

also produce mimics that target interactions within host defense

systems (Daugherty and Malik, 2012), raising the possibility that

adaptation can also remodel interaction between host proteins.

Supporting the possibility, adaptive evolution has remodeled an

interface between the Rhi and Del, which are core components

of the host transposon defense machinery (Parhad et al., 2017;

Yu et al., 2018). These adaptive changes prevent gene function

across closely relates species and define an interaction that is

required to restrict the RDC to piRNA clusters, which defines

the specificity of the transposon silencing machinery. These

findings suggest that adaptive evolution targets important func-

tional domains, which can be functionally analyzed using cross-

species complementation. Here we apply this approach to the

third RDC component, cuff, and show that adaptive evolution

targets interactions between this Rai1 homolog and proteins

that coordinate canonical and non-canonical piRNA cluster tran-

scription and piRNA biogenesis.

sim-Cuff Captures piRNA Precursor Transcription
Factors
Transposon silencing piRNAs are derived from heterochromatic

clusters and a subset of euchromatic transposon insertions, and

Cuff co-localizes with Rhi and Del at these piRNA source loci

(Mohn et al., 2014). Rhi binds to H3K9me3 marks and recruits

Del. Del, in turn, binds Moon, which recruits TRF2 to initiate

non-canonical transcription fromboth genomic strands (Andersen

et al., 2017; Le Thomas et al., 2014; Mohn et al., 2014; Yu et al.,

2015). In contrast, our data suggest that Cuff coordinates canon-

ical and non-canonical cluster expression. We show that the

D. simulans cuff ortholog fails to rescue D. melanogaster cuffmu-

tations and leads to dominant sterility when overexpressed in

wild-type flies (Figures 1, 2, and 3). Significantly, these pheno-

types are associated with stable binding to Del, TRF2, and

CtBP. As noted above, Del and TRF2 function in non-canonical

transcription of piRNA clusters (Andersen et al., 2017). CtBP is a

conserved transcriptional co-repressor, first identified as a host

factor that binds to Adenovirus E1a, and subsequently shown to

function in numerous developmental pathways (Chinnadurai,

2003, 2007). CtBP does not directly interact with DNA, but binds

sequence specific transcription factors and recruits histone-

modifying enzymes (Chinnadurai, 2003, 2007). We show that

CtBP-kd activates canonical promoters linked to piRNA source

loci (Figure 4). Adaptive evolution has therefore remodeled inter-

actions between Cuff and factors that control both canonical

and non-canonical transcription of piRNA precursors loci.

Dominant phenotypes can result from mutations that produce

new interactions or functions (neomorphic mutations) and as-

sembly of complexes that are not formed by wild-type proteins

(Jeffery, 2011). However, our findings, with previous studies,

suggest that substitutions in sim-Cuff stabilize normally transient

complexes with both TRF2 and CtBP. In D. melanogaster, Cuff

and Del do not co-precipitate, but the proteins co-localize to nu-

clear foci, interact in two-hybrid assays, and are co-dependent

for association with piRNA clusters (Mohn et al., 2014). Del, in

turn, co-precipitates with TRF2 and Moon, and all three proteins

are required for non-canonical cluster transcription (Andersen

et al., 2017), but TRF2 does not normally accumulate at clusters

(Figure 3F). In contrast, overexpression of sim-Cuff drives TRF2

co-localization with the RDC (Figure 3). Similarly, ChIP-seq

shows that Cuff and Del localize to canonical promoters that

are suppressed byCtBP, but CtBP does not accumulate at these

promoters (S.S.P. and W.E.T., unpublished data). Substitutions

in the sim-Cuff ortholog thus appear to stabilize normally tran-

sient associations with Del and TRF2 and with CtBP.

The majority of Drosophila germline clusters are transcribed

from internal non-canonical initiation sites and do not have flank-

ing canonical promoters. CtBP-kd does not significantly alter

long RNA or piRNA expression from these loci. However, canon-

ical promoters flank the right side of the 42AB cluster and both

CtBP TRF2

Del Cuff

Canonical
transcription

Non-canonical
transcription

Rhi

Cuff
TRF2Del

CtBP

Cuff

piC/ TE

Del

Figure 7. Model for a Transcriptional Network Balancing Canonical

and Non-canonical piRNA Precursor Transcription
piRNAs are generated from both piRNA clusters and dispersed transposon

insertions, which act as ‘‘mini-clusters.’’ At both locations, Rhi binds to

H3K9me3 histone marks and recruits Del, TRF2, and Cuff proteins, through

direct or indirect interactions, to initiate non-canonical transcription from both

strands. Non-canonical transcription (green lines) is inhibited by canonical

transcription (red lines), and CtBP represses canonical transcription, regu-

lating non-canonical transcription and piRNA production.
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ends of the 38C cluster, and CtBP-kd increases transcription

from these canonical promoters, which is associated with

reduced transcription and piRNA production from downstream

regions, (Figures 4F and 4G). We cannot directly assay non-ca-

nonical transcription at most transposon insertions that produce

piRNAs, as the inserted sequences are repeated, but CtBP-kd

increases canonical transcription of transposons and is linked

to collapse of piRNAs mapping to sequences flanking these in-

sertions (Figure 5). In addition, deletion of the promoters flanking

42AB and 38C leads to spreading of piRNA production into flank-

ing domains (Andersen et al., 2017). Together, these findings

indicate that canonical transcription directly or indirectly re-

presses non-canonical transcription and piRNA production.

A piRNA Precursor Transcription Network
On the basis of these findings, we propose that Cuff coordinates

canonical and non-canonical piRNA precursor transcription (Fig-

ure 7). By stabilizing Rhi, Del, Moon and TRF2, Cuff promotes

non-canonical transcription. By contrast, Cuff appears to func-

tion with CtBP to control canonical transcription. Rescue of

cuff mutants with sim-Cuff, which shows enhanced binding to

CtBP, is phenocopied by CtBP-kd: both lead to increased ca-

nonical transcription (CapSeq; Figures 4H and 4I). Formation of

stable complexes with sim-Cuff thus appears to inhibit CtBP,

activating canonical transcription and reducing downstream

non-canonical transcription. Normally, the interaction between

Cuff and CtBP is weak and free CtBP suppresses canonical pro-

moters, while Cuff functions with Del-TRF2 to drive of non-ca-

nonical transcription. We speculate that this balance may be

altered in response to stress or environmental signals, which

can activate transposons (Maze et al., 2011; Miousse et al.,

2015; Nätt and Thorsell, 2016). Intriguingly, CtBP is also an

NADH/NAD binding protein (Fjeld et al., 2003; Jack et al.,

2011), suggesting that the balance between canonical and

non-canonical piRNA precursor transcriptions may be regulated

in response to metabolic state.

The RDC proteins Moon and TRF2 are required for piRNA pre-

cursor transcription, and all of these factors are rapidly evolving

(Figure S1B). By contrast, CtBP is conserved from flies to hu-

mans (Chinnadurai, 2002; Rabenstein et al., 1999), and a puta-

tive human oncogene (Dcona et al., 2017; Stankiewicz et al.,

2014). The data presented here, with our earlier analysis of Rhi

and Del (Parhad et al., 2017), indicate that rapid evolution has

modified multiple interactions between rapidly evolving proteins

in the piRNA biogenesis, and association of these proteins with a

highly conserved transcriptional co-repressor. Rapidly evolving

genes with specialized functions are frequently the most acces-

sible to phenotype-based forward genetic approaches in model

systems, and linking these specialized genes to conserved path-

ways can be a challenge. The studies reported here indicate that

cross-species studies can help define these links, bridging the

gap between genetically tractable model organisms and human

biology.
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

GFP Booster-ATTO488 (Immuno-staining, 1:200) ChromoTek Cat# gba488-100, RRID: AB_2631434

Rabbit anti-Del (Immuno-staining, 1:1000) Julius Brennecke lab RRID: AB_2568875

Rabbit anti-TRF2 (Immuno-staining, 1:500) James Kadonaga lab N/A

Guinea pig anti-Rhi (Immuno-staining, 1:1000) Klattenhoff et al., 2009 RRID: AB_2568331

Rabbit anti-H3K9me3 (Immuno-staining, 1:1000) abcam Cat# ab8898, RRID:AB_306848

Mouse anti-RNA Pol II (for ChIP) abcam RRID:AB_2268549

Rabbit anti-TBP (for ChIP) James Kadonaga lab N/A

Rabbit anti-GFP (for ChIP) ChromoTek Cat# PABG1-100, RRID:AB_2749857

Chemicals, Peptides, and Recombinant Proteins

Superscript III ThermoFisher Scientific Cat# 18080-085

dNTP mix NEB Cat# N0447L

Terminator 50-Phosphate-Dependent Exonuclease Lucigen Cat# TER51020

CIP (Calf Intestinal Alkaline Phasphatase) NEB Cat# M0290L

DNaseI NEB Cat# M0303L

Tobacco Decapping Enzyme Enzymax Cat# 87

T4 RNA ligase Ambion, Invitrogen Cat# AM2141

RNase OUT ThermoFisher Scientific Cat# 10777-019

TURBO DNase ThermoFisher Scientific Cat# AM2238

dUTP mix Bioline Cat# BIO-39041

RNaseH ThermoFisher Scientific Cat# 18021-071

DNA polymerase I NEB Cat# M0209S

T4 DNA polymerase NEB Cat# M0203L

Klenow DNA polymerase NEB Cat# M0210S

T4 PNK NEB Cat# M0201L

Klenow 30 to 50 exo NEB Cat# M0212L

T4 DNA ligase Enzymatics Inc. Cat# L6030-HC-L

UDG NEB Cat# M0280S

Phusion Polymerase NEB Cat# M0530S

T4 RNA Ligase 2, truncated K227Q NEB Cat#M0351L

16% formaldehyde Ted Pella Inc Cat# 18505

Gateway� LR Clonase� Enzyme mix ThermoFisher Scientific Cat# 11791019

In-Fusion� HD Cloning Kit Clontech Cat# 639648

Critical Commercial Assays

mirVANA miRNA isolation kit ThermoFisher Scientific Cat# AM1560

Dynabeads� Protein G ThermoFisher Scientific Cat# 10004D

Dynabeads� Protein A ThermoFisher Scientific Cat# 10002D

GFP-Trap�_A beads Chromotek Cat# gta-100

RNeasy Mini Kit QIAGEN Cat# 74104

RNA Clean & Concentrator-5 Zymo Research Cat# R1015

ZR small-RNA PAGE Recovery Kit Zymo Research Cat# R1070

Ribo-Zero Gold rRNA removal kit Illumina Cat# MRZG12324

Deposited Data

High throughput Sequencing This study NCBI SRA: PRJNA517772

Raw data This study Mendeley Data: https://doi.org/

10.17632/6nd35djt9p.1

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Rhi and Del IP Mass Spectrometry Proteome Parhad et al., 2017 N/A

Del ChIP-seq Mohn et al., 2014 N/A

Experimental Models: Organisms/Strains

D. melanogaster: rhiP > GFP-mel-Cuff This study N/A

D. melanogaster: rhiP > GFP-sim-Cuff This study N/A

D. melanogaster: UASp > GFP-mel-Cuff This study N/A

D. melanogaster: UASp > GFP-sim-Cuff This study N/A

D. melanogaster: cuffKG/WM Chen et al., 2007 N/A

D. melanogaster: cuffQQ/WM Chen et al., 2007 N/A

D. melanogaster: Oregon-R William Theurkauf lab N/A

D. melanogaster: Act5C > Gal4 William Theurkauf lab N/A

D. melanogaster: nanos > Gal4 William Theurkauf lab N/A

D. melanogaster: vasP > GFP-nls Zhang et al., 2014 N/A

D. melanogaster: UAS-Dcr2;nos-Gal4 Bloomington Cat # 25751

D. melanogaster: w-RNAi-kd VDRC Cat # GD30033

D. melanogaster: CtBP-RNAi-kd VDRC Cat # KK107313

D. melanogaster: CtBP-RNAi-kd VDRC Cat # GD37609

D. melanogaster: CtBP-RNAi-kd VDRC Cat # GD37608

Oligonucleotides

Sequences given in Method details Integrated DNA Technologies (IDT) N/A

Random primers ThermoFisher Scientific Cat# 48190011

Recombinant DNA

pENTR/D-TOPO� ThermoFisher Scientific Cat# K2400-20

Drosophila gateway vector: attB-pPGW Parhad et al., 2017 N/A

Drosophila gateway vector: rhiP-attB-pPGW Parhad et al., 2017 N/A

Software and Algorithms

GraphPad Prism https://www.graphpad.com/

scientific-software/prism/

N/A

RStudio https://rstudio.com/ N/A

Adobe Creative Suite 6 Adobe Systems Inc. N/A

Scaffold http://www.proteomesoftware.

com/products/scaffold/

N/A

UCSC Genome Browser https://genome.ucsc.edu/

cgi-bin/hgGateway

N/A

Microsoft Office Microsoft N/A

cutadapt Martin, 2011 N/A

Bowtie Langmead et al., 2009 N/A

Bowtie2 Langmead and Salzberg, 2012 N/A

BEDTools Quinlan and Hall, 2010 N/A

TopHat Trapnell et al., 2009 N/A

STAR Dobin et al., 2013 N/A

Hisat2 Kim et al., 2015 N/A

HTSeq Anders et al., 2015 N/A

BWA Li and Durbin, 2009 N/A

PAML Goldman and Yang,

1994; Yang, 1997

N/A

PAL2NAL Suyama et al., 2006 N/A

TEMP Zhuang et al., 2014 N/A
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LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact William

Theurkauf (william.theurkauf@umassmed.edu). All unique/stable reagents generated in this study are available from the Lead Con-

tact without restriction.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All experiments were performed in 2-4 days old Drosophila melanogaster females, except mentioned otherwise. All flies were main-

tained at 25�C on cornmeal medium. All transgenic lines were generated by fC31 integration at 3L-68A4. cuffWM25 (cuffWM) and

cuffQQ37 (cuffQQ) alleles were obtained from Trudi Sch€upbach (Princeton University) (Chen et al., 2007). cuffKG05951 (cuffKG) was ob-

tained from Bloomington (Stock # 14462). Act5C-Gal4 and nanos-Gal4 stocks were used from our lab stocks. RNAi knockdown lines

were obtained from VDRC.

METHOD DETAILS

Generation of transgenic flies
mel-cuff was cloned from D. melanogaster OregonR ovary cDNA and sim-cuff from Drosophila simulans C167.4 ovary cDNA. The

reverse primer for the PCR reaction was used for making cDNA with Superscript III reverse transcriptase (Thermo Fisher Scientific).

mel-cuff was PCR amplified from cDNA by using forward primer: CAC CAT GAA TTC TAA TTA CAC AAT ATT AAA C and reverse

primer: TTA AAC TAT AGA AGA CAT GGT TTG C and cloned into pENTR-D-TOPO vector by directional TOPO cloning kit (Thermo

Fisher Scientific). Similarly, sim-cuffwas PCR amplified from cDNA using forward primer: CACCAT GAA TTC TAA TTA CAA AAT ATT

GAA C and reverse primer: TTA TTG GTA AAC TGT GGA AGA CAT GG and cloned into pENTR-D-TOPO vector. These served as

entry vectors for Gateway cloning. The destination vectors rhiP-attB-pPGW (for expressing N’ GFP tagged proteins under rhi pro-

moter) and attB-pPGW (for expressing N’ GFP tagged proteins under UASp promoter) were used as described in Parhad et al.

(2017). The plasmids obtained from LR gateway cloning reaction were sequenced and injected by fC31 integration at chromosomal

location 3L-68A4 (Bischof et al., 2007).

Fertility assays
2-4 days old flies were maintained on grape juice agar plates for 1 or 2 days. After removing flies, the eggs were counted for fused

appendages. The number of hatched eggs were counted after 2 days. The fertility bar graphs indicate mean and standard deviation

from 3 biological replicates.

RT-qPCR
RNA was isolated from 2-4 days old female ovaries. Reverse transcription done using Superscript III reverse transcriptase with

random primers. qPCR was done by QIAGEN QantiTect� SYBR� Green PCR mix using Applied Biosystems instrument. Primers

sequences for CtBP: forward primer: CAA AAA TCT GAT GAT GCC GAA GCG TTC and reverse primer: AGG ATG GGC ATC TCG

ATG GAG CAG TC and Rp49: forward primer: CCG CTT CAA GGG ACA GTA TCT G and reverse primer: ATC TCG CCG CAG

TAA ACG C.

Immuno-staining
Immuno-staining and image analysis were performed as described in McKim et al. (2009) and Zhang et al. (2012a). In short, 2-4 days

old female ovaries were dissected in Robb’s buffer, fixedwith 4% formaldehyde, washed, overnight incubatedwith primary antibody,

washed, incubated overnight with secondary antibody with the fluorophore, stained with DAPI for DNA labeling andmounted on slide

with mounting medium. To enhance the GFP signal, ChromoTek anti-GFP Booster (Atto-488) antibody was added with secondary

antibody. Antibodies used: anti-GFPBooster (ChromoTek) at 1:200, guinea pig anti-Rhi (our lab) at 1:1000, rabbit anti-Del (from Julius

Brennecke) at 1:1000, rabbit anti-TRF2 (from James Kadonaga) at 1:500, rabbit anti-H3K9me3 (abcam) at 1:1000.

Immuno-precipitation
IP was performed as described in Parhad et al. (2017). Briefly, 2-4 days old female ovarieswere dissected in Robb’smedium, lysed by

homogenization and sonication and centrifuged to get input for IP. Lysis and IP buffer composition: HEPES (pH 7.5) 50mM, NaCl

150mM, MgCl2 3.2mM, NP-40 0.5%, PMSF 1mM, Proteinase Inhibitor (Roche) 1X. chromotek GFP-Trap�_A beads were used

for GFP IP. The lysate was incubated with beads for 3 hours at 4�C and subsequently washed with lysis buffer 4 times. Finally the

beads were suspended in SDS-PAGE lysis buffer. The procedure for mass spectrometry is descried in Vanderweyde et al. (2016).

Briefly, the IP samples were resolved on a 10% SDS-PAGE gel. The gel pieces were trypsin digested to get the peptides, which

were analyzed by LC-MS/MS. Rhi and Del IP data was used from Parhad et al. (2017).
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Small RNA-seq
Small RNA libraries were prepared asmentioned in Zhang et al. (2014). In short, total RNAwas prepared bymirVANA kit (Ambion). 18-

30 nt length small RNAs were size selected by denaturing PAGE gel purification. These were ligated further at 30 and 50 ends by

adapters. Reverse transcription and then PCR amplification was performed to obtain libraries. Single end sequencing was done

by Illumina platform.

RNA-seq
RNA-seq libraries were prepared as described in Fu et al. (2018) and Zhang et al. (2012b, 2018). Briefly, RNA samples were depleted

for ribosomal rRNA by Ribo-Zero kit (Illumina) or rRNA digestion by RNaseH (Epicenter), fragmented and reverse transcribed. After

dUTP incorporation for strand specificity, end repair, A-tailing, adaptor ligation and PCR amplification was done to obtain libraries.

Paired end sequencing was done by Illumina platform.

CapSeq
This method was performed to sequence 50 ends of transcripts (Gu et al., 2012). In brief, total RNA was sequentially treated with

Terminator 50-Phosphate-Dependent Exonuclease, CIP (Calf Intestinal Alkaline Phasphatase), DNaseI, Tobacco Decapping Enzyme.

After adaptor ligation at the 50 end, reverse transcription (with primer: 50-GCACCCGAGAATTCCANNNNNNNN-30) and two rounds of

PCR were done. The PCR products were gel purified after each PCR step. Final library was sequenced by Illumina platform by single

end sequencing.

ChIP-seq
ChIP-seq was performed by method described in Parhad et al. (2017). In short, the ovaries were dissected in 1X Robb’s medium and

fixed with 2% formaldehyde and sonicated in Bioruptor for 2 hours. This lysate was centrifuged and the supernatant was used as

input for ChIP. The input was precleared with either Dynabeads Protein A or Dynabeads Protein G (Invitrogen) and was added to

the Dynabeads conjugated to an antibody and incubated overnight. After washing, the beads were reverse crosslinked, ChIP

DNA was purified and libraries were prepared by end repair, A tailing, adaptor ligation and PCR amplification. Illumina platform

was used for paired end sequencing.

QUANTIFICATION AND STATISTICAL ANALYSIS

Bioinformatics analysis
Small RNA-seq reads were first fed into cutadapt (Martin, 2011) for 30end adaptor trimming (adaptor sequence:

TGGAATTCTCGGGTGCCAAGGAACTCCAGTCAC_Index_ATCTCGT). The adaptor removed reads were aligned to the

D. melanogaster genome (dm3) and transposon consensus sequences by bowtie (Langmead et al., 2009) with parameters -v 1

-a–best–strata, after removing rRNA, miRNA, snRNA, snoRNA and tRNA mapping reads. This allowed 1 mismatch during mapping.

Flybase r5.50 transcriptome annotations were used. The piRNA cluster coordinates were from Brennecke et al. (2007). The read

counting was done using intersectBedmodule from BEDTools (Quinlan and Hall, 2010) and normalized to microRNAs. Multiple map-

ping reads are considered while counting reads and apportioned to their map times. For ping-pong analysis on cluster-mapping

reads, the overlaps between all pairs of piRNAs that mapped to the opposite genomic strands were calculated, and then the Z-score

for the 10-nt overlap was calculated using the 1-9 nt and 11-30 nt overlaps as the background (Li et al., 2009).

STAR (Trapnell et al., 2009) was used to align RNA-seq reads to the genome allowing 2 mismatches. rRNA reads were removed

prior to the quantification of genes, piRNA clusters, and transposons expression via Hisat2 (Kim et al., 2015) with default parameters.

The mapping results in the SAM format were transformed into sorted and duplication-removed BAM format using SAMtools (Li et al.,

2009). The final mapped reads were assigned to protein-coding genes, non-coding RNAs, and piRNA genes using HTSeq (Anders

et al., 2015), and the expression levels of these genes, in reads permillion uniquemapped reads in per thousand nucleotides (RPKM),

were calculated using custom bash scripts. RNA-seq reads after removing rRNAs were also mapped to transposon consensus se-

quences using Hisat2 with default parameters. Then transposon expression levels were calculated using Bedtools.

For ChIP-seq, genome and transposon alignment was done by Bowtie2 (Langmead and Salzberg, 2012) with default parameters.

The ChIP-seq signal in each transposonwas indicated by the read counts per million total genomemapping reads per kilo base pairs.

CapSeq was processed like RNA-seq except RT primer removing before any alignment via cutadapt. Only 50end of each read was

considered for profile generating and signal calculating. Total uniquely genomemapped reads were used as the normalization factor.

Mass spectrometry Proteomic Analysis
Proteome Discoverer and Mascot Server were used to process the raw data before display on Scaffold Viewer (Proteome Software,

Inc.). The proteins were filtered by criteria: Protein threshold: 90%, Min # peptides: 2, Peptide threshold: 90%. Then iBAQ values

(Schwanhäusser et al., 2011) were obtained and pseudocount was added. For Cuff IP, vas promoter driven GFP-nls was used as

a control. Both replicates of rhi promoter (rhiP) driven Cuff IP mass spectrometry scaffold tables were combined into a single file.

To obtain list of proteins binding to Cuff and not GFP control, only proteins below the threshold of 300000 in GFP IP were selected.

The proteins which showmore than 3 fold enrichment in all the Cuff protein IPs versus GFP control IP were used tomake plots, where
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the ratios of (iBAQ + psuedocount) values for each identified protein in a Cuff IP versus GFP IP were plotted against their rank. For

sim-Cuff graphs, in addition to the above filters, proteins which show more than 3 fold enrichment for sim-Cuff IP versus mel-Cuff IP

were plotted. The graphs weremade using R. Similar filters and thresholds were used for Rhi and Del IPmass spectrometry data from

Parhad et al. (2017).

Analysis of RT-qPCR data
Quantification done using DCt method. Rp49 served as the loading control.

STATISTICAL ANALYSIS

The error bars in the bar graphs show standard deviations from 3 biological replicates.

DATA AND CODE AVAILABILITY

Cloned cuff cDNA sequences and Cuff Proteomics data are deposited in Mendeley Data: https://doi.org/10.17632/6nd35djt9p.1.

High throughput sequencing data can be accessed from NCBI SRA: PRJNA517772.
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