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ABSTRACT

CRISPR-Cas systems are bacterial adaptive immune pathways that have revolutionized biotechnology and biomedical ap-
plications. Despite the potential for human therapeutic development, there are many hurdles that must be overcome be-
fore its use in clinical settings. Some clinical safety concerns arise from editing activity in unintended cell types or tissues
upon in vivo delivery (e.g., by adeno-associated virus (AAV) vectors). Although tissue-specific promoters and serotypes
with tissue tropisms can be used, suitably compact promoters are not always available for desired cell types, and AAV tis-
sue tropism specificities are not absolute. To reinforce tissue-specific editing, we exploited anti-CRISPR proteins (Acrs) that
have evolved as natural countermeasures against CRISPR immunity. To inhibit Cas9 in all ancillary tissues without compro-
mising editing in the target tissue, we established a flexible platform in which an Acr transgene is repressed by endoge-
nous, tissue-specific microRNAs (miRNAs). We demonstrate that miRNAs regulate the expression of an Acr transgene
bearingmiRNA-binding sites in its 3′′′′′-UTR and control subsequent genome editing outcomes in a cell-type specific manner.
We also show that the strategy is applicable tomultiple Cas9 orthologs and their respective anti-CRISPRs. Furthermore,we
validate this approach in vivo by demonstrating that AAV9 delivery of Nme2Cas9, along with an AcrIIC3Nme construct that
is targeted for repression by liver-specific miR-122, allows editing in the liver while repressing editing in an unintended
tissue (heart muscle) in adult mice. This strategy provides safeguards against off-tissue genome editing by confining
Cas9 activity to selected cell types.

Keywords: Cas9; anti-CRISPR; microRNA; tissue-specific editing; AAV

INTRODUCTION

Clustered, regularly interspaced, short, palindromic re-
peats (CRISPR) and CRISPR-associated (cas) genes com-
prise prokaryotic adaptive immune defense systems that
are organized into two major classes and multiple types
and subtypes (e.g. II-A, -B, and -C) (Makarova et al.
2018). Cas9s are monomeric effector proteins in Type II
systems that can target nearly any DNA sequence when
guided by a CRISPR RNA (crRNA) base paired with a
trans-activating RNA (tracrRNA), or as a fused form of
both RNAs known as single guide RNA (sgRNA)
(Garneau et al. 2010; Deltcheva et al. 2011; Jinek et al.
2012). The robustness and ease of Cas9 programmability

have greatly facilitated its rapid adoption in genome ed-
iting and modulation (Komor et al. 2017). As medical,
agricultural, and environmental technologies advance,
safety concerns must be considered and addressed, es-
pecially with potential human therapeutics. In vivo thera-
peutics will often require not only precise editing at the
intended genomic site but also in the intended tissue,
given the possible risks of unwanted double-strand break
(DSB) induction. For example, Cas9-induced DSBs can
elicit translocations that can be associated with heritable
disorders or various kinds of cancer, or large deletions
and other rearrangements (Maddalo et al. 2014; Jiang
et al. 2016; Kosicki et al. 2018). Moreover, some delivery
modalities such as viral vectors are likely to affect many
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cell types and tissues beyond the intended therapeutic
target (Hinderer et al. 2018). Adeno-associated virus
(AAV) is currently the most widely used transgene deliv-
ery vector for therapeutic applications in preclinical and
clinical settings. Different AAV serotypes have some tis-
sue tropism, however, they can still infect broad ranges
of tissues in vivo (Gao et al. 2004). Although tissue-
specific promoters can be used to drive transgene ex-
pression in particular cell types (Walther and Stein
1996), some target tissues lack promoters that are suffi-
ciently active, specific, or small for AAV deployment.
These limitations necessitate the development of new
regulatory strategies to enforce tissue specificity for in
vivo applications.

Although several means of regulating genome editing
activities have been reported, a prominent recent advance
has resulted from the discovery of anti-CRISPR (Acr) pro-
teins (Bondy-Denomy et al. 2013). Acrs are small proteins
encoded by bacteriophages and other mobile genetic ele-
ments that have evolved as natural countermeasures
against CRISPR-Cas immunity. Type II Acrs targeting
Cas9 orthologs (Pawluk et al. 2016; Hynes et al. 2017,
2018; Rauch et al. 2017; Uribe et al. 2019), as well as the re-
cently discovered Type V Acrs targeting Cas12a (Marino
et al. 2018; Watters et al. 2018), are of particular interest
because they can potentially provide temporal, spatial, or
conditional control over established genome editing
systems. Applications of Acrs have been demonstrated
in bacteria (Rauch et al. 2017; Marshall et al. 2018), in
yeasts to inhibit gene drives (Basgall et al. 2018), and in
mammalian cells to modulate genome editing, dCas9-
based imaging, epigenetic modification, and genetic
circuits (Pawluk et al. 2016; Rauch et al. 2017; Shin et al.
2017; Bubeck et al. 2018; Liu et al. 2018; Nakamura et al.
2019).

To improve current technologies that regulate the tissue
specificity of editing, we have developed an Acr-based ap-
proach to inhibit Cas9 in all ancillary tissues while allowing
editing in the target tissue. To spatially regulate Acr
expression, we exploited endogenous tissue-specific
microRNAs (miRNAs) to repress Acr expression in the tar-
get tissue. MiRNAs are a class of small regulatory RNAs
whose mechanisms of messenger RNA (mRNA) regulation
are extensively studied (Jonas and Izaurralde 2015). These
RNAs load into an Argonaute protein (e.g., Ago2) to form
RNA-induced silencing complexes (RISCs) that recognize
complementary sequences present inmRNA targets, lead-
ing to translational repression and mRNA destabilization
(Bartel 2018). In mammalian cells, Ago2-loaded miRNAs
can subject extensively or perfectly complementary
mRNA targets to endonucleolytic cleavage, enabling
strong down-regulation. Since miRNA response elements
(MREs) are very small (∼22 nt or less), this regulatory mo-
dality places a minimal burden on AAV vector capacity,
which is limited to ∼4.8 kb. Moreover, large numbers of

mammalian cell and tissue types express specific combina-
tions of tissue-restricted miRNAs (Lagos-Quintana et al.
2002).

Here we establish a flexible platform in which an Acr
transgene is repressed by endogenous, tissue-specific
miRNAs to control Acr expression spatially. We demon-
strate that miRNAs can regulate the expression of an Acr
transgene bearing miRNA-binding sites in its 3′ untranslat-
ed region (UTR) and control subsequent genome editing
outcomes in a cell-type specific manner. We also show
that the strategy is applicable to multiple Cas9 orthologs
and their respective Acrs, including the widely used
Streptococcus pyogenes Cas9 (SpyCas9) (Cho et al.
2013; Cong et al. 2013; Hwang et al. 2013; Jinek et al.
2013; Mali et al. 2013) as well as the more readily AAV-
deliverable Cas9 orthologs from Neisseria meningitidis
(Nme1Cas9 and Nme2Cas9) (Edraki et al. 2018; Ibraheim
et al. 2018). Furthermore, we have expressed anti-
CRISPR proteins in mice to achieve efficient inhibition of
Cas9-mediated genome editing in vivowithout detectable
toxicity. Most importantly, we show that codelivery
of Nme2Cas9, guide RNA, and miR-122-repressible
AcrIIC3Nme transgenes by AAV9 vectors in adult mice allow
editing in the liver (the only tissue where miR-122 is ex-
pressed) but suppress editing in an ancillary tissue (heart).
This strategy establishes the in vivo efficacy of Acrs in
mammals and provides the basis for restriction of unde-
sired off-tissue editing by confining Cas9 activity to select-
ed cell types.

RESULTS

AAV delivery of Nme1Cas9 and sgRNA results
in editing in various tissues

Previously, our group has used all-in-one AAV8 to deliver
a human-codon-optimized Nme1Cas9 for genome edit-
ing in vivo (Ibraheim et al. 2018). Nme1Cas9 is smaller
and less prone to off-target editing than the widely
used SpyCas9 (Amrani et al. 2018). Upon delivery of all-
in-one AAV8 vectors expressing Nme1Cas9 driven by a
ubiquitous U1a promoter and sgRNA via tail vein injec-
tion, we observed high editing efficiency in liver tissues
collected 50 d post-injection (Ibraheim et al. 2018). To
gauge editing efficiencies in nontarget tissues of these
same mice (previously unpublished data), samples from
cardiac and skeletal muscle (gastrocnemius) as well as
kidney and brain were collected and analyzed in the cur-
rent study (Supplemental Fig. S1). Although off-tissue ed-
iting efficiencies were lower than those observed in the
liver (57.8 ± 8.5%), appreciable indel frequencies were
observed in different organs, especially in the heart
(22.5 ± 5.2%) (Supplemental Fig. S1). This is consistent
with previous reports that AAV8 effectively transduces
mouse hepatocytes but also infects skeletal and cardiac
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muscles (Nakai et al. 2005) as well as
brain at high doses (Zincarelli et al.
2008). These observations, along
with the known multitissue tropisms
of other AAV serotypes (Zincarelli
et al. 2008), underscore the need
for systems that confine Cas9 activity
to selected tissues.

A strategy for microRNA-
regulated anti-CRISPR proteins

Endogenous miRNA-mediated post-
transcriptional gene silencing has
proven to be an effective and tissue-
specific approach to regulate trans-
gene expression upon AAV delivery
in vivo (Xie et al. 2011). Delivery of
Cas9 and sgRNA via AAV has the po-
tential to induce editing in multiple
transduced tissues (e.g., heart, skele-
tal muscle, and elsewhere); however,
codelivery of the miRNA-repressible
Acr will inhibit editing in such nontar-
get tissues due to the latter’s lack
of particular tissue-specific miRNAs
(and therefore their inability to silence
the expression of the Acr inhibitor). In
the case of the liver-specific miRNA
miR-122, in the target tissue, the Acr
gene with miR-122 MREs will be re-
pressed, enabling Cas9-mediated ed-
iting (Fig. 1A). In contrast, off-tissue
editing (e.g., in cardiac and skeletal
muscle, Supplemental Fig. S1) will
be inhibited by the Acr, since those
extrahepatic tissues lack miR-122
and therefore fail to silence Acr ex-
pression. To validate this concept,
we chose two well-established Cas9-
Acr combinations: AcrIIC3Nme and
Nme1Cas9 or Nme2Cas9 (Type II-C;
Pawluk et al. 2016; Edraki et al.
2018) as well as AcrIIA4Lmo and
SpyCas9 (Type II-A; Rauch et al. 2017). Nme2Cas9 is a re-
cently reported Cas9 homolog that has a dinucleotide
(N4CC) protospacer adjacent motif (PAM) (Edraki et al.
2018), enabling a target site density comparable to that
of SpyCas9 (NGG PAM). A Type II-C Nme1Cas9 or
Nme2Cas9 inhibitor, AcrIIC3Nme (Pawluk et al. 2016), sta-
ples two Cas9s together and prevents DNA cleavage
(Harrington et al. 2017; Zhu et al. 2019). AcrIIA4Lmo inhibits
the widely used SpyCas9 and blocks DNA binding, in this
case by occluding the PAM-binding cleft (Dong et al.
2017; Rauch et al. 2017; Shin et al. 2017; Yang and Patel

2017). For our in vitro validations, both Cas9 and Acr ex-
pression vectors were driven by the cytomegalovirus
(CMV) promoter. We generated codon-optimized Acr ex-
pression vectors identical in every respect except for the
presence or absence of MREs in the 3′ UTR
(Supplemental Table S1). Since miR-122 is a well-validated
miRNA that is highly expressed specifically in hepatic
cells, we decided to test this concept using this miRNA.
We placed three tandem miR-122 binding sites
(3xmiR122BS) in the 3′ UTR of each Acr gene, which also
included a carboxy-terminal mCherry fusion to enable

B

A

FIGURE 1. Overview of the Cas9 and microRNA-repressible anti-CRISPR system. (A) Outline
of the miRNA-repressible anti-CRISPR and Cas9 editing strategy as designed for use in
mice. As an example, miR-122 can be used to achieve liver-specific editing. Upon systemic
delivery of Cas9 in vivo (e.g., via viral vectors), tissues receiving Cas9 and sgRNA potentially
result in genome editing; however, codelivery of miRNA-repressible anti-CRISPR proteins
will prevent such editing in nontarget tissues that lack miR-122, as depicted in the heart
(left). In the liver, anti-CRISPR transcripts with perfectly complementary miR-122 binding sites
will undergo Ago2-mediated mRNA degradation, and the resulting silencing of the Acr will
permit Cas9 editing in the liver (right). (B) A schematic of expression vectors for Cas9 orthologs
from Type II-A (SpyCas9) and II-C (Nme1Cas9 and Nme2Cas9) systems, along with their re-
spective anti-CRISPR proteins, AcrIIA4 and AcrIIC3. The Acr expression constructions were
generated with or without three tandem, perfectly complementary miRNA-122 binding sites
in the 3′ UTR. (CMV) cytomegalovirus promoter, (NLS) nuclear localization signal, (AAAA),
poly(A) tail.
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expression to be detected by fluores-
cence microscopy or flow cytometry
(Fig. 1B). The fusion of heterologous
domains do not compromise the in-
hibitory potency of these Acrs
(Basgall et al. 2018; Nakamura et al.
2019).

Validation of microRNA-
repressible anti-CRISPR
expression vectors

We used a human hepatocellular car-
cinoma cell line (Huh-7) that abun-
dantly expresses miR-122, in contrast
to nonhepatic cell lines such as hu-
man embryonic kidney (HEK293T)
cells (Fukuhara et al. 2012). As an
initial test of miR-122 repression of
Acr expression, we transfected cells
with plasmids expressing AcrIIC3-
Flag-mCherry-3xmiR122BS, AcrIIA4-
Flag-mCherry-3xmiR122BS, or their
respective control vectors lacking
the miR-122 binding sites (Fig. 1B).
A separate GFP expression plasmid
was also included to indicate transfec-
tion efficiencies in each cell line.
When these vectors were transiently
transfected, the expression of
mCherry-fused Acr with miR-122
MREs was dramatically suppressed
in Huh7 cells whereas Acr-mCherry
lacking the 3xmiR122BS cassette
was still well expressed (Fig. 2A). In
HEK293T cells, there was no discern-
ible difference in mCherry signal
from the Acr and Acr-3xmiR122BS
constructs based on both fluores-
cence microscopy and flow cytometry
(Fig. 2B). Acr expression was also con-
firmed by anti-Flag western blot anal-
ysis (Fig. 2). Compared to HEK293T
cells, transfection efficiency was lo-
wer in Huh-7 cells as indicated
by a decrease in overall GFP and
mCherry signals (Fig. 2A).
Nevertheless, fluorescence microsco-
py, flow cytometry, and western blot
analysis consistently revealed effective reductions of
both AcrIIC3-3xmiR122BS and AcrIIA4-3xmiR122BS ex-
pression in Huh-7, but not in HEK293T cells. Expression
of Acrs lacking miR-122 MREs was unaffected in both
cell lines, consistent with effective regulation of Acr by
miR-122 only in hepatic cells.

MicroRNA repression enables escape from anti-
CRISPR inhibition during genome editing in
hepatocyte-derived cells

Having demonstrated that anti-CRISPR repression in hepa-
tocyte-derived cells can be conferred by miR-122 MREs,

B

A

FIGURE 2. Validation of miRNA regulation of anti-CRISPR expression in cultured cells. (A,B)
Hepatocyte-specific silencing of anti-CRISPR expression. Plasmid vectors shown in Figure 1B
encoding either AcrIIC3-mCherry or AcrIIA4-mCherry, with or without miR-122 MREs, were
transfected into (A) human hepatoma (Huh7) cells or (B) nonhepatic HEK293T cells; only the
former express miR-122. The expression of mCherry and GFP was visualized by fluorescence
microscopy (top) and analyzed by flow cytometry (bottom left). The percentage of mCherry-
positive cells in each transfection was normalized to transfection of the control GFP-expressing
plasmid. Anti-CRISPR protein expression was also confirmed by western blot against the
1xFlag epitope (bottom right). Heat shock protein 60 (HSP60) was used as a loading control.
Scale bar, 100 µm.
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we then tested whether this repression is sufficient to allow
genome editing by Cas9 orthologs (SpyCas9, Nme1Cas9,
and Nme2Cas9). We transiently transfected separate ex-
pression plasmids for Cas9, a cognate sgRNA, and an
Acr, with the latter construct either including or omitting
miR-122 binding sites. We chose validated, endogenous
sites in the human genome for each Cas9 ortholog

(Fig. 3): the Nme1Cas9 target site NTS33 in the VEGFA
gene (Fig. 3A), the Nme2Cas9 target site TS6 in the
LINC01588 gene (Fig. 3B), and the SpyCas9 target site
STS3 in the VEGFA gene (Fig. 3C; Amrani et al. 2018;
Edraki et al. 2018). In HEK293T cells, AcrIIC3 and
AcrIIA4 robustly inhibited genome editing by Nme1/
2Cas9 and SpyCas9, respectively, as expected (Fig. 3;
Pawluk et al. 2016; Rauch et al. 2017). The presence or
absence of miR-122 MREs had no significant effect on ed-
iting inhibition in this non-miR-122-expressing cell type.
Although the editing efficiency was variable among Cas9
orthologs at these target sites, and although transfection
efficiencies were reduced in Huh-7 cells, AcrIIC3 and
AcrIIA4 also prevented editing in this cell type when ex-
pressed from constructs that lack miR-122 MREs. In con-
trast, Acr plasmids that incorporated miR-122 MREs in
the 3′UTRs failed to inhibit Cas9 editing in Huh-7 cells,
as indicated by editing efficiencies that were similar to
the no-Acr control (Fig. 3). This trend was true for all three
Cas9 orthologs tested.

MiR-122-dependent genome editing conferred
by an anti-CRISPR protein in vivo

For our in vivo tests, we focused on Nme2Cas9, due to its
compact size, high target site density, and relative lack of
off-target editing (Edraki et al. 2018), all of which are ad-
vantageous for therapeutic development. We used a pre-
viously validated all-in-one AAV vector that expresses
Nme2Cas9 from the minimal U1a promoter, as well as a
U6 promoter-driven sgRNA targeting Rosa26 (Fig. 4A;
Edraki et al. 2018; Ibraheim et al. 2018).We also generated
AcrIIC3 expression plasmids driven by the strong CB-PI
promoter and associated expression elements; in addition,
these AcrIIC3 constructs either included or omitted the
three tandem miR-122 MREs in the 3′-UTR (Fig. 4A). For
in vivo delivery we first used hydrodynamic injection,
which is a nonviral method of transient hepatocyte trans-
fection that allows expression from naked DNA plasmids
(Zhang et al. 1999). This injection method delivers DNA
to ∼10%–20% of hepatocytes for transient expression
and leads to minimal transgene expression in organs other
than the liver. Since miR-122 is abundant in the liver, and
because Cas9 delivered to the liver by hydrodynamic in-
jection can induce editing (Xue et al. 2014), this experi-
mental approach enables tests of liver-specific editing
(and inhibition of editing) in the presence or absence of
Acr expression. Plasmids were injected into adult, wild-
type C57BL/6 mice via tail vein and liver tissues were col-
lected at 7 d post-injection (Fig. 4B). To determine the
effective dose of Acr plasmid needed to inhibit
Nme2Cas9 editing in vivo, we coinjected varying Cas9:
Acr plasmid ratios (1:1, 1:1.5, and 1:2). AcrIIC3 efficiently
inhibited Nme2Cas9 editing at all ratios tested (Fig. 4C).
No apparent liver damage was detected in the liver tissues

B

A

C

FIGURE 3. Hepatocyte-specific genome editing by Nme1Cas9,
Nme2Cas9, and SpyCas9 in cultured cells. (A–C ) HEK293T and
Huh7 cells were transiently transfected with plasmids encoding (A)
Nme1Cas9 and a sgRNA targeting the VEGFA locus, (B) Nme2Cas9
and a sgRNA targeting LINC01588, and (C ) SpyCas9 and a sgRNA tar-
geting the VEGFA locus. (A,B) AcrIIC3 constructs with or without
3xmiR122BS were cotransfected with the Cas9 and sgRNA constructs
as indicated. (C ) AcrIIA4 with or without 3xmiR122BS were cotrans-
fected with SpyCas9 and its sgRNA. Data represent mean±SD with
at least three replicates. Editing efficiencies aremeasured by targeted
deep sequencing.
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following staining with haemotoxylin and eosin (H&E)
(Supplemental Fig. S2A). Once we defined the necessary
plasmid dose, we subjected three groups ofmice to hydro-
dynamic injection with plasmid combinations that includ-
ed Nme2Cas9 with (i) no Acr, (ii) AcrIIC3, and (iii)
AcrIIC3-3xmiR122BS (Fig. 4A). In the livers of mice receiv-
ing noAcr, Nme2Cas9 yielded amean editing efficiency of
5.2 ± 1.7% (n=6 mice), similar to levels seen previously
with this and other Cas9 orthologs upon hydrodynamic in-
jection (Xue et al. 2014; Ibraheim et al. 2018). As expected,
coinjection of AcrIIC3 plasmid strongly reduced the edit-
ing efficiency to 0.33±0.09% (P<0.0001). In contrast,
AcrIIC3-3xmiR122BS failed to inhibit Nme2Cas9 edit-
ing, with the indel efficiency comparable to no Acr group
(7.1 ± 3.5%, Fig. 4D). We confirmed the expression of
Nme2Cas9 in all three groups by immunohistochemistry
(IHC) against the 3xHA epitope (Supplemental Fig. S2B).
We were unable to detect AcrIIC3 by IHC against the
Flag epitope in mice injected with AcrIIC3, likely because
antibody binding by the 1xFlag tag is too weak for IHC
detection under these conditions. However, we ruled out

the possibility of injection failures by
including control plasmids in our ex-
periment. Specifically, we coinjected
additional plasmids encoding a
Sleeping Beauty transposon system
(Ivics et al. 1997) that integrates a
mCherry expression cassette into the
mouse genome to report on the suc-
cess of plasmid injection. In all three
groups of injected mice, we observed
mCherry expression in liver tissue sec-
tions from injected mice by IHC
(Supplemental Fig. S2B), confirming
successful hepatocyte transfection.
In addition, we used RT-PCR to con-
firm mRNA expression in the liver tis-
sues of mice injected with the
indicated Nme2Cas9 and AcrIIC3
vectors, but not in PBS-injected mice
(Supplemental Fig. S2C). In summary,
consistent with our results in human
Huh-7 cells, endogenous miR-122 in
mouse hepatocytes in vivo can be ex-
ploited to repress Acr expression, and
therefore allow tissue-specific Cas9
genome editing, in liver.

Systemic AAV delivery of a
miRNA-repressible anti-CRISPR
inhibits off-tissue genome editing

To demonstrate that the miRNA-
repressible anti-CRISPR proteins can
inhibit editing in nontarget tissue

upon systemic delivery, we designed a dual-AAV system
in which a single-stranded AAV (ssAAV) vector expressing
Nme2Cas9 is codelivered with a self-complementary
AAV (scAAV) expressing an anti-CRISPR protein and a cog-
nate sgRNA (Fig. 5A). We used scAAV for AcrIIC3 expres-
sion to enable the earlier onset of transcription (before
second-strand synthesis). This expedited AcrIIC3 expres-
sion maximizes the likelihood that inhibitory levels of the
anti-CRISPR can accumulate before significant ssAAV-
based Nme2Cas9 expression occurs, since the latter re-
quires prior synthesis of the complementary vector strand.
Furthermore, we transferred the U6-driven sgRNA cassette
from our previously developed all-in-one ssAAV-
Nme2Cas9 vector to the Acr-expressing scAAV vector to
ensure that editing cannot occur in cells that fail to receive
the Acr transgene. These vectors were packaged as sero-
type nine capsids (AAV9), which are known to have a par-
ticularly broad tissue tropism in mice (Zincarelli et al.
2008). The tail veins of three groups of mice (n=6 for
each group) were injected with 4×1011 genome copies
(GC) of ssAAV9-Nme2Cas9 vector, along with 4×1011

BA
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FIGURE 4. Acr inhibition of Nme2Cas9 editing in vivo, and release from inhibition by the liver-
specific miRNA, miR-122. (A) Plasmids used for in vivo studies to drive the expression of
Nme2Cas9+ sgRNA and AcrIIC3, respectively. (U1a) murine promoter, (BGH) bovine growth
hormone poly(A) signal, (CB-PI), cytomegalovirus-enhancer, chicken β-actin (CB) promoter
with SV40-derived mini-intron. (B) A schematic of mouse tail vein injection studies. Plasmid
vectors shown in (A) are administered into 8- to 10-wk-old C56BL/6 mice by hydrodynamic in-
jection. Liver tissues were collected 1 wk after injection. (C ) Dose titration of Nme2Cas9+
sgRNA plasmid to AcrIIC3 plasmid in vivo. Percentage of indels at the Rosa26 target in the liv-
ers of C57Bl/6 mice were measured by targeted deep sequencing after hydrodynamic injec-
tion of Nme2Cas9+ sgRNA and AcrIIC3 plasmids at mass ratios of 1:1, 1:1.5, and 1:2.
(D ) Genome editing in the liver by Nme2Cas9 is inhibited by AcrIIC3 but restored when
AcrIIC3-3xmiR122BS is silenced. Indel percentages at the Rosa26 locus in the livers of
C57Bl/6 mice were measured by targeted deep sequencing after hydrodynamic injection of
Nme2Cas9+ sgRNA plasmid, along with AcrIIC3 plasmids with or without 3xmiR122BS. n=
6 mice per group. ns= not significant, P<0.05 by unpaired, two-tailed t-test.
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GC of either (i) scAAV9-AcrIIC3-sgRNA, (ii) scAAV9-
AcrIIC3-3xmiR122BS-sgRNA, or (iii) scAAV9-AcrIIA4-
sgRNA vector (Fig. 5B). AcrIIA4 was used as a noncognate,
negative-control anti-CRISPR (Fig. 5A). Both liver and heart
tissue samples were collected for indel analysis and histol-

ogy at 2-wk (n=1, Supplemental Fig.
S4) and 5-wk (n=5) time points (Fig.
5). We observed no apparent tissue
damage associated with AAV9 deliv-
ery of Nme2Cas9 and anti-CRISPR
proteins following H&E staining of liv-
er and cardiac muscles (Fig. 5C). Con-
sistent with in vivo delivery by
hydrodynamic injection, editing in liv-
er was inhibited by AcrIIC3 but not by
AcrIIC3-3xmiR122BS, in accord with
microRNA silencing of the latter in
hepatocytes (Fig. 5D). In contrast,
off-tissue editing in the heart was in-
hibited by both of the AcrIIC3 and
AcrIIC3-3xmiR122BS vectors, indicat-
ing that the latter was effectively ex-
pressed in the absence of miR-122 in
cardiomyocytes. This trend was ob-
served in tissues collected at both
2- and 5-wk time points, although (as
expected) editing efficiencies were
higher overall at 5 wk post-injection
(Supplemental Fig. S3A). Robust
Nme2Cas9 expression was detected
by IHC in the liver as well as the cardi-
ac muscles at both time points, cor-
roborating that the lack of editing
was indeed due to AcrIIC3 inhibition
and not due to lack of Nme2Cas9 ex-
pression (Supplemental Figs. S3B,
S4A). We also used RT-PCR to confirm
that AcrIIC3 mRNA is expressed in
these tissues (Supplemental Fig.
S4B). Collectively these results dem-
onstrate that Type II anti-CRISPRs
can be used as AAV-deliverable off-
switches for genome editing in vivo,
and furthermore that they can be ef-
fectively rendered miRNA-repressible
to enforce the tissue specificity of ge-
nome editing activity.

DISCUSSION

Although CRISPR–Cas9 technologies
have immense promise in numerous
aspects of biomedical science, many
applications will benefit from tight
temporal or spatial control over Cas9

activity, especially in the context of clinical development.
Confining Cas9 activity to target cells and tissues of in-
terest is highly desirable to prevent unforeseen adverse
effects associated with off-tissue and off-target editing
in vivo. Natural inhibitors of Cas proteins, anti-CRISPRs,
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FIGURE 5. AAV delivery of a miRNA-repressible AcrIIC3 inhibits Nme2Cas9 editing in a
nontarget tissue. (A) Design of a dual-AAV9 system for Nme2Cas9, sgRNA, and anti-CRISPR
expression. A single-stranded AAV9 (ssAAV9) vector encodes Nme2Cas9 and a self-comple-
mentary AAV9 (scAAV9) vector encodes an anti-CRISPR protein (AcrIIC3, AcrIIC3-
3xmiR122BS, or AcrIIA4) as well as a U6-driven sgRNA targeting Rosa26. (U1a) murine promot-
er, (BGH) bovine growth hormone poly(A) signal, (CB-PI) cytomegalovirus-enhancer, (CB)
chicken β-actin promoter with SV40-derived mini-intron, (ITR) inverted terminal repeat. (B) A
schematic of mouse studies for AAV9 delivery. The dual-AAV9 system shown in (A) was admin-
istered into 8- to 10-wk-old C56BL/6 mice via tail vein injection. Liver and heart tissue samples
were collected at 2- and 5-wk post-injection. (C ) H&E staining of liver and heart tissue sections
collected from mice 5 wk after AAV9 injection. Scale bar, 100 µm. (D) Genome editing in liver
and heart tissue samples 5 wk after AAV delivery. Nme2Cas9 is inhibited by AcrIIC3 in both
liver and heart tissues. In contrast, when AcrIIC3-3xmiR122BS is used, editing is restored in
the liver but not in the heart, due to anti-CRISPR repression by the hepatocyte-specific miR-
122. Indel percentages at the Rosa26 locus were measured by targeted deep sequencing.
For the 5-wk time points, n=5 mice per group. ns= not significant; P<0.05 by unpaired,
two-tailed t-test. Control, PBS-injected.

Control of Cas9 by miRNA-regulated anti-CRISPRs

www.rnajournal.org 1427

 Cold Spring Harbor Laboratory Press on February 6, 2020 - Published by rnajournal.cshlp.orgDownloaded from 

http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.071704.119/-/DC1
http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.071704.119/-/DC1
http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.071704.119/-/DC1
http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.071704.119/-/DC1
http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.071704.119/-/DC1
http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.071704.119/-/DC1
http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.071704.119/-/DC1
http://rnajournal.cshlp.org/
http://www.cshlpress.com


can be repurposed as tools to limit the potential for un-
wanted edits. Acrs have several potential advantages for
implementation as regulators. They are natural and genet-
ically encodable inhibitors of Cas nucleases that have
evolved as powerful inactivators of CRISPR immunity, usu-
ally offering some degree of specificity for particular types
of CRISPR-Cas systems. Moreover, their inhibition is often
tunable or titratable based on the relative expression levels
of Acrs and the target effectors, given the stoichiometric
mechanisms of action for most of them (Bondy-Denomy
2018; van Gent and Gack 2018). Most Acrs are small pro-
teins that can tolerate fusions of fluorescent proteins or
epitope tags, which could make them convenient for in
vivo delivery by viral vectors or mRNAs and detection by
fluorescence.

Here we present a proof-of-concept demonstration of
anti-CRISPR regulation by endogenous miRNAs in vivo,
yielding tissue-specific control over CRISPR–Cas9 editing.
In preliminary work, we demonstrated that miRNA-mediat-
ed inhibition of anti-CRISPRs bearing hepatocyte-specific
miR-122 MREs allows genome editing in a human hepato-
cyte cell line, but inhibits editing in a nonhepatocyte-
derived cell line. Although this study used AcrIIC3 for
Type II-C Nme1Cas9 and Nme2Cas9, as well as AcrIIA4
for Type II-A SpyCas9, any well-validated combination of
Acr-Cas nuclease will be compatible with this strategy,
making it a versatile platform. With the wealth of new
Acrs emerging for different CRISPR effectors (e.g.,
Cas12a; (Marino et al. 2018; Watters et al. 2018), we ex-
pect that opportunities for implementing this strategy
will continue to increase. Expression profiles of many
miRNAs are well-defined for many tissues at many devel-
opmental stages and in numerous disease states (Alva-
rez-Garcia and Miska 2005). For example, miR-1 is highly
and specifically expressed in cardiac and skeletal muscle
tissues (Horak et al. 2016). The miRNA-repressible Acr sys-
tem affords great flexibility in changing editing tissue spe-
cificity, given the ease with which the MREs can be
swapped into the 3′UTR of the Acr transcript. Furthermore,
because MREs are so small, this approach is well suited for
viral modes of delivery (given the genome capacity con-
straints of viral vectors), and could confer specificity for
some tissues that lack vector-compatible, tissue-specific
promoters.

We extend this strategy to animal studies that document
anti-CRISPR efficacy during Cas9-mediated editing in vivo
in adult mammals. To our knowledge, this is the first dem-
onstration of in vivo expression of Acr proteins in verte-
brate models to inhibit Cas9 editing activity. From this
study, we did not observe overt toxicity in the examined
tissues, although the safety and immunity profiles of deliv-
ered Acr proteins will need to be investigated over longer
periods of time and in additional biological contexts. Im-
portantly, we exploited endogenous miRNAs for spatial
control of anti-CRISPR expression to achieve tissue-specif-

ic editing by Nme2Cas9 in vivo in adult mice. The endog-
enous miRNA repertoire has been combined with the
CRISPR-Cas machinery previously to regulate the expres-
sion of Cas9 itself (Senís et al. 2014; Hirosawa et al.
2017).Whereas detargeting Cas9 expression from the liver
(e.g. with miR-122) will allow editing to occur everywhere
except the liver, our strategywill instead restrict Cas9 activ-
ity to the liver itself and protect other tissues from unwant-
ed editing events. This will be particularly useful to restrict
Cas9 genome editing to a single desired tissue following a
systemic Cas9 delivery by AAV. Our results complement a
strategy that exploits miRNAs to release sgRNAs from
longer, inactive precursors (Wang et al. 2019), though
this approach has not yet been validated in tissue-specific
editing applications in vivo. While our manuscript was in
preparation and revision, two reports also described
miRNA-regulated Acr strategies that enable cell-type spe-
cific editing in cultured hepatocytes and myocytes (Hiro-
sawa et al. 2019; Hoffmann et al. 2019). Our studies
extend this work by establishing that miRNA-repressible
anti-CRISPRs can enforce the tissue specificity of genome
editing in discrete organs of adult mammals in vivo.

MATERIALS AND METHODS

Vector construction

Codon-optimized AcrIIC3 and AcrIIA4 sequences were ordered
as gBlocks (IDT) and amplified using the primers with overhangs
to the pCSDest vector by NEBuilder HiFi DNA Assembly (NEB).
Similarly, an mCherry ORF was fused to the caboxyl terminus of
each Acr by HiFi DNA assembly (NEB). To insert 3xmiR122
MREs in the 3′ UTR of each Acr, top and bottom strands were or-
dered as oligos (IDT) with restriction sites for SacI and HindIII and
annealed before ligating into the vector linearized with the same
restriction enzymes. For in vivo experiments involving a hydrody-
namic injection, we used the Nme2Cas9-sgRNA_Rosa26 all-
in-one AAV vector (Edraki et al. 2018). To make scAAV vectors
expressing Acr proteins, the original scAAV plasmid encoding
an EGFP ORF [a kind gift from Jun Xie and Guangping Gao
(UMass Medical School)] and pCSDest-Acr plasmids were digest-
ed with SacI and AgeI restriction enzymes and then ligated. For
AAV vector preparation, a U6-driven sgRNA cassette was re-
moved from the Nme2Cas9 vector by restriction digestion with
MluI and assembled into linearized scAAV-EGFP by Hifi DNA as-
sembly (NEB). This vector was digested with SacI and AgeI for
AcrIIC3, AcrIIC3-3xmiR122BS, or AcrIIA4 inserts made from
pCSDest plasmids using the same restriction enzymes. The se-
quences of codon-optimized Acr constructs and miRNA-122
MREs are provided in the Supplemental Table S1. All plasmids
used in this study are summarized in Supplemental Table S2
and will be made available from Addgene.

Cell culture and transfection

HEK293T and Huh-7 cell lines were cultured in Dulbecco’s mod-
ified Eagle’s medium supplemented with 10% fetal bovine serum
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(Sigma) and 1% penicillin-streptomycin (Gibco). For editing ex-
periments in vitro, a total of 150 ng of Cas9, 150 ng of sgRNA,
and 50 ng of Acr or an empty plasmid were transiently transfected
in a 24-well format using Lipofectamine 2000 (Invitrogen) accord-
ing to the manufacturer’s protocol. The total DNA amount was
kept constant by adding a stuffer plasmid in all cases. For western
blot and flow cytometry analysis, 500,000 cells/well were seeded
onto a six-well plate, and 500 ng of each Acr vector and GFP plas-
mid (the latter used as a transfection control) were transfected us-
ing Lipofectamine 2000 (Invitrogen) following the manufacturer’s
protocol. Prior to flow cytometry analysis, cells were imaged using
an EVOS Cell Imaging System (Thermo Fisher).

Flow cytometry

Cells were trypsinized 48 h post-transfection, washed with PBS,
and resuspended in PBS. A total of 100,000 cells were analyzed
on a MACSQuant® VYB (Miltenyi Biotec). A yellow laser (561
nm) with a 615/20 nm filter and a blue laser (488 nm) with a
525/50 nm filter were used for mCherry and GFP detection, re-
spectively. Subsequent analysis was performed using FlowJo
v10.4.1. Cells were first sorted based on forward and side scatter-
ing (FSC-A vs. SSC-A), and then single cells were gated using
FSC-A and FSC-H. Finally, mCherry-positive cells were recorded
to estimate the expression level of anti-CRISPR proteins after gat-
ing for GFP-positive (transfected) cells.

Western blots

Proteins were collected 48 h post-transfection and their con-
centrations were measured using the Pierce BCA Protein Assay
Kit (Thermo Fisher Scientific). Western blots were performed as
described previously (Lee et al. 2018) with primary mouse anti-
Flag (AbClonal, 1:5000) used for Acr detection and rabbit anti-
HSP60 (1:5000) used for loading control. After incubation
with secondary anti-Rabbit or anti-Mouse antibodies (LI-COR
IRDye, 1:20,000), blots were visualized using a LI-COR imaging
system.

Mouse studies

C57BL/6 mice were obtained from Jackson Laboratory and all an-
imal maintenance and procedures were performed following the
guidelines of the Institutional Animal Care and Use Committee
of the University of Massachusetts Medical School. Plasmids for
hydrodynamic tail vein injection were prepared using the
EndoFreeMaxi kit (Qiagen). For hydrodynamic liver injection, a
total of 90 µg of endotoxin-free plasmids was suspended in 2
mL of injection-grade saline and injected via the tail vein into
8- to 10-wk-old C57BL/6 mice. Mice were euthanized 7 d post-
injection and liver tissues were collected and stored at −80°C
for analyses. For AAV injection, 4×1011 GC of ssAAV-
Nme2Cas9 and 4×1011 GC of scAAV-U6_sgRNA-Acr (a total of
8× 1011 GC per mouse) were resuspended in 200 µL PBS and ad-
ministered via tail vein injection. Tissue samples from heart and
liver were collected and stored at −80°C for indel analysis and
histology at 2- and 5-wk post-injection.

Indel analysis

Genomic DNA from cells or tissues were collected using a
DNeasy Blood and Tissue Kit (Qiagen). Indel frequencies were
measured by targeted deep sequencing. Targeted deep se-
quencing analyses were done as previously described
(Bolukbasi et al. 2015). Briefly, target sites were amplified using
High Fidelity 2× PCR Master Mix (NEB) in a two-step PCR ampli-
fication with locus-specific primers in the first step and then with
universal index primers to reconstitute TruSeq adapters. Full-
size products were gel-extracted and purified using a DNA
Clean and Concentrator Kit (Zymo). The purified library was
sequenced using a paired-end 150 bp MiniSeq run using a Mid-
output cartridge (Illumina). Rawdeep sequencing data are provid-
ed in the Supplemental Excel File.

Immunohistochemistry

Liver tissues were fixed in 4% formalin overnight, paraffin-
embedded, and sectioned at the UMass Morphology Core. For
Figure 5C and Supplemental Figure S2A, sectioned slides were
stained with H&E for pathology analysis. For IHC, liver sections
were dewaxed, rehydrated, and stained following standard proto-
cols previously described (Xue et al. 2011) with primary antibod-
ies against 3xHA-tagged Nme2Cas9 (anti-HA; Cell Signaling) and
mCherry (anti-RFP; Rockland). Representative images are shown.

RT-PCR analysis

Total RNA (0.5–1 µg) frommouse tissues were collected by TRIzol
(Invitrogen) and then reverse-transcribed to cDNA using random
hexamer primers and SuperScript III First-Strand Synthesis System
(Invitrogen) following the manufacturers’ protocols. cDNA tem-
plates were directly used for PCR amplification using primers spe-
cific for (1) Nme2Cas9, (2) AcrIIC3, and (3) GAPDH. Primer
sequences are provided in Supplemental Table S2. The resulting
RT-PCR amplicons were visualized by 2.5% agarose/1×TAE gel
electrophoresis.

Statistical analysis

Standard deviations are derived from each group that has a min-
imum of three independent replicates unless otherwise noted.
Unpaired, two-tailed t-tests were used to determine the statistical
significance between each group. Resulting P values <0.05, 0.01,
0.001, 0.0001 are indicated by one, two, three, or four asterisks,
respectively.

DATA DEPOSITION

High-throughput sequencing data is available in the NCBI
Sequence Read Archive (SRA) under the BioProject accession
code PRJNA555639. All other relevant data are available from
the corresponding authors upon request.

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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