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ABSTRACT 

HYBRID METAL/COVALENT ORGANIC FRAMEWORKS FOR SOLAR FUEL 

CONVERSION  

 

Sizhuo Yang 

 

Marquette University 2020 

 

   Due to the harsh environment issues such as air pollution and global warming and 

global energy crisis raised by using fossil fuels, it is urgent to find an alternative 

sustainable energy source. How to utilize solar energy-the most clean and abundant 

energy source on earth is challenging. Convert solar energy to clean fuel energy like 

H2 or hydrocarbons is ideal energy conversion strategy. Thus, design new materials 

for hydrogen generation or CO2 reduction have attract researcher’s attention. 

   The present study focuses on two types of materials of interest, the first of which 

is Metal Organic Frameworks (MOFs), including enhancing the light harvesting 

ability of ZIF-67 via energy transfer from RuN3, electron transfer in hybrid Pt-Ru-

UIO-67, Co-Ru-UIO-67 and Ce-TCPP MOF. Since MOFs have potential to be used as 

photocatalytic materials for artificial photosynthesis due to their unique porous 

structure and ample physicochemical properties of the metal centers and organic 

ligands in framework, we also examine the photocatalytic activity of these materials 

for hydrogen generation. By using the combination of X-ray absorption spectroscopy 

(XTA), transient absorption spectroscopy (TA), the fundamental roles of hybrid MOF 

that plays during catalysis were uncovered. The second type of materials that we are 

interested in is Covalent Organic Frameworks (COFs). A 2D COF with incorporated 

Re complex was designed, which can efficiently reduce CO2 to form CO under visible 

light illumination with high electivity (98%). More importantly, using advanced 

transient optical and X-ray absorption spectroscopy and in situ diffuse reflectance 

spectroscopy, three key intermediates that are responsible for charge separation (CS), 

the induction period, and rate limiting step in catalysis were found, which is expected 

to provide important guidance on designing efficient materials for CO2 reduction, thus 

facilitating the development of solar to fuel conversion
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Chapter 1. 

INTRODUCTION 

 

1.1 Need for sustainable energy source 

 

 

Today, more than 80% of the world’s energy is supplied by fossil fuels.1 However, 

considering the rapid increase of energy demand in the world, the exhausting fossil 

fuels in the foreseeable future will heavily hinder the sustainable development. 

Meanwhile, burning fossil fuels also cause environmental issues such as air pollution 

and emission of carbon dioxide which is one of the major greenhouse gases causing 

global warming. As a result, the exploration of sustainable clean energy sources to 

replace fossil fuels is of great interest and is one of the most hot research topics 

nowadays. Among different renewable energy sources such as wind, biomass, tidal 

energy and geothermal, solar energy is one of the most promising line for development 

because of its abundance and sustainability. Sunlight provides 3 × 1024 J of energy per 

year, which is far beyond the total current global energy consumption (13.7 TW).2 As a 

result, efficient conversion of solar energy to other energy sources that can be used by 

humans offers great chance to address the problems of energy shortage and air pollution. 

There are two main solar energy conversion strategies, i.e. solar-to-fuel conversion and 

solar-to-electricity conversion. Direct conversion of sunlight to fuel is an attractive way 

because the energy can be stored in chemical bonds such as H2 through water splitting 

process or high-energy carbon compounds through CO2 reduction. This strategy mimics 

the photosynthetic system in nature and is named artificial photosynthesis.3-4 Direct 
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conversion of solar energy to electricity is another common approach where the 

electricity from a photovoltaic cell can be used directly or stored in a secondary device 

such as batteries.5 

 

1.2 Solar to Fuel Conversion through Artificial photosynthesis 

 

 

   Photosynthesis is the chemical process by which plants convert energy from the 

sun into the form of hydrocarbon that act as fuels. The whole process can be break 

down into two stages- the light and dark reactions. Organic energy molecules (ATP 

and NADPH) are generated during light reaction as fuel to produce hydrocarbons in 

the dark reaction. Figure 1.1 illustrates the photosynthesis process in nature, which 

undergoes light harvesting, charge separation, water oxidation and fuel production to 

complete the circle.6 In photosystem II (PS II), antenna pigment molecules (mostly 

chlorophyll and/or carotene) absorb sunlight and transfer the energy to the reaction 

center where charge separation occurs.7 The positive charges are used to oxidize 

water, while the electrons are passed to photosystem I (PS I) via cytochrome bf. In PS 

I, a second light-harvesting process occurs and provides additional energy to the 

electrons, which raises electrons to a more negative redox potential. This is followed 

by electron transfer to ferredoxin and reduce NADP+ to NADPH. The transport of 

electron from water to NADP+ generate a pH gradient across the thylakoid membrane. 

This proton motive force is used to drive the synthesis of ATP, which works together 

with NADPH to produce carbohydrate fuel.8-9 
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Figure 1.1 A schematic diagram of natural photosynthesis showing light absorption, 

charge separation, water oxidation and fuel production. The path of the yellow line 

indicates the approximate energy of the electrons in analogy to the Z -scheme. 6 

    

 

   Motivated by the natural photosynthesis, researchers have developed artificial 

systems to perform similar photochemical reactions. Two types of strategies are 

commonly used for artificial photosynthesis systems. One of them (Figure 1.2a) is 

featured by a single component photosensitizer (either molecular dye or semiconductor) 

with electron donors on one side and electron acceptors on the other side. The 

absorption wavelength is tunable by modifying the dye structure or designing the 

electronic structure of semiconductor. To complete the whole process, electron donor 

and acceptor need to meet two requirements. First, the energy level of donor (acceptor) 

should between water oxidation (reduction) potential and reduction (oxidation) 

potential of the photosensitizer. Second, fast electron transfer must occur before the 

excited photosensitizer returns to its ground state. However, there are several 

drawbacks of this single photosensitizer setup. Considering the water oxidation 

(+1.23V vs. NHE) and reduction potential (0V vs. NHE), there are limited choice of 
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photosensitizers. Meanwhile, only a fraction of sunlight can be used  

 

 

Figure 1.2 Artificial photosynthesis charge separation process: (a) one step and (b) two 

step reactions.10 

 

 

to drive such reaction simultaneously. An alternative strategy that includes two 

photosensitizers is shown in Figure 1.2b. This strategy is more analogous to natural 

photosynthesis, where two chromophores absorb different part of the solar spectrum 

to drive water oxidation and H2 generation reaction in tandem. In this way, the 

number of photons absorbed by the artificial photosynthesis system can be 

maximized.11 However, it is more difficult to control the kinetic balance of electron 

transfer between the two steps. Hence, many efforts have been focused on the half 

reactions such as hydrogen generation reaction (HER), oxygen generation reaction 

(OER), and CO2 reduction reaction to gain insight of these half reactions before the 

overall process of artificial photosynthesis can be understood.12-14 

   There are three key steps in artificial photosynthesis systems, 1) appropriate light 

harvesting materials that can absorb significant portion of sunlight, 2) efficient charge 
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separation and sequential charge migration to the reaction centers, 3) utilization of 

charge carriers to drive photocatalytic reactions. The first example of artificial 

photosynthesis can be traced back to 1972 and reported by Fujishima,15 where TiO2 

was used as photoanode to perform water splitting reaction. Since then, various 

systems for artificial photosynthesis have been developed in the past decades. These 

systems can be mainly divided into two categories, homogeneous molecular system 

and heterogeneous semiconductor based photocatalytic systems. Homogeneous 

solution-based systems comprising molecular photosensitizer (PS) and catalysts have 

naturally attracted much attention because of their merit in synthetic control over 

functional tunability and selectivity (Figure 1.3).16-18 However, their limitation on 

stability and efficiency remain a major challenge. In contrast, heterogeneous systems 

such as Ti-, Zr-, Nb-, Ta-, W-, Mo- based oxides19-22 have shown beneficial features in 

long-term durability and high catalytic activity. However, these materials not only 

lack design flexibility but also suffer from the difficulty of characterizing their 

mechanistic functions, rendering poor understanding of the origins behind their 

remarkable catalytic efficiency.   

  

Figure 1.3 Molecular structures of Fe complexes 1, 2, and 3 as molecular catalysts for 

water-oxidation, hydrogen-evolution and CO2 reduction. 23 
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1.3 Metal Organic Frameworks as Emerging Photocatalytic Materials 

 

 

 

Figure 1.4 Design strategy for MOFs with 1D, 2D, and 3D network structures. 24 

  

 

   To integrate the beneficial features and overcome the drawbacks of homogeneous 

and heterogeneous photocatalytic systems, it is not surprising that metal organic 

frameworks (MOFs) and covalent organic frameworks (COFs) have attracted 

intensive attention as photocatalytic materials owing to their capability to incorporate 

photosensitizer and/or catalysts to the frameworks with retained heterogeneity. 

   Metal Organic Frameworks (MOFs) represent a novel class of porous crystalline 

materials constructed from metal-containing units [secondary building units (SBUs)] 

and organic linkers as bridge.25-28 The assembly of these networks are illustrated in 

Figure 1.4. The metal centers act as lattice nodes and are held in place by coordinating 

to rigid organic linkers. In many cases, the frameworks are stable enough to remove 

the solvent or other guest molecules, which makes crystallinity and porosity the main 

characteristics of MOFs. The pores in the MOFs can be tuned by replacing the ligand 

with different length to form 1D, 2D or 3D networks, which results in the high surface 
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area of such materials. The versatility of organic linkers and metal nodes, together 

with large surface area and the porosity make MOFs an ideal material for various 

applications, including gas storage, drug delivery, catalysis, molecular sieves,29-31 as 

well as photoactive materials for H2 generation and CO2 reduction.32-33 (Figure 1.5) 

 

 

Figure 1.5 Potential applications of MOFs for gas storage and separation, drug delivery, 

chemical sensor, catalysis and so on. 34  

 

 

1.3.1 MOFs as light harvesting materials for artificial photosynthesis  

 

 

   Inspired by natural photosynthesis, two strategies have been developed to enhance 

light harvesting property of MOFs: (1) incorporating light-harvesting chromophores 

into MOFs framework and (2) introducing light harvesting guest materials to the 

cavity or on the surface of MOFs (Figure 1.6). 
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Figure 1.6 Approaches for the enhancement of light-harvesting properties of MOFs. 

Yellow and red spheres represent the guest molecule and QD, respectively. 35 

 

 

Organic or metal organic chromophores as building blocks 

 

 

   Since light absorption by the photosensitizer is the first step for rational design of 

a photocatalytic system, it is highly desirable to have building blocks in MOFs that 

can directly absorb light in the visible region.  

   The linkers in MOFs are generally aromatic units functionalized with carboxylate 

groups for metal-ligand coordination. The aromatic units often have intense 

absorption above 250 nm or can extend to the visible region due to n-π* and/or π- π* 

transition. Therefore, it is possible to have MOFs with visible light responses. Indeed, 

MOFs with incorporated organic and metal-organic chromophores that demonstrate 

visible light response such as porphyrin, phthalocyanines and polypyridyl metal 

complexes have been reported and many of them showed good photocatalytic 

performance. Since these organic linkers are stabilized in MOFs, it has been shown 

that their non-radiative decay rates was reduced, which caused the increase of their 

fluorescence lifetime. In addition, the molecules are closely packed in MOF 

framework which enables charge transfer among organic ligands, resulting in the shift 
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of their spectra, the broadening of the emission, and loss of fine structure. By means 

of the appropriate substitution of aromatic linkers, it is possible to shift photo-

responses of MOFs towards visible region.  

 

Figure 1.7 An illustration of the effect of -NH2 substitution which adds an additional             

energy level to the band gap of MOFs. 36 

 

 

One example that illustrates the influence of substitution on the optical properties of 

MOFs is the use of the –NH2 group (Figure 1.7) as a substitute of 1,4 

benzenedicarboxylic acid (bdc), where it introduces a new band around 400 nm in the 

aminated MOF. 36-38 Similar strategy has also been used in uio-66 Zr-MOF. By 

modifying linkage with -NH2 functional group, uio-66-NH2 shows absorption ability 

in visible region, which can be used as photosensitizer for H2 evolution reaction.39 

Moreover, it is possible to incorporate a complementary pair of chromophores as 

struts, which may result in energy transfer from the incorporated chromophore and 

relay energy to MOFs to enhance the light absorption ability. As shown in Figure 1.8, 

Hupp’s group reported energy transfer between different ligands of the so-called BOP 
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MOF.40 By replacing dipyridyl boron dipyrromethene in BOB MOF with tetra-acid 

porphyrin, strut to strut energy transfer occurs within the framework, which shifts the 

emission of BOP MOF from green to red.  

    

Figure 1.8 BOB and BOP MOF: building blocks, structures and photophysical 

processes of excitation, emission and energy transfer (ET). 40 

 

 

   Lanthanide based MOF is another type of photoactive MOFs which are widely 

used in biological analysis. Lanthanide ions are characterized by a gradual filling of 

the 4f orbitals, from 4f0 to 4f14. The valence 4f electrons of trivalent lanthanide ions 

are well shielded from the environment by the outer core 5s and 5p electrons. The 

lanthanide ions suffer from weak light absorption due to the forbidden f-f transitions, 

making the direct excitation of metals inefficient. This problem can be overcome by 

coupling ligands that can participate in energy transfer processes, known as antenna 

effect. The mechanism of photoactive process within lanthanide based MOF is 
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comprised of three steps: (1) light is absorbed by the organic ligands around the 

lanthanide ions; (2) energy is transferred from the organic ligands to lanthanide ions 

through intramolecular energy transfer; (3) luminescence is generated from the 

lanthanide ions via radiative process. Figure 1.9 shows an example of Eu based MOF, 

where energy transfer occurs from ligand to Eu after photoexcitation of dicarboxylic 

ligand, which is followed by emission from Eu3+.41 

 

 

Figure 1.9 Antenna effect of Ln MOF. 41 

 

 

Encapsulating light harvesting guest nanoparticles in the cavity of MOFs 

 

 

   Owing to their large pore size, MOFs can offer a unique platform to encapsulate 

luminescent species. A variety of nanoparticles, including Au, Ag, Pt, CdTe, Fe3O4, 

NaYF4,42-44 have been successfully encapsulated to MOFs. For example, 

semiconductor nanoparticles (CdSe quantum dots) with emission bands that have 

overlap with the absorption bands of MOFs have been encapsulated to F-ZnP and 

DA-ZnP MOF. Monitoring the change of kinetics of quantum dot emission when 

quantum dots were bound to the surface of MOF, the energy transfer from quantum 

dots to MOF occurs with 80% efficiency (Figure 1.10).45 Another example is that 

Jiang’s group developed a core-shell MOF-5-ZnO, which shows a blue shift in green 
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emission and intensity reduction in UV emission compared with that of pure ZnO 

arrays.46 

 

 

Figure 1.10 Schematic diagram of a QD−MOF complex. 45 

 

 

1.3.2 MOFs as photocatalysts 

 

 

   Recently, the use of MOFs as catalysts for various reactions have become an 

emerging field. Similar to photoactive MOFs, three strategies are used to introduce 

catalytic sites to the framework: (1) Linker functionalization by in-situ growth or post  

Figure 1.11 The potential catalytic sites of MOFs. 47 

 

 

synthetic modification, (2) Use metal nodes (clusters) as active sites, (3) 

Nanoconfinement of particles within the pore of MOFs as catalysts (Figure 1.11). 
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Examples of the applications of these MOF based systems for organic reactions 

include H-KUST-1 and chromium terephthalate MIL-101 for cyanosilylation,48 Yb-

RPF-5 for hydrodesulfurization,49 IRMOF-1 and IR-MOF-8 for the alkylation of 

aromatics,50 photooxidation of alcohols to the corresponding aldehydes by NH2-MIL-

101,51 and core-shell Au@ZIF-8 for photoreduction of nitrobenzene52 etc. In addition 

to catalyze organic reactions, MOFs can also be used as photocatalysts for H2 

generation and CO2 reduction. Examples of MOFs as photocatalysts for H2 generation 

and CO2 reduction are summarized in Table 1. 

 

 

Table 1.1 Summary of photocatalytic reactions on H2 generation and CO2 reduction 

with various MOFs. 

Photocatalyst Light source (sacrificial 

agent) 

Photoactivity 

Photocatalytic H2 evolution   

Al-ATA-Ni MOF UV–Visible 36 μmol h−1(30mg) 53 

Pt@MOF-1 or Pt@MOF-2 450W Xe-lamp (TEA), 

Visible 

3400 or 7000 TON 54 

H2TCPP[AlOH]2(DMF3-

(H2O)2)      

300W Xe lamp (EDTA), 

Visible                  

200 μmol g-1h-1 55 

MOF-253-Pt                       300W Xe lamp (TEOA), 

Visible                 

3000 μmol 56 

Pt/NH2-UiO-66                    200W Xe-doped Hg lam 

(CH3OH)   

2.8 mL 57 

RhB/UiO-66(Zr)-100*               300W Xe lamp (TEOA) 33.9 μmol g-1h-1 32 

Pt-UiO-66-30                      300W xenon lamp (20% 

CH3OH)   

37 μmol 58 

Fe2O3@TiO2/Pt                     Xe lamp (TEA) 0.8 μmol 59 

Co@NH2-MIL-125(Ti) 500W Xe/Hg lamp 37 μmol 60 

CdS/MIL-101(10)/Pt Xe (10 vol% lactic acid)  75.5 mmol h−1 61 

 

−1 

Ni/MIL-101 Xe (0.5 m ammonia borane)         TOF: 3238 h−1 62 

UiO-66- [FeFe] (dcbdt)(CO)6 Blue LED (ascorbic acid)  3.5 μmol (0.59 μmol catalyst) 

63 

in 150 min 

Photocatalytic CO2 

reduction 

 

  

NH2-MIL-125(Ti) Xe lamp (CH3CN/TEOA) 8.14 μmol HCOO- 64 

NH2-UiO-66 500W Xe lamp (TEOA) 13.2 μmol HCOO- 65 

MIL-101(Fe) or NH2-MIL-

101(Fe) 

300W Xe lamp(CH3CN/ 

TEOA) 

59 or 178 μmol HCOO- 33 

MOF-253-Ru(CO)2Cl2 Xe lamp (CH3CN and TEOA) 0.67 μmol HCOO- 66 

Cp*Rh@UiO-67 300 W Xe lamp (TEOA) 47 TON 67 

CdS/Co-ZIF-9 300 W Xe lamp (TEOA) CO (50.4 μmolh-1) 68 
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ZIF-8/Zn2GeO4 500 W Xe lamp 2.44 μmol g-1 CH3OH69 

UiO-67 BPDC with Ru (II) Xe (TEOA) 30.4 HCOO-, 10.9 CO 70 

  

 

  All these examples show the great potential of MOFs in photocatalytic application. 

However, majority of these works are centered on their catalytic performance and 

stability rather than fundamental mechanism. As light harvesting, charge separation 

and the utilization of separated charges carriers for catalytic reaction are key steps in 

photocatalytic systems, it is important to fully understand the roles that MOFs play 

during catalysis to further improve the catalytic performance.  

 

 

1.4 Covalent Organic Frameworks as Novel Photocatalytic Materials 

 

 

   Although MOFs are suitable for photocatalysis due to the multifunctionality, their 

stability under catalytic condition remains a challenge. Covalent Organic Frameworks 

(COFs) have attracted attention as another class of porous materials owing to their 

high porosity and chemical stability. In contrast to MOFs, COFs comprise of pure 

organic building blocks linked via strong covalent bonds.  

 

 

1.4.1 Design of Covalent Organic Frameworks 

 

 

   The design of Covalent Organic Frameworks considers the topology because it 

describes the connectedness of the material. The concept of topology originated from 

Euler in 18th century, which is given as the polyhedron formula:71 

          V-E+F=2                        (1)  
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Where V, E and F are the number of vertices, edges, and faces of a polyhedron, 

respectively. The left side of the equation 1 is called Euler characteristic (χ) and can 

be represented as  

                     χ = V-E+F                      (2) 

For any convex polyhedron χ =2. The study of topology helps to understand the 

connection between the building blocks of COFs which gives more insight of the pore 

structure of materials. 

 

Figure 1.12 Topology diagrams of COFs representing the relationship between the pore 

structures and blocks. 72 

 

 

   The polygon structure of COFs usually consists of knots and linkers, Figure 1.12 

shows the topology diagrams. The combination of C3 knots and C2 linkers (C3+C2) 

always form hexagonal structure.73-74 Using other combinations such as self-

condensation of C2 units or C3+C3 linkers also generate hexagonal COFs,75-76 where 

the only difference is that C2 units are located at knot while C3 units occupy the 
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vertices. Hexagonal topology can also be built from 3-component system C3+C1+C3 

linker. Among all the topologies, the combination of C4+C2 and C6+C2 usually 

exhibit extended π conjugation,77-80 where the former leads to tetragonal frameworks 

while the later has trigonal structure with highest density of π units and smallest pore 

size. Exploring tetragonal and hexagonal topology are useful in designing mesopore 

COFs, whereas trigonal geometry usually leads to microporous frameworks. The 

development of C2+C2 linkers can generate two types of different structures: the 

single-pore rhombic topology81-82 and dual-pore kagome shape83-84 with different pore 

volume in the materials. 

 

Figure 1.13 Self-condensation of boronic acid to form COF. Structure of one pore and 

space-filling diagram of COF-1. 85 

   

 

   Unlike amorphous polymers, COFs are crystalline materials with short and long-

range order. To ensure the extended crystallinity, chemical reactions involved in the 

formation of linkages should be reservable, which can thus provide self-healing 

ability for COFs to correct the defects. COFs were pioneered by Yaghi’s group. As 

shown in Figure 1.13, first COF 85 was synthesized by the self-condensation of 1,4-
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phenylenediboronic acid (BDBA) in the form of B3O3 rings to produce staggered 

structure with surface area of 711m2/g and 15Å pore diameter. In addition to self-

condensation, boronic acids can also react with catechols to form boronate esters. 

Those boronate COFs are thermally stable but degrade in the presence of H2O and 

alcohols. To enhance the structure stability, COFs have been synthesized via C-N 

linkage. The first example is COF-300 (Figure 1.14) 86, in which imine condensation 

of tetra-(4-anilyl) methane (TAM) and terephthaldehyde (BDA) results in crystal  

 

Figure 1.14 Example of first imine COF, the structure of COF-300 fragment. 86 

 

 

structure with 5-folder interpenetrated dia topology and surface area of 1360m2/g.  

Imine COFs show less crystallinity compared to that of boronate COFs, whereas the 

stability enhanced significantly in H2O and alcohols. Similar strategies have been 

applied between aldehyde and hydrazide or hydrazine to form hydrazone-linked COFs 

or azine-linked COFs.81, 87 Hydrazone-linked COFs usually shows remarkable 

stability because of the hydrogen bonding between oxygen in the alkoxyl chains and 

hydrogen in N-H unit, which stabilized the whole framework. Other COFs prepared 
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via C-N bond include squaraine-linked COFs, phenazine-linked COFs, imide COFs 

and triazine COFs (Figure 1.15).88-90 

 

Figure 1.15 Diversity of linkages for the formation of COFs. 72 

  

 

   The formation of C=C bonds has also been reported to prepare carbon-conjugated 

COFs. As shown in Figure 1.16, Jiang’s group reported the first sp2 c-COF  

 

Figure 1.16 Chemical and lattice structures of a crystalline porous sp2 c-COF. 91 

 

constructed from aryl acetonitriles and aromatic aldehydes via Knoevenagel 
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condensation reaction.91 Another strategy is forming olefin linkage via aldol 

condensation between 1,3,5-triazine and aryl aldehydes.92 Compare to imine, 

hydrazine and azine-linked COFs and sp2 c-COFs afford fully π conjugation which 

enables efficient exciton migration over the framework. Due to the low polarity of the 

C=C bonds, sp2 c-COFs shows pronounced stability even in acid or basic condition. 

 

 

1.4.2 Covalent Organic Frameworks for catalysis 

 

 

   In recent years, applying COFs for catalytic reaction becomes a hot topic. For 

example, Wang’s group reported imine-linked COF LZU-1 for Suzuki-Miyaura 

coupling reaction (Figure 1.17).93 By post treatment with Pd(OAc)2, Pd2+ can be 

inserted between two layers of LZU-1. The hybrid Pd/COF LZU-1 showed excellent 

yield of Suzuki coupling reaction, which is attributed to the easy access to the active 

sites of COFs and the fast diffusion of reactants within large pores. Other than C-C 

coupling, COFs have been used in various catalytic reactions include oxidation 

reactions,94 ethylene oligomerization reaction,95-96 reduction reactions,97 asymmetric 

synthesis98 et al. 
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Figure 1.17 Schematic representation for the synthesis of COF-LZU1 and Pd/COF-

LZU1 materials (a). Proposed structures of COF-LZU1 (b) and Pd/COF-LZU1 (c, d) 

possessing regular microporous channels (diameter of∼1.8 nm), simulated with a 2D 

eclipsed layered-sheet arrangement. 93 

 

 

   In addition to the chemical reactions, light absorption ability in visible region and 

easy treatment of ligands make COFs an ideal platform for photocatalysis. However, 

only few COFs have been applied in solar to fuel conversion. Lotsch’s group 

synthesized a series of azine-linked COFs for H2 generation with Pt as cocatalysts.99 

The performance of H2 evolution was related to the number of nitrogen atoms of Nx 

core in COFs. The same group also reported the use of N2-COF as photosensitizer and 

chloro(pyridine)cobaloxime as co-catalyst for H2 evolution with H2 generation rate 

782 μmol/h/g.100 By modifying the linker of N3-COF, Cooper’s group reported 

sulfone-containing N3-COF with high HER efficiency and good stability up to 50 

hours.101 More recently, several sp2 c-COFs have been exploited for H2 generation. 

Zhang’s group reported 2D sp2 g-Cx-N3-COF for visible light water splitting with 

apparent quantum efficiency of 4.84% at λ = 420 nm.102 Jiang’s group studied the key 
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factors that affect the HER efficiency of sp2 c-COFs.103 The frameworks can combine 

stability, crystallinity, porosity, and π conjugation in one material, which improve the 

light harvesting and charge migration during catalysis.  

   In nearly all those examples, hybrid MOFs/ COFs with built in photosensitizer 

and catalysts simultaneously are rare. Moreover, there is no clear understanding of the 

actual role of MOFs/COFs play, not to mention the structure function relationship of 

MOFs/COFs during catalysis. The further development of hybrid MOFs/COFs for 

solar to fuel conversion is largely hampered by the lack of fundamental study of 

photophysical events after excitation and the difficulty of controlling the structure 

precisely during catalysis.  

 

 

1.5 Summary of Research 

 

 

  The research in my graduate study aims to develop hybrid MOFs/COFs materials 

and unravel their structure-function relationships for their applications in solar energy 

conversion. In chapter 3, I will discuss the adsorption of a molecular chromophore 

(RuN3) onto the surface zeolitic imidazolate frameworks (ZIF-67), where the 

absorption of the former compensates the latter. We show that energy transfer can 

occur from RuN3 to ZIF-67 with ∼86.9% efficiency, which facilitated the light 

harvesting ability of ZIF-67. More importantly, this RuN3/ZIF-67 hybrid system 

exhibits significantly enhanced photocatalytic activity for H2 production from water, 

which can be attributed to efficient energy transfer from RuN3 to ZIF-67 However, 

this system has relatively low efficiency compared to other Co based photocatalysts 
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for H2 generation and poor stability due to the degradation of RuN3 photosensitizer.  

   In order to further improve the H2 evolution efficiency and overcome the stability 

issue of the molecular photosensitizers, we designed two hybrid MOF systems (Pt-

Ru-UIO-67 and Co-Ru-UIO-67) as single-site catalysts for H2 generation with built in 

photosensitizer and molecular catalysts, which were discussed chapter 4 and chapter 

5. Using the combination of optical transient absorption spectroscopy and transient X-

ray absorption spectroscopy/in-situ X-ray absorption spectroscopy, we not only 

unraveled the photophysical events happened after photoexcitation but also captured 

the key intermediate species in the catalytic cycle, providing important insight into the 

catalysis mechanism of these single-site MOFs photocatalysts. In chapter 6, we report 

the fundamental photophysical study of a porphyrin-based Ce-TCPP MOF using the 

combination of optical transient absorption (OTA) and X-ray transient absorption 

(XTA) spectroscopy. We found that ultrafast electron transfer occurs from porphyrin 

ligand to Ce center, resulting in the formation of long-lived charge separated state 

with ligand-to-metal cluster charge transfer (LCCT) character. These findings imply 

the large promise of using Ce-TCPP as light harvesting and charge separation 

materials for solar energy conversion. 

   In chapter 7, a newly designed 2D COF with incorporated Re complex was 

reported. This hybrid system can efficiently reduce CO2 to form CO under visible 

light illumination with high electivity (98%). More importantly, using advanced 

transient optical and X-ray absorption spectroscopy and in situ diffuse reflectance 

spectroscopy, three key intermediates that are responsible for charge separation (CS), 
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the induction period, and rate limiting step in catalysis were found. This study not 

only demonstrates the potential of COFs as next generation photocatalysts for solar 

fuel conversion but also provided unprecedented insight into the mechanistic origins 

for light-driven CO2 reduction.  
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Chapter 2 

EXPERIMENTAL AND CHARACTERIZATION 

 

 

   In this chapter, the experimental details of sample preparation and characterization 

will be discussed. The samples in these works include RuN3 sensitized zeolitic 

imidazolate frameworks (ZIFs), Ce-TCPP MOF, hybrid UIO-67 MOFs with 

incorporated photosensitizers and catalysts, and Re-COF. Standard characterization 

techniques used to determine the structure and morphology of these samples include 

powder X-ray diffraction (XRD), scanning electron microscope (SEM), Fourier-

transform infrared (FT-IR) spectroscopy. Advanced time-resolved spectroscopic 

techniques including time-resolved optical and X-ray absorption spectroscopy were 

used to examine the charge separation and structural dynamics associated with it. 

Furthermore, in situ spectroscopic techniques such as in situ diffuse reflectance 

spectrum and X-ray absorption spectrum that were used to probe the catalytic 

mechanism during catalysis. The photocatalytic activities of these hybrid ZIFs, MOFs  

and COFs for H2 production or CO2 reduction were also performed, where their 

experimental details are discussed here.    

 

  

2.1. Characterization and General Procedure.  

 

 

   UV-Visible absorption and diffuse reflectance spectra were taken using an Agilent 

8453 spectrometer equipped with Internal DRA 2500 accessories. Powder XRD data 
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were collected by using Rigaku Miniflex II XRD diffractometer with Cu Kα radiation. 

Scanning Electron Microscope (SEM) were taken by JSM 6510-LV (JEOL Ltd, 

Tokyo). Fourier-transform infrared (FT-IR) spectroscopy were measured with Nicolet 

iS5 FT-IR spectrometer. Gas adsorption isotherms were performed by using the 

surface area analyzer ASAP-2020. N2 gas adsorption isotherms were measured at 77K 

using a liquid N2 bath. To make MOF films, the mixture of MOF with ethanol 

(1mg/0.5mL) was sonicated for 2 hours and then dispersed evenly on piranha-etched 

glass. The films were dried in air.  

 

 

Femtosecond Transient Optical Absorption Spectroscopy (OTA). 

 

  

   The OTA spectroscopy is based on a regenerative amplified Ti-Sapphire laser 

system (Solstice, 800nm, < 100 fs FWHM, 3.5 mJ/pulse, 1 KHz repetition rate). The 

tunable pump (235-1100nm), chopped at 500Hz, is generated in TOPAS from 75% of 

the split output from the Ti-Sapphire laser. The other 25% generated tunable UV-

visible probe pulses by while light generation in a CaF2 window (330-720 nm) on a 

translation stage. Helios ultrafast spectrometer (Ultrafast Systems LLC) was used to 

collect the spectra. The power of the pump pulse on the sample is 0.15 mW/pulse. The 

film samples were continuously translated to avoid heating and permanent 

degradation.  

 

 

Steady State X-ray Absorption (XAS) spectroscopy.  
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   XAS spectra were measured at the beamline 12BM-B at the Advanced Photon 

Source (APS) in Argonne National Laboratory. The XAS spectra were collected under 

room temperature with fluorescence mode. The detector was based on 13-element 

germanium. One ion chamber is placed before the sample and used as the incident X-

ray flux reference signal. There are two ion chambers (second and third chambers) 

after the sample. The CeO2 foil is placed between the second and third ion chambers 

and used for energy calibration and collecting Ce4+ spectrum. The solid samples were 

dispersed on Kapton tape for XAS measurement. 

 

 

X-ray transient absorption (XTA) spectroscopy.  

 

 

   XTA spectroscopy was performed at the beamline 11ID-D, APS, Argonne 

National Laboratory. Samples were prepared by suspending 30 mg MOFs in 70 mL 

acetonitrile, which is followed by sonicating for 30 mins. The desired laser pump was 

generated by using TOPOS, which was pumped by the 800 nm from the ultrafast Ti: 

Sapphire laser amplifler system. The laser pump and X-ray probe intersect at a 

flowing sample stream with 550 m in diameter. The X-ray fluorescence signals were 

collected at 90˚ angle on both sides of the incident X-ray beam by two avalanche 

photodiodes(APDs). A soller slits/Ti filter combination, which was custom designed 

for the specific sample chamber configuration and the distance between the sample 

and the detector, was inserted between the sample stream and the APD detectors. The 

emitted Ce X-ray fluorescence collected at certain delay time after the laser pump 

pulse excitation was used to build the laser-on spectrum in APS hybrid mode.  
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2.2. Experimental Details for Chapter 3 

 

 

Materials.  

 

 

Methanol (Certified ACS, > 99.8%) was purchased from Fisher Chemical and 2-

methylimidazole (C4H6N2, 97%) was purchased from Alfa Aesar. Cobalt Nitrate 

Hexahydrate (Co(NO3)2·6H2O, 99%) was obtained from Acros Organics. Ruthenizer 

535(C26H16O8N6S2Ru, 99%) (RuN3) was purchased from Solaronix. Quartz substrate 

(3”x1”, 1mm thick) was purchased from Ted Pella Inc. 

 

 

The Synthesis of ZIF-67 Thin Film.  

 

 

ZIF-67 was synthesized according to the published procedure. Two precursor 

solutions were individually prepared by adding 0.73g Co(NO3)2·6H2O into 50 mL 

methanol and 1.65 g 2-methylimidazole into 50 mL methanol. After that, equal 

volume of the precursor solutions was mixed. The mixture was allowed to precipitate 

at room temperature for about 1 hour. ZIF-67 film was prepared by immersing a 

piranha-etched substrate into the above mixture, where ZIF-67 crystals directly 

precipitated on the substrate. This procedure was repeated 3 times. The film made 

after each cycle was rinsed with ethanol. The as-synthesized film was dried in air 

before characterization. 

   ZIF-67 suspension was made a large volume (100mL each solution) in the absence 

of a substrate. The precipitated ZIF-67 was washed thoroughly with methanol via 
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centrifugation to remove excess ligand and supernatant species. The precipitate was 

then re-suspended in methanol without being allowed to dry to preserve particle size. 

 

 

The Synthesis of Al2O3 thin films.  

 

 

Al2O3 nanoparticles were made using precursor Sol-gel method. Briefly, 1.8 g of 

Al(NO3)3 • 9H2O was added to 15 ml isopropanol, which was followed by stirring for 

1 h at room temperature. The obtained colloid was transferred to an autoclave and 

heated at 200oC for 16h. The resulting white precipitate was washed with ethanol 3 

times and then mixed with ethanol and 3 drops of Triton X-100 under magnetic 

stirring. To make Al2O3 film, the above mixture was spin-coated to piranha-etched 

substrate, which is then annealed at 450oC for 1.5 h. 

 

 

The Synthesis of RuN3/ZIF-67 and RuN3/Al2O3 thin films.  

 

 

RuN3/ZIF-67 and RuN3/Al2O3 films were prepared using dye-sensitized approach, 

where ZIF-67 and Al2O3 films were immersed into to 1mg/mL RuN3 in methanol 

solution for ~20 min and 3h, respectively. The obtained RuN3 sensitized films were 

rinsed with ethanol to remove the physically adsorbed RuN3. The film was allowed to 

dry in air before characterization. 
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Photocatalytic Hydrogen Production Reaction.  

 

 

Samples for photocatalytic hydrogen production were prepared in 6 mL septum-

sealed glass vials. Each sample was made up to a volume of 4 mL, including1mg of 

ZIF-67, 3 mL of CH3CN, and 0.2 mL of H2O. 0.3 mL of TEOA (triethanolamine) was 

added and used as the sacrificial reducing agent. 0.1 mL 2x10-4 M RuN3 in 

acetonitrile was added to the mixture and used as photosensitizer. The mixture was 

purged with N2 for 15 mins before irradiation by a blue LED (405 nm) lamp. The 

mixture was kept stirring during photocatalytic reaction. The amount of H2 generated 

was quantified using Agilent 490 micro gas chromatograph (5 Å molecular sieve 

column) by analyzing 200 μL of the headspace of the vial.  

Figure 2.1 LED setup during catalytic run 

      

   Shown in Figure 2.1 is the setup for ZIF-67 HER (hydrogen evolution reaction), 

which includes a LED lamp for illumination, focusing lens, and reaction vials on 

stirring plate. LED lamp, lens and magnetic stir are aligned in a way such that the 

catalytic conditions are same for multiple setups. The LEDs were powered by a 
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separate circuit with a variable voltage power supply (GW Instek GPS-4303), the 

current was kept 1A during each catalytic run. 

 

 

2.3. Experimental Details for Chapter 4  

 

 

Materials.  

 

 

ZrCl4 (> 99.5%, Strem Chemicals), 2,2-bipyridine-5,5-dicarboxylic acid (H2bpdcy) 

(97%, Ark Pharm), 2, 2-dipyridyl (>99%, Acros Organics), 4,4-biphenyldicarboxylic 

acid (bpdc) (98%, Acros Organics), glacial acetic acid (regent ACS, Acros Organics). 

cis-[Ru(bpy)2Cl2], [Ru(dcbpy)(bpy)2]Cl2 (Rudcbpy) and Pt(dcbpy)Cl2 (PtDCBPY) 

was synthesized based on literature reported procedure. 104-105 

 

 

The synthesis of Ru-UIO-67, Pt-UIO-67 and Pt-Ru-UIO-67. Ru-UIO-67: 

 

 

 ZrCl4 (30.0 mg, 0.13 mmol), biphenyldicarboxylic acid (H2bpdc) (24.6 mg, 0.1 

mmol), Rudcbpy (10.0 mg, 0.012 mmol), and glacial acetic acid (250 µL, 4.37 mmol) 

were dispersed in DMF (4.5 mL) and transferred to 20 mL autoclave. The mixture 

was sonicated for 20 mins and placed in an oven. The temperature of the oven was set 

at 120 °C for 24 hours. After the oven cools down to room temperature, the resulting 

solid was isolated by centrifugation, and then washed with methanol several times 

before being dried under vacuum.  

 

Pt-UIO-67:  
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ZrCl4 (30.0 mg, 0.13 mmol), biphenyldicarboxylic acid (H2bpdc) (24.6 mg, 0.1 

mmol), Ptdcbpy (8.0 mg, 0.013 mmol), and glacial acetic acid (250 µL, 4.37 mmol) 

were dispersed in DMF (4.5 mL) and then transferred to 20 mL autoclave. The sample 

was sonicated for 20 mins and placed in an oven. The temperature was set at 120 °C 

for 24 hours. After cooling down to room temperature, the resulting solid was isolated 

by centrifugation, and was washed with methanol repeatedly before being dried under 

vacuum.  

 

 

Pt-Ru-UIO-67: 

 

 

 ZrCl4 (30.0 mg, 0.13 mmol), biphenyldicarboxylic acid (H2bpdc) (24.6 mg, 0.1 

mmol), Rudcbpy (10.0 mg, 0.012 mmol), Ptdcbpy (8mg, 0.013mmol), and glacial 

acetic acid (250 µL, 4.37 mmol) were dispersed in DMF (4.5 mL), and then 

transferred to 20mL autoclave. The sample was sonicated for 20 mins and placed in 

an oven. The temperature was set at 120 °C for 24 hours. After cooling down to room 

temperature, the resulting solid was isolated by centrifugation, and was washed with 

methanol repeatedly before being dried under vacuum. 

 

2.4. Experimental Details for Chapter 5 

 

 

Materials.  

 

 

 ZrCl4 (> 99.5%, Strem Chemicals), 2,2-bipyridine-5,5-dicarboxylic acid(H2bpdcy) 

(97%, Ark Pharm), 2, 2’-dipyridyl (>99%, Acros Organics), CoCl2(97% anhydrous, 
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Acros Organics), glacial acetic acid (ACS reagent, Acros Organics). 

 

The synthesis of Ru-UIO-67(bpy), Co-UIO-67(bpy) and Co-Ru-UIO-67(bpy)  

Ru-UIO-67(bpy):  

 

 

ZrCl4 (50.0 mg, 0.21 mmol), 2,2-bipyridine-5,5-dicarboxylic acid (H2bpdcy) (45.0 

mg, 0.19 mmol), Rudcbpy (10.0 mg, 0.012 mmol), and glacial acetic acid (930 µL, 16 

mmol) were dispersed in DMF (20 mL), transferred to autoclave, sonicate for 20min 

and placed in an oven. The temperature was kept at 120 °C for 24 hours. After cooling 

down to room temperature, the resulting solid was isolated by centrifugation, and was 

washed with methanol repeatedly before being dried under vacuum.  

 

Co-UIO-67(bpy): 

 

 

 ZrCl4 (50.0 mg, 0.21 mmol), 2,2-bipyridine-5,5-dicarboxylic acid (H2bpdcy) (45.0 

mg, 0.19 mmol), CoCl2 (25.0 mg, 0.19 mmol), and glacial acetic acid (930 µL, 16 

mmol) were dispersed in DMF (20 mL), and then transferred to autoclave, the sample 

was sonicated for 20 mins and placed in an oven. The temperature was set at 120 °C 

for 24 hours. After cooling down to room temperature, the resulting solid was isolated 

by centrifugation, and was washed with methanol repeatedly before being dried under 

vacuum. 

 

Co-Ru-UIO-67: 
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 ZrCl4 (50.0 mg, 0.21 mmol), 2,2-bipyridine-5,5-dicarboxylic acid (H2bpdcy) (45.0 

mg, 0.19 mmol), Rudcbpy (10.0 mg, 0.012 mmol), CoCl2(25.0mg, 0.19mmol) and 

glacial acetic acid (930 µL, 16 mmol) were dispersed in DMF (20 mL), and then 

transferred to autoclave, the sample was sonicated for 20 mins and placed in an oven. 

The temperature was kept at 120 °C for 24 hours. After cooling down to room 

temperature, the resulting solid was isolated by centrifugation, and was washed with 

methanol several times before being dried under vacuum. 

 

The synthesis of hybrid MOF films. 

 

 

To make hybrid MOF films, 1 mg MOF was mixed with 0.5 mL Nafion (5% w/w in 

water and 1-propanol). The mixture was sonicated for 2 hours and then dispersed 

evenly on piranha-etched glass. The films were dried in the air. 

 

 

Photocatalytic hydrogen evolution reaction (HER) for Co-Ru-UIO-67 

 

 

 

Samples for HER were prepared in 11 mL septum-sealed glass vials. Each sample was 

made up to a volume of 4mL, including1 mg of MOF, 3 mL of CH3CN, and 0.4 mL of 

H2O. 0.3 mL of TEOA (triethanolamine) was added and used as the sacrificial 

reducing agent. The mixture was purged with N2 for 15 mins before irradiation by a 

blue LED (447 nm) lamp. The mixture was kept stirring during photocatalytic 

reaction. The amount of H2 generated was quantified using Agilent 490 micro gas 

chromatograph (5 Å molecular sieve column) by analyzing 200 μL of the headspace 
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of the vial. 

 

 

In situ XAS 

 

 

In situ XAS spectra at Co K-edge were collected at beamline 12-BM at Advanced 

Photon Source, Argonne National laboratory. The experiments were performed in a 

custom designed Teflon cell equipped with Kapton front window for X-ray irradiation 

and quartz rear window for LED lamp illumination. All reactants were same as 

optimized HER experiment except five times more Co-Ru-UIO(bpy) (5 mg) was used 

in the in-situ experiment to obtain decent XAS signal. 

 

 

2.5. Experimental Details for Chapter 6 

 

 

Materials.  

 

 

(NH4)2Ce(NO3)6 (> 99.5%, Alfa Aesar), Tetrakis(4-carboxyphenyl)porphyrin (TCPP) 

(97%, TCI), benzoic acid (99%, Alfa Aesar), N,N-Dimethylformamide (DMF) 

(Certified ACS, Fisher Chemical). 

 

 

The Synthesis of Ce-TCPP.  

 

 

Ce-TCPP is synthesized by mixing (NH4)2Ce(NO3)6 (83.2 mg, 0.15 mmol), 

Tetrakis(4-carboxyphenyl)porphyrin (60 mg, 0.076 mmol), and benzoic acid (490 mg, 

4 mmol) in DMF (6 mL) with 0.3 mL H2O in a pressure tube. The mixture was 
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degassed and then sonicated for 10 mins. The pressure tube was kept in oil bath at 

120 °C for 48 hours. After cooling down to room temperature, the resulting solid was 

isolated by centrifugation and washed with acetone 3 times. The samples were dried 

under vacuum before measurement. The formation of Ce-TCPP is confirmed by XRD, 

FT-IR and SEM. 

 

2.6. Experimental Details for Chapter 7 

 

 

Materials.  

 

 

2,2-bipyridyl-5,5-dialdehyde (97%, Amadis Chemical), Rhenium pentacarbonyl 

chloride (98%, Acros Organics), Mesitylene (99%, Acros Organics), p-

Dioxane(anhydrous, EMD Milipore Corporation), glacial acetic acid (ACS reagent, 

Acros Organics). 

 

Synthesis of Re(bpy)(CO)3Cl.  

 

 

Re(CO)5Cl (0.3020 g, 0.83 mmol) and 2,2-bipyridine(0.130 g, 0.83 mmol) was 

dissolved in 50 mL of hot toluene. The mixture was stirred and refluxed for 1h to get 

yellow product. 1H NMR (acetonitrile-d3): δ 7.44 (t, 2H), δ 8.00 (t, 2H), δ 8.23 (d, 

2H), δ 8.82 (d, 2H). 

 

Synthesis of COF.  
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In a 10 mL pressure tube, 4,4',4''-(1,3,5-triazine-2,4,6-triyl)trianiline (TTA) (92 mg) 

and 2,2-bipyridyl-5,5-dialdehyde (82.68 mg) were dispersed in a mixture of 

mesitylene(5.1 mL), dioxane(0.9 mL) and glacial acetic acid(0.2 mL). After 

degassing, the tube was sealed and heated to 120 °C for 3 days. The resulting solid 

was collected by centrifugation and washed with THF repeatedly to remove the 

trapped guest molecules. The powder was then dried under vacuum to produce COF 

in an isolated yield of 85%. 

 

 

Synthesis of Re-COF. 

 

 

 COF (50 mg) and Re(CO)5Cl (20 mg, 0.055 mmol) were dispersed in 20 mL toluene. 

After refluxing for 40 mins with stirring, the orange products were filtered and 

washed with methanol for 3 times. The Re content in Re-COF is determined by ICP-

MS to be 5.58 wt%. 

 

 

CO2 reduction for Re-COF. 

 

 

 Samples for CO2 reduction were prepared in 11 mL septum-sealed glass vials. Each 

sample was made up to a volume of 4 mL, including 0.9 mg of Re-COF, 3 mL of 

CH3CN, and 0.2 mL of TEOA (triethanolamine). The mixture was purged with CO2 

for 15 mins before irradiation by a 225W Xe lamp (420 nm cut off). The mixture was 

kept stirring during photocatalytic reaction. The amount of CO generated was 

quantified using Agilent 490 micro gas chromatograph (5 Å molecular sieve column) 
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by analyzing 200 μL of the headspace. Recycling experiment was performed by 

centrifuging Re-COF, which is then washed with acetonitrile for 3 times. andThe 

photocatalytic reaction was then run under the same conditions mentioned above. 

 

In situ diffuse reflectance UV-visible spectra 

Figure 2.2 In-situ diffuse reflectance spectroscopy set up 1: flow-through cuvette     

2: mini-pump     3: reaction vial 

 

 

   Figure 2.2 shows the set up for in situ diffuse reflectance spectroscopic 

experiment. A mini-pump was used to pump sample for measurement during 

catalysis. A flow-through cuvette was connected to the reaction vial by PTFE pipes. 

The reaction system was purged with CO2 for 30 mins before measurement. 

 

 

Structure Simulation and Powder X-Ray Diffraction Analysis of COF 

 

 

Molecular modeling of COF was simulated using Materials Studio (8.0) program. The 

initial lattice was created with space Group P1. The proposed structure of COF is 

analogous to that of COF 10, while each edge of the hexagonal ring was substituted 

by the framework of (1E,1'E)-1,1'-([2,2'-bipyridine]-5,5'-diyl)bis(N-(4-(1,3,5-triazin-

2-yl)phenyl)methanimine). The geometry of COF was optimized with MS DMol3 
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module and symmetry was promoted to P6/m. Then the lattice model was geometry 

optimized using the MS Forcite molecular dynamics module (Universal force fields, 

Ewald summations), where the output results into the simulated structure. Finally, 

Pawley refinement was applied to define the lattice parameters, producing the refined 

PXRD profile with lattice parameters of a = b = 43.658 Å and c = 3.534 Å. Rwp and 

Rp values converged to 2.51% and 1.92%, respectively (Line broadening from the 

crystallite size and lattice strain were both concerned). 

 

Table 2.1 Fractional atomic coordinates for the unit cell of triazine COF 
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Chapter 3. 

PHOTOACTIVE ZEOLITIC IMIDAZOLATE FRAMEWORK AS 

INTRINSIC HETEROGENEOUS CATALYSIS FOR LIGHT-

DRIVEN HYDROGEN GENERATION 

 

 

3.1 Introduction 

 

 

   Metal organic frameworks (MOFs) are an emerging class of nanoporous 

crystalline materials consisting of metal nodes coordinated by bridging organic 

linkers.106-113 Their inherent porous nature, large surface area, and tunable cavities 

have led to various applications including gas separation and storage,114-116 chemical 

sensing,30, 59, 117 and heterogeneous catalysis.118-124 Zeolitic Imidazolate Frameworks 

(ZIFs) are a subclass of MOFs which are particularly attractive for catalysis 

application due to their exceptional thermal and chemical stability.125-126 Recent works 

have demonstrated their catalytic applications for a variety of reactions including 

organic transformations,127-131 as well as gas phase CO oxidation and 

hydrogenation.132-133 Furthermore, by embedding photoactive guests into the 

structure, photocatalytic applications of ZIFs have been demonstrated for dye and 

phenol degradation and CO2 reduction.134-137  

    While these examples evidently demonstrate the great promise of ZIFs in 

heterogeneous catalysis, ZIFs in these systems are largely treated as inert hosts for 

reaction substrates or/and catalytic active species, resembling the roles of zeolites in 
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catalysis.138 In contrast to these studies, our recent findings show that the framework 

of ZIF-67 exhibits an intrinsic photochemical response, featured by multiple 

absorption bands in UV-Visible-Near IR region and an exceptionally long-lived 

excited state due to the formation of a charge separated state.139 While our studies 

largely promise the application of ZIFs as intrinsic photocatalytic materials, the 

efficiency for visible light driven photocatalysis of ZIF-67 is expected to be low using 

single component ZIF-67 because of the limited absorption in the solar spectrum due 

to relatively small extinction coefficients of Co2+ d-d transitions (~100-1000 mol·L-

1·cm-1). One desirable strategy to improve its light harvesting ability is to expand the 

absorption spectrum of ZIF-67 by encapsulating a chromophore into the framework, 

such that broader region of the solar spectrum can be absorbed and relayed to ZIF-67 

through energy transfer (ENT). Although this approach has been used to improve the 

light harvesting properties of MOFs,140-143 no such studies have been reported in ZIFs, 

yet enhancing their light absorption ability is critical for their photocatalytic and solar 

energy conversion application. 

   In this project, we investigated light harvesting and photocatalytic properties of 

ZIF-67 through ENT process from an sensitized chromophore, i.e. RuN3 (cis-

diisothiocyanato-bis(2,2’-bipyridyl-4,4’-dicarboxylic acid) ruthenium(II)). We show 

that efficient ENT occurs from excited RuN3 to ZIF-67 using transient absorption 

(TA) spectroscopy. We also successfully demonstrate the enhanced photocatalytic 

activity of ZIF-67 for light-driven H2 generation from water in the presence of RuN3, 

which can be attributed to the enhanced light harvesting ability of ZIF-67 through 
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ENT. RuN3 is chosen as a chromophore in this study because of its multifold benefits 

as a photosensitizer. First, it can absorb visible light < 550 nm with large extinction 

coefficient (Ɛ 534nm = 1.42x104 M-1cm-1)144 where ZIF-67 has negligible absorption, 

and thus compensates the absorption spectrum of ZIF-67 (Figure 1a). Second, the 

emission spectrum of RuN3 has overlap with the ZIF-67 absorption in near IR region 

attributed to the lower-lying d-d transition of Co2+ (4A2(F)-4T1(F), the inset of Figure 

1a),139 which makes ENT process from RuN3 to ZIF-67 practically feasible. Finally, 

RuN3 is a widely used photosensitizer for solar energy conversion and has well-

known optical properties, which can facilitate our optical studies in this work.  

 

 

3.2 Results and discussion 

 

 

 
Figure 3.1 (a) UV-visible absorption spectra of ZIF-67, RuN3/ZIF-67, and RuN3/Al2O3 

thin films. (b) IR spectra of RuN3, zif-67 and RuN3/zif-67 powder. 

 

 

     The synthesis of ZIF-67 thin films follows a direct-growth approach which is 

described in chapter 2.145 The Initial characterization of RuN3/ZIF-67 was performed 

with UV-visible absorption spectroscopy and Powder XRD. Figure 3.1a shows the 
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steady state UV-Visible absorption spectra of ZIF-67, RuN3/Al2O3 and RuN3/ZIF-67 

thin films. The UV-Visible absorption spectrum of ZIF-67 is featured by a prominent 

visible band centered at 585 nm, which is consistent with previous results and can be 

assigned to the spin-allowed d-d transition of Co2+ ion in tetrahedral geometry. 

Compared to the spectrum of ZIF-67, the spectrum of RuN3/ZIF-67 exhibit two 

additional absorption bands centered at 385nm and 535nm (blue curve, Figure 3.1a) in 

addition to the feature due to ZIF-67. These two additional features are consistent 

with the metal to ligand charge transfer (MLCT) bands of RuN3 
146 in the spectrum of 

RuN3/Al2O3 (red curve, Figure 3.1a), and thus can be assigned to the absorption of 

RuN3 in RuN3/ZIF-67 film. Because the size of RuN3 is much larger than the aperture 

size of ZIF-67 (~ 3.4 Å),125 we believe that RuN3 molecules are directly attached to 

the surface of ZIF-67 thin film rather than being encapsulated inside the cavities. We 

use RuN3 sensitized Al2O3 thin film as a control sample to account for the intrinsic 

effect of porous structure on the optical properties of RuN3 because of its well-known 

inert nature, i.e. large bandgap with sufficiently negative conduction band and 

positive valence band prevents charge/energy transfer from most light harvesting 

chromophores that we are interested in. The adsorption of RuN3 on the surface of 

ZIF-67 thin film is believed to be through –COOH anchoring group in RuN3, which is 

supported by the shift of C=O stretching mode in IR absorption spectra upon binding. 

147 As shown in Figure 3.1 b, the C=O stretching of RuN3 occurs in ~1690cm, while 

that in RuN3/ZIF shifts to ~1600cm. The similar frequency shift of C=O has been 

observed previously in RuN3 sensitized TiO2 semiconductor nanocrystals and was 
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attributed to the anchoring of RuN3 to the surface of TiO2 through –COOH group. As 

a result, we also attributed the frequency shift of C=O in RuN3/ZIF-67 to the 

attachment of RuN3 to ZIF-67 surface thorough –COOH group.         

 

 

Figure 3.2 (a) Powder XRD patterns of ZIF-67 and RuN3/ZIF-67. The inset shows the 

cartoon of energy transfer dynamics from RuN3 to ZIF-67. The yellow ball indicates 

the cavity in the framework. (b) The spectral overlap between the absorption spectrum 

of ZIF-67 and emission spectrum of RuN3 

 

     

    Figure 3.2a shows the XRD patterns of ZIF-67 and RuN3/ZIF-67. The XRD 

patterns of RuN3/ZIF-67 strongly resemble that of ZIF-67, both of which agree well 

with the literature results of ZIF-67 with SOD topology, 148 suggesting that the crystal 

structure of ZIF-67 retains after RuN3 binding. One critical criterion for efficient ENT 

from RuN3 to ZIF-67 is that the emission spectrum of RuN3 needs to have sufficient 

overlap with the absorption spectrum of ZIF-67. Figure 3.2b shows the emission 

spectrum of RuN3 as well as the absorption spectrum of ZIF-67. It can be seen that 

these spectra have overlap in near IR region, suggesting that ENT from RuN3 to ZIF-

67 is feasible.   
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Figure 3.3 Femtosecond transient absorption (fs-TA) spectra of RuN3/ZIF-67 (a) and 

RuN3/Al2O3 (c) thin films. (b) The comparison of excited state decay (710 nm) and 

ground state bleach recovery (515 nm) of RuN3 in RuN3/ZIF-67 and RuN3/Al2O3 thin 

films. (d) The fs-kinetic traces of RuN3/ZIF-67 thin film at 610 nm and 585 nm, 

demonstrating the formation of excited state ZIF-67. (e) Nanosecond transient 

absorption (ns-TA) spectra of RuN3/ZIF-67 film. (f) The ns-kinetics traces of 

RuN3/ZIF-67 at 610 nm, 515 nm, and 585 nm. 

       

 

    Transient absorption (TA) spectroscopy was used to examine ENT dynamics 

from RuN3 to ZIF-67. To account for intrinsic effect of porous surface on excite state 
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dynamics, we examined the excited state (ES) dynamics of RuN3 on Al2O3 thin film, 

which represents a non-ENT and non-charge transfer model. As shown in Figure 3.3a, 

the femtosecond TA (fs-TA) spectra of RuN3/Al2O3 thin film consist of a negative 

band centered at 525 nm and a broad absorption feature > 615 nm. These features 

have been observed previously149 and can be assigned to the photoinduced ground 

state bleach (GSB) and ES absorption of RuN3, respectively. The recovery of GSB 

(red open circles, Figure 3.3 b) and the decay of ES (black open circles, Figure 3.3 b) 

occur with same kinetics with the presence of an isosbestic point at 622 nm (Figure 

3.3 a), suggesting that the recovery of GS molecules from ES is the only relaxation 

process responsible for the observed ES dynamics.  

   Compared to the fs-TA spectra of RuN3/Al2O3, dramatic difference was observed 

in the spectra of RuN3/ZIF-67 (Figure 3.3 c). First, the recovery of GSB and the 

decay of ES absorption of RuN3 were simultaneously enhanced, which can be further 

clearly seen from their kinetic traces (pink and blue open triangles, Figure 3.3b). 

These features are accompanied by the formation of a new negative band centered at 

589 nm and an absorption band centered at 606 nm. The formation of these new 

features is further confirmed from their kinetic traces at 585 nm and 610 nm, where a 

rising component was clearly observed in each kinetic trace at later time (> 1 ns) 

(Figure 3.3d and inset). Because these new features closely resemble the derivative-

like feature observed previously in ZIF-67 after direct excitation of d-d transition,139 

they can be attributed to the formation of ES of ZIF-67. We can exclude the 

possibility that ES of ZIF-67 is due to the direct excitation of ZIF-67 as negligible fs-
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TA signals were observed in ZIF-67 following 410 nm excitation under the same 

experimental conditions. The formation of ES ZIF-67 due to photoexcitation of 

RuN3, along with the simultaneously enhanced GSB recovery and ES decay of RuN3, 

all support that ENT process occurs from excited RuN3 to ZIF-67.  

    Because the only spectral features after ~100 ns observed in nanosecond TA (ns-

TA) spectra of RuN3/ZIF-67 (Figure 3.3 e) arise from ZIF-67, we can rule out the 

possibility of charge (electron or hole) transfer process from RuN3 to ZIF-67. As 

electron/hole transfer process leads to the formation of oxidized/reduced state of 

RuN3, the GSB of RuN3 should be expected in ns-TA spectra if it occurs. The 

negligible contribution from the GSB of RuN3 in ns-TA spectra of RuN3/ZIF-67 thus 

suggests that ENT is the only process accounting for the spectral change of 

RuN3/ZIF-67 from RuN3/Al2O3. Consequently, the ENT rate from RuN3 to ZIF-67 

can be directly measured by probing the kinetic traces of GSB recovery of RuN3, ES 

decay of RuN3, or the formation of ES ZIF-67. Due to the spectral overlap of ES ZIF-

67 with RuN3 GSB and ES at where ES ZIF-67 occurs, the ENT rate in this work was 

quantified by fitting the fs- and ns-kinetic traces of GSB of RuN3 using multiple-

exponential decay functions, from which we obtained an average ENT rate of 1.2 ns 

with fitting parameters 11.2 ps (38.4%), 159 ps (51.8%), and 11.6 ns (9.8%) (Table 

3.1). Given the average recovery time of RuN3 GSB in RuN3/Al2O3 (7.5 ns, Figure 

3.4), the quantum yield of ENT process can be estimated according to the equation

)/( iENTENT kkk +=
, where ENTk

 and ik
are the rate constants for ENT and intrinsic 

GSB recovery of RuN3, respectively. The obtained quantum yield of ENT is ~ 86%, 



47 
 

suggesting an efficient ENT process from RuN3 to ZIF-67. 

 

Table 3.1 Femtosecond transient absorption multi-exponential fit results. 

Excitation     Probe     τ1,ps(A1,%)    τ2,ps(A2,%)     τ3,ns(A3,%) 

 410nm       515nm     11.2(38.4)     159(51.8)      11.6(9.8) 

 

      

Figure 3.4 The ground state bleach recovery kinetics of RuN3/Al2O3 film measured by 

nanosecond transient absorption spectroscopy 

 

 

   With the understanding of ENT dynamics, we proceeded to examine the 

photocatalytic properties of ZIF-67 for light-driven H2 generation from water. The 

photocatalytic reactions were performed in the presence of triethanolamine (TEOA) 

as sacrificial electron donor and H2O as proton source in acetonitrile solution. 

Experiments using other sacrificial donors, proton sources, and solvents were also 

carried out, which either results in less amount of H2 production or faster degradation 
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of ZIF-67 (Table 3.2). Upon illumination with 405 nm LED lamp (280 mW), which 

selectively excites RuN3 only, a notable amount of H2 was generated in RuN3/ZIF-67 

mixture in acetonitrile solution (Table 1). Under the optimized conditions, i. e. RuN3 

(0.02 µmol), ZIF-67 (1 mg), TEOA (0.3 mL), and H2O (0.2 mL) in acetonitrile 

solution, the amount of H2 generated reaches a final value of 48.5 mol after 10 h 

(Figure 3a and Table 1). In contrast, no hydrogen can be detected after 10 h when 

either ZIF-67 or H2O is omitted in the catalytic reaction (Table 1), suggesting that 

ZIF-67 and H2O are the key components for photodriven H2 generation, which act as 

the catalyst and proton source, respectively. Meanwhile, a negligible amount of 

hydrogen can be detected in the absence of RuN3, which is expected as ZIF-67 has 

negligible absorption at 405 nm and unambiguously confirms that the enhanced 

activity of RuN3/ZIF-67 system for H2 production is attributed to the efficient ENT 

process from RuN3 to ZIF-67. 

 

 

Table 3.2 Photocatalytic Hydrogen Production with RuN3/ZIF-67 

Variables Trials H2 (μmol/g) time 

Proton sourcea 

TEA·HCl (30 μmol) 2.2 < 1 h 

HCl with varying pH 0 < 1 h 

H2O (0.2 mL) 48.5 10 h 

MeOH  15 3.5 h 

RuN3 

concentrationsb  

0.02 μmol of RuN3 48.5 10 h 

0.06 μmol of RuN3 43.2 10 h 

0.1 μmol of RuN3 10.8 10 h 

No ZIF-67 0 10 h 
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Control experiment  No H2O 0 10 h 

No RuN3 0 10 h 

No RuN3 0 10 h 

General conditions: the reaction was run in acetonitrile solution in the presence of 

TEOA, 1 mg of ZIF-67. All samples were irradiated with 405 nm LED lamp (280 

mW). aRuN3 (0.02 μmol); aRuN3 (0.02 μmol); bH2O (0.2 mL). 

  

 

    An induction period was observed in the first 2 hours before H2 evolution 

commences (Figure 3.5 b). Induction periods have been reported in other H2 

generation systems based on Co molecular catalysts, 150-151and are typically attributed 

to the multiple equilibriums that require the conversion of CoIII/CoII to their reduced 

intermediates or hydrides for H2 production. While these molecular 

photosensitizer/Co molecular catalyst systems involve the reductive/oxidative 

quenching of the photosensitizers, which appears to be different from the current 

RuN3/ZIF-67 system in which RuN3 only participate ENT process, the mechanistic 

origins of induction period in these systems may share the similarity in terms of the 

catalysts. We have previously shown that photoexcitation of ZIF-67 leads to the 

reduction of CoII center via ligand-to-metal charge transfer (LMCT) process.139 Given 

that ENT is the only available process occurring upon RuN3 excitation, which leads 

to the formation of the same LMCT state based on our TA results, we believe that the 

resulting LMCT is likely the intermediate state for H2 production. As a result, the 

induction period in current system may result from the conversion of CoII center to 

this LMCT intermediate state or other intermediates formed afterwards. (Figure 3.5 

a). fs-TA spectra of RuN3/Al2O3 in the presence of TEOA further confirms the 
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mechanism (Figure 3.6), as electron transfer from TEOA to RuN3 will not competing 

with energy transfer process, which evident by the formation of ZIF-67 ES 

accompanied by the simultaneously faster GSB and ES decay for RuN3.  

 

 

Figure 3.5 (a) Jablonski diagram of energy transfer process from RuN3 to ZIF-67, 

followed by the formation of charge-separated state with LMCT nature in ZIF-67, 

which eventually results in hydrogen evolution. (b) H2 evolution profile of RuN3/ZIF-

67 in H2O/acetonitrile, TEOA (0.3 mL), irradiated at 405 nm. The profile after 10 hours 

is obtained after adding a fresh batch of RuN3 to the inactive system.  
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Figure 3.6 Femtosecond transient absorption (fs-TA) spectra of RuN3/Al2O3 (a) and 

RuN3/ZIF-67 (c) thin films in the presence of TEOA in acetonitrile solution following 

410 nm excitation. (b) The comparison of excited state decay (710 nm) and ground state 

bleach recovery (515 nm) of RuN3 in RuN3/ZIF-67 and RuN3/Al2O3 thin films. (d) 

The fs-kinetic traces of RuN3/ZIF-67 thin film at 610 nm and 585 nm, demonstrating 

the formation of excited state ZIF-67. 

 

 

   The reason for the cease of H2 generation after 10h was investigated by 

reactivation of the RuN3/ZIF-67 system after photocatalysis. As shown in Figure 

3.5b, the addition of the same amount of fresh RuN3 restores the photocatalytic 

reaction and recovers ~ 93% of the efficiency. In contrast, the addition of ZIF-67 

cannot restore the reaction, which is consistent with the results from XRD and X-ray 

absorption spectroscopy (Figure 3.7), where ZIF-67 retains its structure during 
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photocatalysis.  

 

 

Figure 3.7 The comparison of powder XRD patterns (a), X-ray absorption spectra at 

Co K-edge (b), and the derivative of X-ray absorption spectra (c) of RuN3/ZIF-67 

before and after catalysis. 

 

 

     Furthermore, it is notable that the supernatant solution after photocatalysis 

becomes brown-yellow (typical color for Ru complex) in contrast to colorless solution 

before photocatalysis, suggesting that RuN3 have detached from ZIF-67. The UV-

visible spectrum of the supernatant solution after the catalysis appears to be different 

from RuN3 (Figure 3.8), suggesting that RuN3 has been permanently degraded. These 

results together suggest that degradation of RuN3 is the limiting factor for the 

deactivation of H2 production. The turn over number for H2 generation in this system 

is estimated to be 4.85 in terms of RuN3. 
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Figure 3.8 The comparison of the UV-visible absorption spectra of the supernatant 

solution of RuN3/ZIF-67 catalytic system before and after photocatalysis.  

 

 

     While higher activity for H2 evolution has been reported using other MOFs 

doped with cocatalyst,54, 56-57, 152-154 it is unfair to compare the current RuN3/ZIF-67 

system with these systems as their activities were mainly boosted by the cocatalysts. 

Indeed, the photoactivity of RuN3/ZIF-67 for H2 evolution (48.5 mol/g) compares 

well with these systems in the absence of cocatalysts (0-102 mol/g). 54, 56-57, 152-154 

These findings, together with the significantly enhanced photocatalytic activity due to 

ENT from RuN3, suggest the potential of ZIF-67 as photocatalysts for light-driven 

fuel generation. 

     In summary, we have designed a new porous hybrid system by sensitizing RuN3 

photosensitizer to ZIF-67. Using transient absorption spectroscopy, we show that 

efficient ENT process occurs from RuN3 to ZIF-67 after selectively exciting RuN3, 

which ultimately leads to significantly enhanced light-driven H2 production from 

H2O. These findings not only establish the capability to enhance the light harvesting 
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properties of ZIFs by encapsulating photosensitizers via ENT but also demonstrate the 

potential of ZIF-67 as an intrinsic photocatalyst for solar fuel conversion. 

 

 

3.3. Conclusion and future work 

 

 

     In this work, we investigated a new hybrid system, i.e. RuN3/ZIF-67 by 

sensitizing RuN3 to the surface of ZIF-67. The ENT process between RuN3 and ZIF-

67 was examined using transient absorption spectroscopy following selectively 

exciting RuN3 at 410 nm. We show that highly efficient ENT occurs from excited 

RuN3 to ZIF-67, which finally leads to the enhanced light-driving H2 generation from 

H2O. These results not only suggest that the light-harvesting capability of ZIF-67 was 

enhanced by sensitizing RuN3 photosensitizer to ZIF-67 but also reveal the potential 

of ZIF-67 as an intrinsic photocatalyst for solar energy conversion. 

Due to the limited pore aperture (3.4 Å) in ZIF-67, RuN3 in current work can only be 

sensitized onto the surface of ZIF-67, which largely limits the direct interaction of 

ZIF-67 with RuN3 and thus the efficiency of ENT and solar fuel generation. With a 

goal to utilize the porous structure of ZIFs and develop ZIF materials as efficient 

single site catalyst for solar fuel conversion, it is necessary to encapsulate 

chromophores into the cavity of ZIF-67 or directly incorporate the chromophore to the 

framework of ZIF-67. Therefore, the future work will focus on developing approaches 

to either encapsulate chromophores into the cavity of ZIFs or incorporate them into 

ZIF-67 framework.   
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Chapter 4. 

ELUCIDATING CHARGE SEPARATION DYNAMICS IN A 

HYBRID METAL-ORGANIC FRAMEWORK PHOTOCATALYST 

FOR LIGHT-DRIVEN H2 EVOLUTION 

 

 

4.1 Introduction 

 

 

   The utilization of solar energy to drive hydrogen generation from water is one of 

the best solutions to address the global energy and environmental problems.155-156 In 

the past decades, diverse photocatalytic systems for H2 generation including 

homogeneous and semiconductor based/metal doped heterogeneous systems have 

been developed, which typically consist of light harvesting materials, catalysts, and 

proton and electron sources.157-160 However, the performance of these systems for H2 

generation in terms of both activity and stability is far from satisfactory. In addition to 

poor stability and efficiency, the homogeneous molecular systems suffer from the 

difficulty in recycling from the reaction system.161-164 While heterogeneous systems 

have shown potential in long-term stability and high activity, these materials suffer 

from two major limitations that hamper their further use as photocatalytic materials: 

(1) the lack of design flexibility and (2) the poor understanding of the catalytic active 

species.165-169  

   To integrate the beneficial features and overcome the drawbacks of homogeneous 

and heterogeneous photocatalytic systems for H2 generation, metal organic 
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frameworks (MOFs), an emerging class of porous crystalline materials, could be a 

judicious choice. MOFs are constructed from metal ions/clusters covalently 

interconnected to multidentate organic linkers.106-111, 113, 170 The versatility of these 

components not only offers the capability to tune their cavity but also allows 

incorporation of molecular functional units into its heterogeneous crystal matrix, 

opening up the possibility to address the stability issues and allow high resolution 

studies of the incorporated catalytic active sites using a suite of physical 

characterization methods.67, 171-177 

   Due to these reasons, recent efforts on MOF photocatalysis have extended to 

incorporate molecular photosensitizers or/and catalysts into MOFs structure. While a 

large number of functionalized MOF systems with either molecular photosensitizers 

(PSs) or catalysts incorporated into the framework have been reported recently toward 

versatile applications,55, 60, 67, 141-142, 171-173, 178-191 there are only two examples that 

integrate both PS and catalysts for photocatalytic H2 generation. One example 

includes the incorporation of [Ru(dcbpy)(bpy)2]
2+(dcbpy = 2,2′-bipyridyl-5,5′-

dicarboxylic acid) and Pt(dcbpy)Cl2 complex to the MOFs scaffold (UIO-67), which 

can serve as PSs and catalysts, respectively, for photocatalytic H2 generation from 

water.184 The second example reported the successful incorporation of Ir(III) complex 

as PS and Pt(II) complex as catalyst into UIO-67 MOFs, which demonstrated 

significant increase in both H2 evolution activity and robustness compared to its 

homogeneous counterpart.192 While these examples demonstrate the potential of 

MOFs as versatile platform for incorporating molecular modules necessary for 
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photocatalytic applications, the fundamental aspects with regard to light harvesting 

and charge separation (CS) dynamics of these molecular functional units in MOFs 

remain less explored,63, 193-200 yet it is essential for further development of these 

materials. Herein, we report the CS dynamics in [Ru(dcbpy)(bpy)2]
2+ and 

Pt(dcbpy)Cl2 functionalized UIO-67 MOF (Ru-Pt-UIO-67, Figure 1a) which 

demonstrates efficient H2 generation from water using the combination of optical 

transient absorption (OTA) and X-ray transient absorption (XTA) spectroscopy. The 

direct correlation of the fundamental insights into the CS dynamics with their function 

for photocatalysis provides important guidance in rational design of new and efficient 

photocatalytic MOF systems. 

 

 

4.2 Results and discussion 

 

 

   Ru-Pt-UIO-67 and control samples including Pt-UIO-67, Ru-UIO-67, and UIO-67 

were synthesized according to previously published literature protocols.63, 187 The 

morphology of these MOF samples was examined by SEM. As shown in Figure 4.1b, 

Ru-Pt-UIO-67 MOF particles show octahedral or quasi-octahedral shape with sizes 

ranging from 500 to 1000 nm, which are similar to the morphology of Pt-UIO-67 and 

Ru-UIO-67 MOF particles (Figure 4.2a, 4.2b). The surface area and pore size of Ru-

Pt-UIO-67 are 1504 m2/g and 1.65 nm (Figure 4.2c), respectively, which are 

comparable to literature data,54, 184 suggesting the porous structure of Ru-Pt-UIO-67 

MOF. Figure 4.1c shows the XRD patterns of the above four MOFs. All of the peaks 

that correspond to UIO-67 occur in Pt or/and Ru incorporated MOFs, suggesting the 
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retention of parent framework after incorporating molecular moieties. The 

incorporation of Ru and Pt moieties was confirmed by diffuse reflectance UV−visible 

spectroscopy. As shown in Figure 4.1d, compared to the absorption spectrum of UIO-

67, an additional broad band (∼400−600 nm) was observed in the spectrum of Ru-Pt-

UIO-67. This broad band is consistent with the combined absorption of Pt complex in 

Pt-UIO-67 and Ru complexes in Ru-UIO-67 and thus can be attributed to the 

absorption resulting from Pt and Ru moieties incorporated into UIO-67. EDX analysis 

in random areas suggested that Zr, Ru, Pt elements were abundantly distributed in Ru-

Pt-UIO-67 with elemental ratio of Ru/Pt about 1.4. 
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Figure 4.1 (a) Synthetic scheme (a) and SEM image of Ru-Pt-UIO-67 MOF. XRD 

patterns (c) and reflectance UV−visible spectra (d) of Ru-Pt-UIO-67, Pt-UIO-67, Ru-

UIO-67, and UIO-67. (e) XANES spectra of Ru-Pt-UIO-67, Pt(dcbpy)Cl2, and Pt foil 

at Pt L3-edge. The inset shows their EXAFS spectra. 

 

 

   In addition to the bulk structure, the local coordination environment of Pt center 

was examined by steady-state X-ray absorption spectroscopy (XAS). Figure 4.1e 

shows the X-ray absorption near edge structure (XANES) spectra of Ru-Pt-UIO-67 

collected at Pt L3-edge. For comparison, the XANES spectra of Pt foil and molecular 

Pt(dcbpy)Cl2 complex were also shown in Figure 4.1e as reference spectra. As shown 

in Figure 4.1e, the white line intensity of Ru-Pt-UIO-67 at 11.568keV, corresponding 

to 2p2/3 to 5d transition, is significantly higher than that of Pt foil while it remains 

similar to that of Pt(dcbpy)Cl2 sample. As the white line intensity of Pt center is 

directly related to its density of unoccupied d states,201-202 the similar amplitude of this 

transition among Ru-Pt-UIO-67 MOF and Pt(dcbpy)Cl2 complex, which is much 

larger than that of Pt foil, suggests that Pt-moiety incorporated into MOF structure 

retains its PtII oxidation state as that in molecular Pt(dcbpy)Cl2.To gain insight on the 

local coordination structure of Pt in MOF samples, we quantitatively analyzed the 

extended X-ray absorption fine structure (EXAFS) spectra of these samples using 

FEFF model (Figure 4.3). The resulting fitting parameters are listed in Table 4.1. It is 

found that the coordination numbers and bond distances of Pt to N atoms in dcbpy 

and Pt to Cl atoms remain the same among both samples, further supporting that the 

structure of Pt(dcbpy)Cl2 is retained during MOF synthesis. 
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Figure 4.2 SEM of Ru-UIO-67 (a) and Pt-UIO-67 (b). c) N2 adsorption isotherm and 

pore size distribution (inset) of Ru-Pt-UIO-67. 

 

 

The photocatalytic performance of Ru-Pt-UIO-67 MOF for light-driven H2 generation 

was examined under illumination of a broad band Xe lamp, where the IR and UV 

light from the Xe lamp was extensively filtered by water filter and 420 nm long-pass 

filter, respectively. The experimental parameters such as the sacrificial donors, 

solvents and the amount of proton source and MOF particles were systematically 

varied to find the conditions that can generate the maximum amount of H2 per gram 

of catalyst (Figure 4.4). On the basis of these experiments, the optimized condition for 

the Ru-Pt-UIO-67 photocatalytic system is under Pt-Ru-UIO-67 (0.5 mg), 0.3 mL of 

H2O, and 0.3 mL of DMA (N,N-dimethylaniline) in 3 mL of acetonitrile solution. 

Control experiments (Figure 4.4c) in the absence of either DMA or H2O do not 

produce H2, suggesting their key roles as sacrificial donor and proton source, 

respectively. The systems using Pt-UIO-67 or Ru-UIO-67 with the same metal 

loading as that in Ru-Pt-UIO-67 produce negligible amount of H2, suggesting that 

both Ru and Pt moieties are essential for H2 generation. Shown in Figure 4.4a is the 

full time-profile of H2 generation collected under the optimum condition. The system 

produces H2 steadily for at least 30 h, achieving 34 000 μmol H2/g of MOF, 
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corresponding to TON of 801 in terms of Pt. As shown in our optimization 

experiments (Table 4.2), the performance of Ru-Pt-UIO-67 for H2 generation can be 

easily affected by a number of experimental parameters, and we attributed the 

significantly enhanced H2 activity and elongated duration in current system with 

respect to the previous results 184 to the difference of the catalytic conditions, 

suggesting the necessity of performing optimization experiments carefully. 

 

Figure 4.3 The Fourier transformed R space (a ) and k space (b ) spectra of Ru-Pt-UIO-

67 and Pt(dcbpy)Cl2 model complex. The data are shown as open points and FEFF fits 

as solid lines. 

 

 

Table 4.1 The EXAFS fitting parameters of Ru-Pt-UIO 67, Pt(dcbpy)Cl2 and reported 

single crystal data. Additional parameters: Δ E0 = 8.008, S0
2 = 0.934 (all paths) for both 

samples 

 

 

To gain insight into the recyclability of the system, we stopped the reaction every 10 h 

and collected Ru-Pt-UIO MOFs from the reaction mixture via centrifugation. The 
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resulting Ru-Pt-UIO-67 MOFs were washed with acetonitrile and redispersed in a 

fresh catalysis mixture for H2 generation experiment. As shown in Figure 4.4b, the 

catalytic activity of the system does not decrease for at least three cycles of 

experiments, suggesting that Ru-Pt-UIO-67 MOF catalysts are recyclable.  

 

Figure 4.4 (a) Time profile of H2 production by Ru-Pt-UIO-67 under Xe lamp 

illumination in the presence of DMA (0.3 mL) and H2O (0.3 mL) in acetonitrile solution 

(3 mL). (b) Recycling of Ru-Pt-UIO-67 catalyst after multiple 10 h experiments. 

 

Table 4.2 Optimization of light driven H2 evolution reaction. The amount of H2 

produced using different sacrificial donors and solvents, as a function of MOF 

concentration, H2O concentration, and DMA concentration. 
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While the photocatalytic experiments above successfully demonstrate the capability 

of Ru-Pt UIO-67 MOF as efficient and robust photocatalysts for H2 generation and 

both Ru and Pt moieties play important roles in catalysis, it is essential to examine the 

CS dynamics to unravel the specific roles these moieties play in catalysis. The CS 

dynamics in Ru-Pt-UIO-67 MOF was examined using optical transient absorption 

(OTA) spectroscopy. Due to the spectral overlap between Ru and Pt moieties in the 

UV−visible region (Figure 4.1d), 480 nm pump light was used as excitation source 

such that majority of the excitation light was absorbed by the Ru-moiety. Indeed, the 

direct excitation of Pt-UIO-67 MOFs yields negligible OTA signals, and we can thus 

exclude the contribution of Pt-moiety to the OTA signals in the spectra of Ru-Pt-UIO-

67 due to direct excitation of Pt-moiety. Figure 4.5a and Figure 4.5b show the 

femtosecond OTA spectra of Ru-UIO-67 and Ru-Pt-UIO-67, respectively. The OTA 

spectra of Ru-UIO-67 were used as control to illustrate the intrinsic excited state (ES) 

dynamics of Ru-moiety in MOF framework in the absence of Pt-moiety. As shown in 

Figure 4.5a, the OTA spectra of Ru-UIO-67 consist of a negative band centered at 

∼514 nm and a broad absorption  

 

Figure 4.5 Femtosecond OTA spectra of Ru-UIO-67 (a) and Ru-Pt-UIO-67 (b). (c) 

Comparisons of the ground state bleach (GSB) recovery and excited state decay kinetics 

between Ru-UIO-67 and Ru-Pt-UIO-67. The GSB recovery kinetics for both Ru-UIO-



64 
 

67 and Ru-Pt-UIO-67 were inverted for better comparison. 

 

 

band at ∼634 nm, which can be attributed to the ground state bleach (GSB) and ES 

absorption of Ru-moiety, respectively. The recovery of GSB and decay of ES follow 

the same kinetics (Figure 4.5c), as well as the presence of a clear isosbestic point at 

554 nm between these two spectral features, suggesting that the recovery/decay 

kinetics of these two species represent the same recombination process, i.e., the 

intrinsic recovery of GS molecules from ES. While the similar GSB and ES 

absorption were observed in the OTA spectra of Ru-Pt-UIO-67, distinct differences 

were observed between two spectra. As shown in Figure 4.5c, while the GSB recovery 

kinetics of Ru-Pt-UIO-67 remains similar to that of Ru-UIO-67, the ES absorption in 

Ru-Pt-UIO-67 decays much faster than that in Ru-UIO-67. These results are 

consistent with the spectral features when electron transfer (ET) process occurs, 

suggesting that ET from Ru- to Pt-moiety in Ru-Pt-UIO-67 is responsible for the 

enhanced ES decay in Ru-Pt-UIO-67 MOF. As shown in Table 4.3, the GSB recovery 

and ES decay kinetic traces of Ru-UIO-67 as well as GSB recovery of Ru-Pt-UIO-67 

can all be fit by the same three-exponential decay function. The ES decay kinetic trace 

of Ru moiety in Ru-Pt-UIO-67 can also be fit by a three-exponential decay function. 

However, due to the presence of a long-lived decay component (≫5 ns) which is 

beyond our OTA time window, we are not able to accurately determine the ET time 

from the fitting results. Instead, we compared the half lifetime of ES decay dynamics 

of Ru-moiety in both samples, which is 4.9 and 1.2 ns for Ru-UIO-67 and Ru-Pt-UIO-



65 
 

67, respectively. The much shorter half lifetime of Ru-moiety ES in Ru-Pt-UIO-67 

than Ru-UIO-67 suggests that ET occurs from excited Ru to Pt-moiety. Moreover, the 

half lifetime of GSB of Ru-moiety in Ru-Pt-UIO-67 (∼4.9 ns) is longer than its ES 

decay, suggesting that the charge recombination process between the reduced Pt-

moiety and the oxidized Ru-moiety is slower than ET process. 

 

 

Table 4.3 Multiexponential fit parameters for TA experiments corresponding to the fits 

shown in Figure 4.5c. 

 

 

The formation of the charge separated state in Ru-Pt-UIO-67 MOF due to ET from 

Ru- to Pt-moiety was further supported by probing the photoinduced electron density 

change at Pt center following the excitation of Ru-moiety using X-ray transient 

absorption (XTA) spectroscopy. Figure 4.6 shows the Pt L3-edge XANES spectra of 

Ru-Pt-UIO-67 before (laser- 
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Figure 4.6 (a) XANES spectrum of Ru-Pt-UIO-67 at Pt L3-edge (black plot). The 

difference XANES spectrum (red plot), obtained by subtracting the laser-off spectrum 

from laser-on spectrum (300 ps after excitation), is also shown in the figure. Inset shows 

enlarged laser-on and laser-off spectrum. (b) The difference XANES spectrum of Pt-

UIO-67(pink , ave 12 scan ) and Ru-Pt-UIO 67 at 120ps (red, ave 30 scan ), 300ps 

(black, ave 55 scan ), 1ns(blue, ave 12 scan ) delay 

 

 

off spectrum, black plot) and 300 ps (laser-on spectrum, not shown) after 480 nm 

excitation. The transient signal due to laser excitation was clearly observed in the 

difference spectrum (red plot) obtained after subtracting the laser-off spectrum from 

the laser-on spectrum. The positive feature at 11.565 keV where 2p2/3 to 5d transition 

occurs indicates that the edge of Pt center shifts to lower energy, supporting the 

formation of reduced Pt center. The reduction of Pt center due to photoexcitation of 

Ru-moiety is further confirmed by the negative signal at 11.568 keV which 

corresponds to the reduced intensity of the white line amplitude, i.e., decreased 

oxidation state of Pt due to photoexcitation. As shown in Figure 4.6b, similar 

difference shows up at different delay times while no difference was observed for Pt-

UIO-67 control sample. These results unambiguously confirm the ET process from 

excited Ru to Pt-moiety, consistent with OTA results above. 

 

 

4.3 Conclusion  

 

 

In summary, we have synthesized a hybrid Zr-MOF with simultaneously incorporated 

molecular Ru-photosensitizer and Pt-catalyst, which is highly active, robust, and 

recyclable for catalyzing proton reduction to generate H2 reaction. Using the 
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combination of advanced ultrafast OTA and XTA spectroscopy, we investigated the 

CS dynamics in this hybrid MOF. We show that CS in Ru-Pt-UIO-67 MOF occurs 

through ET from excited Ru- to Pt-moiety, which unambiguously unraveled the 

fundamental roles of the incorporated homogeneous components in the heterogeneous 

MOF matrix for photocatalytic reaction, providing important guidance in rational 

design of hybrid MOF systems for solar to fuel conversion. 
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Chapter 5. 

REAL-TIME VISUALIZATION OF ACTIVE SPECIES IN A 

SINGLE-SITE METAL-ORGANIC FRAMEWORK 

PHOTOCATALYST 

 

 

5.1 Introduction 

 

 

The direct conversion of solar energy to clean fuel as alternatives to fossil fuels is a 

desirable approach to address the global energy and environmental problems.203-207 

Hydrogen generation through water splitting is an emerging strategy of doing so that 

has attracted great attention, yet its development is largely hampered by the difficulty 

in efficient integration of multiple resource-intensive processes, i.e., light absorption, 

charge separation, and finally utilization of the photogenerated carriers to drive water 

splitting. Homogeneous solution-based systems comprising molecular photosensitizer 

(PS) and catalysts have naturally attracted much attention because of their merit in 

synthetic control over functional tunability and selectivity.161, 208-211 However, their 

limited stability and efficiency remain a major challenge. In contrast, heterogeneous 

systems have shown beneficial features in long term durability and high catalytic 

activity.166, 168-169 However, these materials not only lack design flexibility but also 

suffer from the difficulty of characterizing their mechanistic functions, rendering poor 

understanding of the origins behind their remarkable catalytic efficiency. 

   Because of their unique capability in combining the most advantageous features of 
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heterogeneous and homogeneous catalysts, metal organic frameworks (MOFs) are one 

of the best solutions to the above-mentioned stability and efficiency issues.25, 27, 212-214 

MOFs have the ability to incorporate homogeneous catalytic components in their 

heterogeneous matrix to achieve isolated active sites.67, 171-173, 215 As such, MOFs can 

offer the same level of advantages as homogeneous catalysts while the robustness of 

the catalysts are increased. In addition, MOFs are built from periodic organic bridging 

ligands and inorganic nodes with tunable pore structure and functional components, 

which not only allows precise determination of the nature of the incorporated catalytic 

active sites but also opens up the possibility to engineer MOF catalytic sites in a 

defined manner.175, 216-217 

   For these reasons, an increasing number of systems that demonstrate successful 

application of MOFs in photocatalysis, with either a molecular PS or a molecular 

catalyst incorporated in the structure, have emerged. For example, photosensitizers 

such as porphyrin,141, 178-180, 217 Ru complexes,142, 182-184 tetraphenylethylene,185 etc. 

have been successfully incorporated into MOFs for their beneficial photophysical 

properties. Meanwhile, molecular catalysts based on Ru,186 Re,187-188 Ir,173, 187 Co,60, 

171-172 Fe,189-190 Rh,67, 218 Pt,55, 184, 191 Pd,219 have been introduced into the MOF 

structure and demonstrated catalytic activities. Despite this progress, there are only 

two examples that reported the immobilization of both molecular photosensitizers 

(RuDCBPY,184 Ir(III)DCBPY191) and molecular catalysts (PtDCBPY) into the 

framework structure, both of which indeed showed enhanced activities for H2 

generation compared to their corresponding homogeneous counterpart. Offering their 
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large potential as efficient photocatalytic systems for solar fuel conversion as well as 

the ease for fundamental studies of MOF structure−catalytic function relationships, 

such single solid platform are especially ripe targets for further development. 

   In this work, we report a new single-site MOF system that incorporates a 

molecular catalyst based on earth-abundant metal and Ru-based PS to UIO-67(bpy), 

which not only demonstrates exceptional catalytic activities but also is recyclable and 

reusable for H2 evolution reaction (HER). More importantly, we established the 

fundamental structure−function relationships of this system for HER examined under 

standard catalytic conditions. Using in situ X-ray absorption spectroscopy, we 

identified the intermediate species that determines the rate-limiting step and unraveled 

the origins of induction period, a complication that has long plagued mechanistic 

investigations in catalysis. Using time-resolved absorption spectroscopy, we 

elucidated the fundamental origins of light harvesting and charge-transfer dynamics, 

the properties that essentially dictate the function of this system for photocatalysis. 

 

 

5.2 Results and discussion 

 

 

   As shown in Figure 5.1a, Co-Ru-UIO-67(bpy) was synthesized according to 

previous published protocols220-221 by mixing ZrCl4 (50.0 mg, 0.21 mmol), 2,2-

bipyridine-5,5-dicarboxylic acid (H2bpdcy) (45.0 mg, 0.19 mmol), Rudcbpy 

([Ru(dcbpy)-(bpy)2]Cl2（10.0 mg, 0.012 mmol), CoCl2(25.0 mg, 0.19 mmol), and 

glacial acetic acid (93 μL, 1.6 mmol) in DMF (20 mL). Rudcbpy was prepared 

according to the previously published method.222 As controls, UIO-67(bpy), Ru-UIO-
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67(bpy), and Co-UIO-67(bpy) were also synthesized under similar conditions. 

 

 

Figure 5.1 (a) Synthetic scheme of Co-Ru-UIO-67(bpy). XRD patterns (b) and diffuse 

reflectance spectra (e) for UIO-67(bpy), Co-UIO(bpy), Ru-UIO(bpy), and Co-Ru-

UIO(bpy). (c) SEM image of Co-Ru-UIO-67(bpy). (d) N2 adsorption isotherm and pore 

size distribution (inset) of Co-Ru-UIO-67(bpy). 

 

 

The X-ray diffraction (XRD) patterns of these MOFs (Figure 5.1b) agree well with 

the patterns for UIO-67, suggesting that the crystallinity of these MOFs is retained 

after incorporation of molecular complexes.223 Scanninge electron microscopy (SEM) 
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images of Co-Ru-UIO-67(bpy) (Figure 5.1c) show that the sample exhibits an 

octahedral crystalline structure with particle size ∼500 nm. The porous structure of 

Co-Ru-UIO-67(bpy) was confirmed by Brunauer−Emmett−Teller (BET) analysis. As 

shown in Figure 1d, the surface area and pore size of Co-Ru-UIO-67(bpy) are 1781 

m2/g and 1.65 nm, respectively, which are close to those of UIO-67(bpy) (Figure 5.2) 

and comparable to literature data.224 The presence of Ru and Co complexes was 

supported by diffuse reflectance ultraviolet−visible spectroscopy. As shown in Figure 

5.1e, the additional broad absorption in the range of 350−700 nm in Co-Ru-UIO-

67(bpy) compared to that of UIO-67(bpy) is consistent with the absorption features of 

Co complex in Co-UIO-67(bpy) and Ru complexes in Ru-UIO-67(bpy) and thus can 

be attributed to the absorption resulting from Co- and Ru-complexes incorporated into 

UIO-67(bpy). The concentrations of Co measured by inductively coupled plasma 

mass spectrometry (ICP-MS) and Ru measured by atomic absorption spectroscopy in 

Co-Ru-UIO-67(bpy) are 5.68 × 10−7 and 1.08 × 10−7 mol/mg, respectively, 

corresponding to the elemental ratio of Co:Ru = 5.26. 

 

Figure 5.2 (a) N2 adsorption isotherm and pore size distribution (inset) of UIO-67(bpy). 

(b) SEM image of UIO-67(bpy). 
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   The direct incorporation of Co complex into UIO-67(bpy) structure as well as its 

local structure at Co center was confirmed by steady-state X-ray absorption 

spectroscopy (XAS) measured at Advanced Photon Source, Argonne National 

Laboratory. Figure 5.3a compares X-ray absorption near-edge structure (XANES) 

spectra for Co-UIO-67(bpy) and Co-Ru-UIO-67(bpy) at Co K-edge. The XANES 

spectra of two reference samples with different geometry, i.e., the distorted tetrahedral 

Co complex (Co(6,6′-dimethyl-2,2′-bipyridine)Cl2, abbreviated as Co(dmbpy)Cl2), 

and CoO (octahedrally coordinated Co center), are also shown in Figure 5.3a in order  

 

 

Figure 5.3 Co K-edge XANES spectra of Co-UIO-67(bpy) and Co-Ru-UO-67(bpy) 

samples (solid lines) and CoII, Co0 reference compounds (dotted lines) (a) and their first 

derivative spectra (b). The K-space (c) and Fourier-transformed R-space (d) spectra 

compared with data as open points and FEFF fits as solid lines. Inset of panel A shows 

enlarged pre-edge feature. 
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to correlate the spectral shape with local structure. The spectrum of Co(dmbpy)Cl2 

exhibits a prominent pre-edge feature corresponding to the dipole-forbidden 1s−3d 

transition (inset of Figure 5.3a), supporting the non-centrosymmetric geometry about 

Co due to distorted tetrahedral structure.139 In contrast, the XANES spectrum of 

octahedral CoO presents a relatively weak pre-edge feature due to centrosymmetric 

geometry at Co center.225-226 Both Co-UIO-67(bpy) and Co-Ru-UIO-67(bpy), which 

have XANES spectra that are nearly identical to one another, show XANES features 

similar to those of CoO, suggesting that Co centers in both samples likely possess 

octahedral geometry. Moreover, the edge energy of the XANES spectra of both MOF 

samples, as shown in the first derivative XANES spectra (Figure 5.3b), show 

excellent agreement with the edge position of CoO reference, suggesting that Co 

centers in MOF samples retain +2 oxidation state. 

 

 

Figure 5.4 Full EXAFS spectra of Co-UIO-67(bpy) and Co-Ru-UIO-67(bpy) (a) and 

graphic of EXAFS fit model (b). (Grey=C, Blue=N, Pink=Co, Green=Cl, Red=O, 

White=H). Hydrogens were excluded from FEFF calculation. 
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   The local geometry of CoII center in Co-UIO-67(bpy) and Co-Ru-UIO-67(bpy) 

samples, revealed by the XANES studies detailed above, indicates that Co is 

coordinated by more than four atoms, implying that solvents may have participated in 

coordination to Co center in the Co(bpy)Cl2 moiety. This assignment is further 

supported by a recent literature report,227 in which single-crystal X-ray diffraction 

data confirmed the presence of 5- and 6-coordinated Co sites in a Zr-based MOF with 

CoCl2 metalation of its bipyridine linkers due to coordination of Co to either one or 

two solvent molecules. In order to quantitatively support this assignment, the full 

EXAFS energy range spectra (Figure 5.4a) were fit using the Demeter X-ray 

absorption analysis package.228 The FEFF input model was built from the crystal 

structure of Co(dmbpy)Cl2 by adding an additional solvent molecule (methanol) 

coordinated to Co. The scattering amplitude of the Co-solvent single scattering vector 

in the first shell of atoms about Co was parametrized to allow its variation with the 

other fitting parameters and was interpreted as the average solvent coordination 

number. The EXAFS fitting parameters are listed in Table 5.1 and a graphic of the 

fitting model in Figure 5.4b. The EXAFS data and the resulting best fits in K-space 

and R-space are shown in panels c and d of Figure 5.3, respectively. From the best 

fitting results, the bond distance of Co to N atoms on bipyridine in Co-UIO-67(bpy) 

and Co-Ru-UIO-67(bpy) is determined to be 2.08 and 2.09 Å, respectively, and the 

Co−Cl distance for both samples is 2.29 Å. The Co-to solvent atom distance is 1.92 Å 

with coordination number of approximately 1.1 for both samples. The Co−N distances 

are within the range of distances reported in the literature (2.09 and 2.17 for 5-
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coordinate Co; 2.01 and 2.13 for 6-coordiate Co),227 as are the Co−Cl distances (2.27 

and 2.31 for 5- coordinate Co; 2.27 and 2.33 for 6-coordinate Co), suggesting the 

validity of our fitting model. With these insights into the structure and properties of 

Co-Ru-UIO-67(bpy), in the following sections, we investigate its catalysis activity for 

HER and fundamentally characterize its catalytic mechanism. 

 

 

Table 5.1 EXAFS fitting results for powder Co-UIO-67(bpy) and Co-Ru-UIO-67(bpy) 

samples corresponding to the fit figures in Figure 5.3 c,d. The asterisk on Co-Solv. 

coordination number indicates that it was fit along with the distance parameters as 

discussed in the main text. The bottom two entries (Co-C single scattering path and Co-

C-N obtuse triangle path) were included due to high rank in the FEFF calculation and 

each include two paths separated by commas (one for each C atom adjacent to the N in 

bipyridine) which were fit with the same fit parameters. (R ± 0.02 Å; σ2 ± 0.001 Å2). 

Fit model is visualized in Figure 5.4b. Additional parameters: ΔEo = -4.386, S02 = 1 

(all paths) for both samples. 

 

 

 The photocatalytic performance of Co-Ru-UIO-67(bpy) for HER was tested under 

the illumination of a 447 nm LED lamp in the mixture of H2O and acetonitrile 

solution. The reaction conditions, including sacrificial donors, the concentrations of 

sacrificial donors and MOFs, proton sources, the ratios of catalyst to PS, and LED 

powers were systematically optimized to reach the maximum amount of H2 per gram 

of catalyst (Figure 5.6). The optimized conditions for the Co-Ru-UIO-67(bpy) 
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photocatalytic system is under Co:Ru = 5.26:1 of Co-Ru-UIO-67(bpy) (1.0 mg), 0.4 

mL of H2O, 0.3 mL of TEOA, and 9 mW LED power in 3 mL acetonitrile solution. 

Control experiments omitting TEOA or H2O did not yield H2, suggesting their key 

roles as sacrificial donor and proton source (Figure 5.5). For comparison, Co-UIO-

67(bpy) or Ru-UIO-67(bpy) with the same metal loading as that in Co-Ru-UIO-

67(bpy) yields only minimal amount of H2 under identical conditions (Figure 5.5), 

indicating incorporating both Ru PS and Co catalysts into the MOF structure is 

essential for HER. Under these conditions, the HER activity of Co-Ru-UIO-67(bpy) 

achieves 27853 µmol H2/g of MOF after 40 h (Figure 5.7a), which accounts for TON 

of 99 based on Co and is comparable to previous MOF systems containing Pt 

complexes as catalysts.184, 192 The current system, however, benefits from the use of 

earth-abundant Co complex as catalysts.  

 

Figure 5.5 Time profile of H2 generation under optimized condition: without H2O 

(black) or TEOA (red), Ru-UIO-67(bpy) (green) and Co-UIO-67(bpy) (pink) as control. 

 

 

To evaluate the duration of the Co-Ru-UIO-67(bpy) catalytic system, the recycling 
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tests were explored by collecting MOFs after each 5 h illumination via centrifugation 

and dispersal in a fresh catalysis solution. Remarkably, Co-Ru-UIO-67(bpy) shows 

unchanged activity during the recycling experiments for at least three runs.  

 

Figure 5.6 Optimization of light-driven H2 evolution reaction. (a) The amount of H2 

produced using different solvent and sacrificial donor. (b) The amount of H2 produced 

as a function of TEOA concentration. (c) The amount of H2 produced as a function of 

H2O concentration. (d) The amount of H2 produced as a function of Co:Ru ratio. 

 

 

Furthermore, the concentration of Co in the supernatant solution before and after  

catalysis was measured using ICP-MS to examine the possibility of Co leaching. 

While ∼3.2% of Co is leached during catalysis process, HER experiments using 

supernatant solution under the same conditions did not yield detectable amount of H2, 

ruling out the possibility that the observed activity is due to leached Co. To further 

confirm the integrity of the MOF photocatalyst after catalysis, ex situ XAS was 
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performed in which the MOF photocatalyst was removed from the catalysis solution 

after 20 h and washed via centrifugation. The XANES and EXAFS results (Figure 5.8 

and Table 5.2) indicate that the local structure of Co remains unchanged after 

catalysis. The significantly improved activity and stability suggest the important role 

of the framework in both boosting the catalytic activity of molecular catalysts and 

stabilizing the catalytic species, which prompted us to investigate the mechanistic 

origins of its catalytic function.  

 

 

Figure 5.7 (a) Time profile of H2 production by Co-Ru-UIO-67(bpy) under 447 nm 

LED illumination at 9 mW in the presence of TEOA (0.3mL) and H2O (0.4 mL) in 

acetonitrile solution (3 mL). (b) Recycling of Co-Ru-UIO-67(bpy) catalyst after 

multiple 5 h experiments. (c) Commonly accepted catalytic pathway for photoinduced 

H2 generation with molecular photosensitizer (PS) and catalysts. 

 

 

As shown in Figure 5.7c, a commonly accepted scheme for photoinduced proton 

reduction is initiated with light absorption by PS, which is followed by two sequential 

charge separation (CS) processes, where the electrons in the excited PS transfer to the 

catalyst and holes are extracted to electron donors through either the reductive or 

oxidative cycle. Consequently, it is crucial to have a systematic study of these light-

harvesting and CS dynamics in Co-Ru-UIO-67(bpy) to gain mechanistic insight of its 
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function for catalysis. 

 

 

Figure 5.8 XANES region (a) and R-space EXAFS fit figures (b) for Co-Ru-UIO-

67(bpy) compared to ex situ sample after 20 hours of catalysis. 

 

Table 5.2 EXAFS fit results for ex situ Co-Ru-UIO-67(bpy) after catalysis using the 

same model described in Table 5.1 heading. The corresponding fit figure is shown in 

Figure S5. Additional parameters: ΔEo = -4.386, S02 = 1 (all paths). 

 

 

 Transient absorption (TA) spectroscopy was used to investigate the excited state 

(ES) and CS dynamics of the Co-Ru-UIO-67(bpy) MOFs. Panels a and b of Figure 

5.9 show the femtosecond TA spectra of Ru-UIO-67(bpy) and Co-Ru-UIO-67(bpy), 

respectively, following 447 nm excitation. Ru-UIO-67(bpy) was used as control 

sample to illustrate the intrinsic ES dynamics of Ru complex in UIO-67(bpy) 

framework without the presence of Co catalyst species. The TA spectra of Ru-UIO-
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67(bpy) show two main spectral features, i.e., a negative band centered at 513 nm and 

a broad absorption band at >560 nm, which can be attributed to the ground-state 

bleach (GSB) and ES absorption of Ru complex, respectively. GSB recovery follows 

the same kinetics as ES decay (Figure 5.9c), together with the presence of an 

isosbestic point at 556 nm, suggesting that decay of ES molecules to their GS is the 

only recombination process. The TA spectra of Co-Ru-UIO-67(bpy) (Figure 4b) also 

show a GSB band and a broad ES band. However, the center of the GSB band in the 

spectra of Co-Ru-UIO-67(bpy) shows a prominent blue shift with respect to that of 

Ru-UIO-67(bpy). This blue shift cannot result from the direct excitation of Co 

complex as negligible TA features were observed in the TA spectra of Co-UIO-

67(bpy) following excitation under the same conditions. Instead, we attributed this 

blue shift to the formation of a CS state between Ru- and Co-moieties, which was 

based on not only the literature reports with similar spectral shifts observed in many 

donor−acceptor systems,229 but also our experimental observations discussed below. 

 

 

Figure 5.9 Femtosecond TA spectra of Ru-UIO-67(bpy) (a) and Co-Ru-UIO-67(bpy) 

(b). (c) The comparisons of the GSB recovery and ES decay kinetics between Ru-UIO-

67(bpy) and Co-Ru-UIO-67(bpy). The GSB recovery kinetics for both Ru-UIO-67(bpy) 

and Co-Ru-UIO-67(bpy) were inverted for better comparison. 
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As shown in Figure 5.9c, while the kinetics of GSB recovery and ES decay is similar 

in the TA spectra of Ru-UIO-67(bpy), ES kinetics decays much faster than the ESB 

recovery in the spectra of Co-Ru-UIO-67(bpy). Moreover, while the GSB kinetics in 

Co-Ru-UIO-67(bpy) remains similar to that in Ru-UIO-67(bpy), the ES kinetics is 

much faster in the former than the latter (Figure 5.9c). These results, similar to the 

typical features accounting for ET process from Ru complex to electron donors 

reported previously,230 suggest that the ET process occurs from Ru complex to Co 

complex in Co-Ru-UIO-67(bpy). The kinetics traces for ES decay and GSB recovery 

of Ru-UIO-67(bpy) as well as the GSB recovery of Co-Ru-UIO-67(bpy) can be fit by 

the same three-exponential decay function with fitting parameters listed in Table 5.3. 

The ES decay of Co-Ru-UIO-67(bpy) can also be fit by a three-exponential decay 

function (Table 5.3). Unfortunately, we are not able to accurately determine the ET 

time from the fitting results because of the presence of a long-lived decay component 

(≫5 ns) which is beyond our TA time window. Nevertheless, we can conclude that the 

ET process is much faster than the charge recombination process, as can be seen from 

Figure 5.9c where the ES decays much faster than the inverted GSB of the Ru 

complex in Co-Ru-UIO-67(bpy). 

 

 

Table 5.3 Multiexponential fit parameters for TA experiments corresponding to the fits 

shown in Figure 5.8c, 5.8d. 
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Furthermore, the Stern−Volmer experiment (Figure 5.10) indicates that reductive 

quenching of Ru-UIO-67(bpy) by TOEA occurs on a microsecond time scale (∼5 μs), 

which is much slower than the ET process from Ru complex to Co complex in Co-

Ru-UIO-67(bpy). Following the scheme in Figure 5.7c, we believe that the oxidative 

quenching cycle is preferred after photoexcitation of Co-Ru-UIO-67(bpy) under 

catalysis conditions. 

 

Figure 5.10 Stern-Volmer plot (b) was obtained by using unquenched emission signal 

divided by the quenched signal (a) against the concentration of quencher. From the 

slope and the lifetime of Ru-UIO-67, which we extracted from ns-TA GSB decay 

kinetics (c), the reductive quenching rate is 3.423x105 M-1S-1. Under the optimized 

condition with TEOA concentration of 0.568 M, the estimated time constant for 

reduction quenching is 5.14 μs. 

 

 

While the CS process above is certainly the first step that initiates the photocatalytic 

reaction, the complete catalytic cycle includes more critical steps that lead to ultimate 

H2 generation. As shown in Figure 5.7c, following the CS process, the catalytic 

pathway includes three more steps including two protonation processes and one 

reduction process. It is essential to identify the transient species involved in these 

processes in order to fully understand the catalytic mechanism. In this context, in situ 

XAS, a powerful tool that can directly reveal the oxidation state and structural change 



84 
 

of Co catalysts, was used to measure the intermediate species under the standard 

catalytic conditions.  

 

Figure 5.11 (a) Time profile of H2 production by Co-Ru-UIO-67(bpy) under 447 nm 

LED illumination at 9 mW in the presence of TEOA (0.3 mL) and H2O (0.4 mL) in 

acetonitrile solution (3 mL). The inset is the duration of induction period as a function 

of Co-Ru-UIO-67(bpy) concentration and LED power. (b) In situ XANES spectra of 

Co-Ru-UIO-67(bpy) as a function of irradiation times. The insets are enlarged regions 

I and II. (c) The offset first derivative of in situ XANES spectra. (d) In situ XANES 

spectra of Co-Ru-UIO-67(bpy) after LED was switched off to observe change back to 

original spectrum. The comparison of XANES (e), EXAFS (inset of e), and EXAFS 

spectra in R space (f) of Co-Ru-UIO-67(bpy) before illumination and the intermediate 

species formed after induction period ends. 
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In situ XAS spectra at Co K-edge were collected at beamline 12-BM at Advanced 

Photon Source, Argonne National laboratory. The experiments were performed in a 

custom designed Teflon cell equipped with a Kapton front window for X-ray 

irradiation and quartz rear window for LED lamp illumination, and 5 mg of Co-Ru-

UIO-67(bpy) was used in the in situ experiment to obtain an appropriate level of XAS 

signal in fluorescence mode. Under these conditions, an induction period (∼2 h) was 

observed before the production of H2 (Figure 5.11a). The induction period can be 

observed only under certain conditions; as shown in Figure 5.11a (inset), the 

induction period is strongly dependent on LED power and MOF concentration, where 

high LED power and low MOF concentration decrease the duration of the induction 

period until it cannot be resolved at the optimized conditions (1 mg of MOFs, 9 mW 

LED power). Nevertheless, the long induction period under current conditions is 

beneficial for unravelling the catalytic mechanism using XAS. 

   Figure 5.11b shows the in situ XANES spectra of Co-Ru-UIO-67(bpy) to track the 

change of oxidation state and structure at Co center during HER photocatalysis. 

Notable changes were observed in two regions of the spectrum, i.e., enlarged inset 

region I (edge feature) and region II (above-edge oscillations), where both features 

gradually shift to lower energy during catalysis. The edge shift to lower energy was 

further confirmed by comparing the first derivative spectra (Figure 5.11c), which can 

be attributed to the reduction of CoII to CoI during catalysis. The shift in above-edge 

oscillations (region II) to lower energy are indicative of lengthening in Co−L 

distances where L is any coordinating atom. This structural change is likely associated 
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with the reduction of Co center because larger degree of charge density on Co results 

in decreasing electrostatic attraction between Co center and ligand species, thus 

causing the larger bond distances observed. 

   It is interesting to note that the change of XANES spectrum stops after ∼2 h, 

consistent with the time frame of induction period, suggesting that the structural 

change observed above is associated with the induction period. These results also 

suggest that the induction period must be related to a chemical change that occurs in 

the early portion of photocatalysis, namely, the formation of some intermediate 

chemical species that must build up before catalysis turnover occurs. Meanwhile, 

upon LED illumination, the original orange solution changes to a dark gray color, 

which occurs gradually until the induction period ends and occurs immediately in the 

system when the induction period is not observed, suggesting that the color change of 

the MOF particles is also correlated with the induction period. When the LED light is 

turned off, the solution color can slowly return to its original color, which is 

accompanied by the returning of the XANES spectra to the original state (Figure 

5.11d). These results together suggest that the intermediate species accumulated after 

induction period is the active species for photocatalytic reaction rather than permanent 

degradation of the sample. 

   In order to uncover the nature of this intermediate species, we collected the in-situ 

EXAFS spectra of the system after the induction period ends. As shown in Figure 

5.11e, the whole spectrum of the intermediate species moves to lower energy 

compared to the spectrum before illumination, consistent with the above in situ 
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XANES results, suggesting that the intermediate species is Co(I) state with elongated  

 

 

Table 5.4 EXAFS fit results for in situ experiment performed using the process 

described in chapter 2. Additional parameters: WEo = -4.386, S0
2 = 1 (all paths) for Pre-

Illumination, ΔE0 = -5.580, S0
2 = 1 (all paths) for Intermediate Species. 

 

 

Co−L distance. The enlarged Co−L bond distance was further confirmed by the 

Fourier-transformed XAFS spectrum (Figure 5.11f), where the peak representing the 

first shell (Co−N) distance is shifted to larger distance during photocatalysis, in 

agreement with XANES observations. To quantitatively analyze the structure of the 

intermediate species, FEFF with the same model utilized above was used to fit the 

EXAFS spectrum. The resulting fitting parameters are listed in Table 5.4. It is noted 

that the pre-illumination parameters show a significantly shorter distance compared to 

the powder Co-Ru-UIO-67(bpy) sample as well as a lower solvent coordination 

number, although this result is unsurprising because the local structure of Co is 

sensitive to solvent environment as discussed above. Compared to the structure before 

illumination, the parameters of the intermediate species show significant increase in 

Co−N (1.98 Å increases to 2.11 Å) and Co−Cl (2.25 Å increases to 2.28 Å) distances 

in the first shell and increased Co−C distances in the second shell, in agreement with 
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qualitative observation of R space spectra. Additionally, it was observed that the 

solvent coordination number increased from 0.38 to 2.37 during catalysis, which we 

interpret as most Co atoms being uncoordinated before catalysis and most Co atoms 

being coordinated by two additional atoms during catalysis, considering the 

uncertainty in coordination number during the fit (ca. ± 0.5 atoms). The change in 

coordination number could be due to multiple scenarios such as the coordination of 

solvent molecules to CoI, coordination of TEOA to CoI, or coordination of byproducts 

to any remaining CoII in addition to CoI. As such, we cannot definitively assign this 

change. However, because of the long stability of the catalysis system and the results 

of ex situ EXAFS fitting, we can conclude that this coordination is a dynamic event 

during catalysis in solution and does not interfere with catalysis activity or 

permanently change the local structure of the catalytic Co center. Following the 

scheme presented in Figure 3c, the only possible intermediate species based on in situ 

experiments is CoI, suggesting that the consumption of CoI via protonation is likely 

the rate-determining step in HER photocatalysis. As a result, a long-lived CoI species 

would certainly benefit HER reaction, which reasonably explains the observed 

superhigh H2 generation efficiency, as efficient CS process, i.e., ultrafast ET with 

inhibited charge recombination, occurs from Ru PS to Co catalyst in our Co-Ru-UIO-

67(bpy) system.  

 

 

5.3 Conclusion 

 

 

In summary, we report a new robust, cost-effective single-site MOF photocatalyst by 
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incorporation of Co active center and Ru-based photosensitizer moiety into the 

framework. This hybrid MOF not only exhibits exceptional hydrogen evolution 

activity from H2O/acetonitrile solution but also demonstrate recyclability for at least 

15 h. Using the combination of advanced ultrafast absorption spectroscopy and in situ 

XAS, we not only captured the active intermediate species for catalysis, i.e., CoI 

species formed after ET process from Ru PS to Co catalyst in MOF, but also 

uncovered that the consumption of this active species is the rate-limiting step in 

photocatalysis. We thus conclude that the long-lived CoI species due to efficient CS 

process is essential for efficient H2 generation. This is likely the direct result of the 

heterogeneous nature of MOFs, which not only enhance the durability of the 

incorporated PS and molecular catalyst significantly but also serve as versatile 

platform for efficient coupling of these functional components, enabling efficient 

solar-to-fuel conversion. 
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Chapter 6. 

PHOTOINDUCED CHARGE SEPARATION AND STRUCTURAL 

DYNAMICS IN CE-TCPP METAL ORGANIC FRAMEWORKS 

 

 

6.1 Introduction 

 

 

   The direct conversion of water or CO2 by solar energy into fuel is a promising 

approach to address global energy and environmental issues.231-233 However, it 

remains a great challenge to drive such reaction in an efficient way and an appropriate 

catalyst is highly desired to promote the reaction in an reasonable rate.234  In the past 

decades, extensive efforts have been devoted to exploring visible light driving water 

splitting or CO2 reduction by using either molecular metal complexes or 

heterogeneous catalysts based on semiconductors.157, 235-236 For example, molecular 

systems based on noble metal complexes such as Ru,237-238 Re239-240 or Ir241 have been 

used as CO2 reduction catalysts. Moreover, a large number of homogeneous systems 

using Ru,242 Fe162 or Co161, 243 have also been used as catalysts for water splitting. 

While these homogeneous systems have demonstrated high efficiency and selectivity 

for CO2 reduction or water splitting, and can facilitate mechanistic analysis due to 

precise structure control, the further development of these systems is largely 

hampered by the use of noble metals, poor stability of the molecular catalyst, as well 

as the difficulty in recycling. On the other hand, heterogeneous semiconductor 

systems have shown great potential in long-term stability and can be easily recycled 
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but they typically suffer from poor structural flexibility as well as the difficulty in 

characterizing their mechanistic origins for photocatalysis.166, 168, 244 

   As an emerging class of nano-porous materials, metal organic frameworks 

(MOFs) offer a new opportunity by taking advantage of both homogenous and 

heterogeneous catalysts for photocatalysis. MOFs are created by assembling metal-

containing secondary building units (SBUs) with organic linkers.112, 245-246 With 

flexible metal SBUs and organic linkers, MOFs are able to integrate light-harvesting 

materials and catalysts into a single matrix.182, 247-248 In addition, the high crystallinity 

and porous nature of MOFs may facilitate charge transport and diffusion of reactants 

during the photocatalytic reaction.249-250 Due to these reasons, a large number of 

MOFs with built-in photosensitizer and molecular catalyst have been used for water 

splitting and CO2 reduction.251-257 However, majority of these work are centered on 

their catalytic performance and stability rather than fundamental mechanism. As these 

photocatalytic reactions heavily rely on the light harvesting and charge separation 

(CS) events after photoexcitation, it is essential to gain an intimate knowledge of 

these fundamental aspects,196, 258-259 which is expected to provide guidance on 

engineering photoactive MOFs for solar-to-fuel conversion. In this work, we report 

the excited state and CS dynamics of a porphyrin-based Ce-TCPP MOF by 

femtosecond optical transient absorption spectroscopy (OTA) and X-ray transient 

absorption spectroscopy (XTA). We show that the excitation of Ce-TCPP MOFs leads 

to the formation of a long-lived charge separated state with ligand-to-metal cluster 

charge transfer character. 
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6.2 Results and Discussion 

 

 

Figure 6.1 Synthetic scheme (a), XRD patterns (b), and SEM image (c) of Ce-TCPP. 

(d) Fourier-transform infrared (FT-IR) spectra of TCPP and Ce-TCPP. 

 

 

   As shown in Figure 6.1a, the 3D Cerium based MOFs (Ce-TCPP) was synthesized 

by the solvothermal reaction. The obtained product was characterized by Powder 

XRD (Figure 6.1b) and SEM (Figure 6.1c), which shows a needle-like shape. The 

porosity of Ce-TCPP MOFs was confirmed by N2 sorption measurement (Figure 6.2). 

The BET surface area is 332.56 m2/g, which was comparable to literature results of 

similar TCPP MOF.260 The formation of Ce-TCPP MOFs was further supported by the 

Fourier-transform infrared (FT-IR) spectroscopy  (Figure 6.1d), where we observed 

the disappearance of C=O stretching at 1700 cm-1 which is present in TCPP resulting 

from free -COOH, the shift of C=C valence vibration of phenyl rings from 1559 cm-1 

to 1526 cm-1, as well as the two new peaks at 1587 cm-1 and 1400 cm-1, which can be 
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assigned to asymmetric and symmetric vibrational stretching of COO-, 

respectively.261-263 These results together suggest the successful coordination of 

carboxyl group in TCPP with Ce metal ion in Ce-TCPP MOFs. 

 

Figure 6.2 N2 adsorption/desorption isotherm of Ce-TCPP. 

   

 

    In addition to the bulk structure, the local coordination environment at Ce center 

in Ce-TCPP MOFs was confirmed by X-ray absorption spectroscopy (XAS). The X-

ray absorption near edge structure (XANES) spectra of Ce-TCPP MOFs and two 

reference samples, i.e. hexagonal CeCl3 7H2O (Ce3+) and cubic CeO2 (Ce4+), are 

shown in Figure 6.3a. The main feature at ⁓ 5725.5 eV in the spectrum of CeCl3 is the 

absorption white line corresponding to the dipole allowed transition from Ce 2p to 5d 

mixed with 4f1 final state,264 supporting that Ce in CeCl3 has the trivalent state (Ce3+). 

In contrast, XANES spectrum of CeO2 exhibits two distinct features at ⁓ 5731 eV and 

5737.5 eV, which can be attributed to the mixed-valence behavior of tetravalent 

Cerium (Ce4+) in its final state (4f15dt2gL and 4f05d. L denotes the oxygen 2p hole).265 

Unlike two reference samples, the XANES spectrum of Ce-TCPP MOF shows the 
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main absorption edge at 5725.5 eV and a weak feature at 5737.5 eV, which can be 

assigned to the 4f1 and 4f0 absorption peak, respectively, suggesting the co-existence 

of Ce3+/Ce4+ valence state in Ce-TCPP MOF. This is further supported by the energy 

difference (⁓ 12 eV) between these two features, which agrees well with the Coulomb 

interaction of Ce 2p and Ce 4f orbitals.266-268      

 

Figure 6.3 XANES spectra (a) of Ce-TCPP (black), CeCl3 (blue) and CeO2 (red). The 

Fourier-transformed R-space (b) spectra of Ce-TCPP (inset shows the fitting model). 

The data are shown as open points and FEFF fits are shown as solid lines. UV-visible 

absorption spectrum of TCPP (c) (black) and the diffuse reflectance spectrum of Ce-

TCPP (red). 

 

 

   To gain deeper insight of the local coordination environment, we quantitatively 

fitted the extended X-ray absorption fine structure (EXAFS) spectrum of Ce-TCPP 

(Figure 6.4a) using Demeter X-ray absorption analysis package. The fitting 

parameters are listed in Table 6.1, and the EXAFS data and the resulting best fit in R-

space and k-space are present in Figure 6.3b and Figure 6.4b, respectively. From the 

best fitting, the bond distance of Ce to O in Ce-TCPP was found to be between 2.20 Å 

to 2.55 Å. The Ce-O distances are within the range of distances reported in literature 

for Ce6O8 core (2.206–2.234 Å for core Ce-O, 2.522–2.563 Å and 2.429 Å for the 

remaining Ce-O),269-270 suggesting the validity of our fitting model. Figure 6.3c shows  
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the UV-visible absorption spectrum of TCPP and diffuse reflectance spectrum of Ce-

TCPP MOFs. It was found that TCPP exhibits an intense Soret band centered at 415 

nm (S0-S2 transition) and the relatively weaker Q bands (S0-S1 transition) which  

 

Figure 6.4 Full EXAFS spectra (a) and the Fourier-transformed k-space (b) spectra of 

Ce-TCPP. The data are shown as open points and FEFF fits as solid lines. 

 

Table 6.1 EXAFS fit results for Ce-TCPP. The corresponding fit figure is shown in 

Figure S2. Additional parameters: ΔEo = 5.72, S0
2

 = 1 (all paths). 

 

 

spread over a wide range in the visible region with four distinct peaks at 512 nm (Qy), 

547nm (Qy), 588nm (Qx) and 645nm (Qx).
271-273 In contrast, Ce-TCPP MOFs show 

broad absorption extended to ~700 nm due to ligand to metal charge transfer (LMCT) 

interactions.274-275 The Soret and Q bands of Ce-TCPP MOFs shows a prominent red-
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shift compared to TCPP, which can be attributed to the planarity change caused by 

deformation of TCPP during incorporation: the non-planarity confirmation of TCPP in 

Ce-TCPP MOF destabilizes the porphyrin HOMOs while the LUMOs were not 

affected significantly.276-277 Moreover, the strong coupling of the well-arranged TCPP 

monomers (J-aggregation)274 may also contribute to the red-shift, which has been 

observed in other porphyrin- based MOFs reported previously.262, 278  

   Femtosecond optical transient absorption spectroscopy (OTA) was performed with 

selective excitation of TCPP Soret band to examine the excited state (ES) dynamics of 

Ce-TCPP MOFs. To better understand the effect of porous nature on ES dynamics in 

MOFs, we first measured the OTA spectra of TCPP on Al2O3 thin film, which 

represents a control sample for intrinsic ES dynamics of TCPP in heterogeneous 

Figure 6.5 Femtosecond OTA spectra of TCPP/Al2O3 (a) and Ce-TCPP (b) following 400 

nm excitation. The insets show the early time OTA spectra. (c) Q band ground state bleach 

(GSB) recovery of Ce-TCPP. (d) Enery diagram of Ce-TCPP. 
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environment. As shown in Figure 6.5a and 6.6a, OTA spectra of TCPP/Al2O3 thin film 

consist of a negative band centered at 415 nm (Figure 6.6a)  and a broad positive 

absorption feature from 450 nm overlapping with several distinct bleach signal at 520 

nm, 563 nm, 596 nm and 653 nm (Figure 6.5a). These features have been well studied  

 

 

Figure 6.6 (a) Femtosecond OTA spectra of TCPP on Al2O3 film. (b) Comparison of 

ES decay and ground-state bleach recovery of TCPP on Al2O3 film. GSB recovery at 

417 nm was reversed for better comparison. 

 

 

and can be attributed to TCPP Soret band ground state bleach (GSB), ES absorption  

(ESA), and Q band GSB, respectively. The recovery of Soret GSB and the decay of 

ES follow the same kinetics (Figure 6.6b), together with the presence of the isosbestic 

point at 451 nm, suggesting that the decay of ES molecules to their GS is the only 

relaxation process in TCPP/Al2O3 after excitation.  
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Figure 6.7 Femtosecond OTA spectra of Ce-TCPP with Q band excitation. 

 

 

Compared to TCPP, the OTA spectra of Ce-TCPP MOFs are dramatically different. As 

shown in Figure 6.5b, the OTA spectra of Ce-TCPP exhibit the Soret and Q band GSB 

with a red-shift in the range of 450 nm to 670 nm, which is consistent with its UV-

visible ground state diffuse reflectance spectrum. However, the positive features 

pertaining to ESA are missing in the region < 600 nm even at early times (< 1 ps) 

(inset of Figure 6.5b). We attribute this difference to the ultrafast (<120 fs) formation 

of a new charge separated state evolved from singlet excited state (i.e. S2 & S1) 

(Figure 6.5d), as superfast charge separation (CS) was also observed for Q band 

excitation (Figure 6.7). The CS was further confirmed by the observation of the 

transient feature at > 700 nm region as the fingerprint absorption of one electron 

oxidized TCPP*+.279-283 Figure 6.5c compares the kinetic traces of Q band bleach at 

535 nm, 570 nm, 605 nm, and 664 nm, where a clear rising component was observed  
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Table 6.2 Multiexponential fit parameters for TA experiments corresponding to the fits 

shown in Figure 3c in the main text. 

 

and can be assigned to the increased population of thermally relaxed Qx state after 

excitation or due to the overlap with feature at > 650 nm region. These results, similar 

to previous reports accounting for electron transfer process in MOFs,278, 284 implying 

that fast electron transfer (ET) occurs from TCPP ligand to Ce metal cluster. The 

kinetic traces of Ce-TCPP can be fitted by a four-exponential function with 

parameters listed in Table 6.2. Unfortunately, we are not able to accurately determine 

the lifetime of the CS state due to the long-lived component (>> 5ns) which is beyond 

our OTA time window. Nevertheless, we can conclude that the presence of long-lived 

CS state after ET is beneficial for applications in photocatalysis.   

   The formation of CS is further supported by directly monitoring the electron 

density changes at Ce center following selective excitation of TCPP ligand using X-

ray transient absorption (XTA) spectroscopy. Figure 4a shows the XANES spectrum 

of Ce-TCPP at Ce L3 edge and the difference spectra obtained by subtracting the 

ground state (laser-off) spectrum from spectrum collected at different delay times 

(100 ps, 1n s, 10 ns and 100 ns) following 400 nm laser excitation. The positive 

feature observed at 5723.7 eV indicates that the edge energy of Ce shifts to lower 

energy, suggesting the formation of reduced Ce Center in Ce-TCPP MOFs. This is 
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further supported by the negative feature observed at 5725.5 eV: the decreased 

number of empty 4f orbitals prohibits the excitation of 2p core electrons, resulting in 

the decreased absorption intensity. The intensity of this negative feature decreases 

gradually from 100 ps to 10 ns until 100 ns where no transient signal was observed 

(Figure 6.8), suggesting that this is a long-lived transient species. These results 

together confirmed the formation of a long-lived CS state due to LMCT after 

photoexcitation of Ce-TCPP MOFs, consistent with OTA results above.  

 

 

Figure 6.8 XANES spectrum of Ce-TCPP MOFs at Ce L3-edge (black plot) and the 

difference XANES spectra at 100 ps (red), 1ns (blue), 10ns (green), and 100 ns (gray) 

obtained by subtracting the laser-off spectrum from laser-on spectrum. 

 

 

6.3 Conclusion 

 

 

   In summary, we have synthesized Ce-TCPP constructed from free-base TCPP 

ligand and Cerium ammonium nitrate. The bulk and local structure of Ce-TCPP 
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MOFs were confirmed by XRD, FTIR, UV-visible spectroscopy, and XAS, where 

both Ce3+ and Ce4+ coexist in MOF. Using OTA spectroscopy, we show that ultrafast 

charge transfer occurs from TCPP ligand to Ce center in Ce-TCPP following the 

excitation of TCPP ligand, forming a long-lived charge separated state. The formation 

of this charge separated state was further confirmed by XTA, where the reduction of 

Ce center was observed due to excitation of TCPP ligand. The observed ultrafast 

charge transfer process which results into the formation of long-lived charge separated 

state is expected to be beneficial for photocatalysis and thus imply the potential 

application of Ce-TCPP MOFs in solar energy conversion. 
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Chapter 7. 

2D COVALENT ORGANIC FRAMEWORKS AS INTRINSIC 

PHOTOCATALYSTS FOR VISIBLE LIGHT-DRIVEN CO2 

REDUCTION  

 

 

7.1 Introduction 

 

 

   Efficiently capturing CO2 and simultaneously  converting it to chemical fuels 

driven by solar energy is a promising approach to address energy crisis and climate 

issues.285-287 The essential challenge in reaching this elusive goal is to formulate a 

rationally designed photocatalytic system that can effectively couple a given 

photosensitizer (PS) with an appropriate molecular catalyst (MC), thereby enabling 

efficient photosensitization of multi-electron reduction catalysis.288-290 While many 

molecular- or semiconductor-based photocatalytic systems have been designed, they 

all suffer difficulties, such as poor adsorption of CO2, inappropriate architecture of 

active sites, wasteful rapid charge recombination or low selectivity etc.3, 135, 285, 291 

   As an emerging class of crystalline porous materials, covalent organic frameworks 

(COFs) represent a versatile platform offering new promise for photocatalytic CO2 

reduction.292-302 COFs are built from periodic organic building blocks via covalent 

bond formation, providing an innovative approach for the construction of robust 

photocatalytic materials with built-in PS (i.e. extended π-conjugation) and MC (e.g. 

incorporated via postsynthetic modification), thereby facilitating efficient charge 
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separation (CS) and precise determination of the nature of the incorporated catalytic 

active sites. Moreover, these structurally diverse materials, with large surface areas 

and readily tunable pore sizes are expected to provide an ideal scaffold for CO2 

adsorption, diffusion, and activation. However, this undeniable potential has yet to be 

realized, with some recently studied initial systems exhibiting moderate 

efficiencies.303-306 Given the  inherent advantages of COFs as photocatalytic 

materials and their potential impact on the global energy crisis,307-311 no time should 

be wasted in undertaking a well-designed plan to further develop useful devices.  

   Addressing this pressing need, in this work, we report a newly designed COF 

photocatalyst with an effective photoactive 2D triazine COF as PS and a precisely 

incorporated tricarbonylchloro(bipyridyl) Re complex (Re(bpy)(CO)3Cl) as CO2 

reduction MC (denoted Re-COF). We show that this Re-COF hyb rid catalyst can 

effectively reduce CO2 to CO with high selectivity (98%) and durability upon visible 

light illumination. More importantly, the combination of in situ and time-resolved 

optical (TA) and X-ray (XTA) absorption spectroscopic techniques uncovered the 

active sites and key intermediate species that are responsible for CO2 reduction. 

 

 

7.2 Results and discussion 

 

 

   The 2D triazine COF was synthesized from 2,2-bipyridyl-5,5-dialdehyde (BPDA) 

and 4,4’,4’’-(1,3,5-triazine-2,4,6-triyl) trianiline (TTA) by solvothermal reactions 

(Scheme 7.1a). The formation of imine linkages between aldehyde and TTA in COF 

was confirmed by Fourier transform infrared (FT-IR) spectrum (Figure 7.1a), where 
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we observed the formation of C=N stretching modes at 1626 cm-1 that is characteristic 

of imine in COF and the vanishing of amino band (3213-3435 cm-1) and aldehyde 

band (1673-1692 cm-1) that were present in the starting materials, i.e. TTA  

 

 

Scheme 7.1. a) The synthesis of COF and Re-COF. (b) Side view and (c) unit cell of 

AA stacking COF. (d) Proposed catalytic mechanism for CO2 reduction. 
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Figure 7.1 FT-IR (a) and diffuse reflectance UV-visible spectra (b) of COF, Re-COF 

and their starting materials. (c) Powder XRD patterns of Re-COF and COF obtained 

experimentally (green), through Pawley refinement (red), and via simulation using AA 

stacking mode (blue). The purple plot in the middle panel is the difference pattern 

between experimental and simulated data. 

 

 

and BPDA, respectively.297-298, 312-314 The formation of the COF macrostructure was 

further supported by the additional absorption band (~ 440 nm) observed in its diffuse 

reflectance UV-visible spectrum (Figure 7.1b), which arises from the delocalized 

intramolecular charge transfer (ICT) band due to π-conjugation of TTA and BPDA.315-

317 Powder XRD patterns of COF show prominent diffraction peaks (Figure 7.1c), 

indicating its crystalline nature. The lattice model was simulated using Material 

Studio 8.0,312 from which we obtained the most probable structure of COF with AA 

stacking mode (Scheme 1b and 1c). Pawley refinement of the simulated structure 

yields XRD patterns that agree well with the experimental data, as indicated by the 

negligible difference between the simulated and experimental data (middle panel of 
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Figure 7.1c), suggesting the validity of computational model.  

 

Figure 7.2 13C NMR spectrum for Re-COF, COF and Re(CO)3(bpy)Cl, signal marked 

with star are spinning side bands. 

 

 

   Re moiety was then incorporated into the COF via direct reaction between 

bipyridine ligand and Re(CO)5Cl to form Re-COF (Scheme 1a).318 This is confirmed 

by the additional peaks at 1887 cm-1, 1916 cm-1 and 2022 cm-1 in FT-IR spectrum of 

Re-COF, which correspond to -CO vibrational stretching of Re complex (Figure 

7.1a).318-320 The XRD patterns (Figure 7.1c) of Re-COF, match well with the 

simulated data of COF, indicating the preservation of its crystal parameters after Re 

incorporation. This is further supported by the 13C NMR spectrum (Figure 7.2) and 

SEM images (Inset of Figure 7.1c) of Re-COF and COF. In addition, the local 

coordination structure of Re complex in Re-COF measured using X-ray absorption 

spectroscopy (XAS) retains that of Re(bpy)(CO)3Cl (Figure 7.3 and Table 7.1), 
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suggesting that Re(bpy)(CO)3Cl are well preserved after being incorporated into the 

COF framework. However, it is notable that the UV-visible spectrum of Re-COF are 

extended to broader region (Figure 1b). This can be attributed to either the vibronic 

broadening of COFs,321 or the increased delocalization due to the chelation of 

Re(bpy)(CO)3Cl. The permanent porosity of COF and Re-COF was confirmed by N2 

sorption measurements at 77 K (Figure 7.4). 

 

 

Figure 7.3 The X-ray absorption (XAS) spectra of Re-COF and Re(bpy)(CO)3Cl 

complex in energy (a), k-space (b), and R-space at Re L3-edge. The open circles and 

solid lines in (b) and (c) are experimental and fitted results, respectively. 

    

Figure 7.4 N2 adsorption isotherm of (a) COF and (b) Re-COF 

 

Table 7.1 The fitting parameters for steady-state XAS data for Re-COF and 

Re(bpy)(CO)3Cl at Re L3-edge. 
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   As light absorption and CS are the key initial step to determine whether Re-COF 

can be used as photocatalyst for CO2 reduction, we first examined the CS dynamics in 

Re-COF using TA spectroscopy following 530 nm excitation (where the TA spectra of 

Re(bpy)(CO)3Cl show negligible signal). Figure 7.5a shows the TA spectra of COF 

consisting of a negative band centered at 500 nm and a positive feature centered at 

600 nm, which can be assigned to the stimulated emission (SE)322-323 and ES 

absorption of ICT,323-324 respectively. As indicated by the kinetic trace of excited ICT 

absorption (COF@ICT, Figure 7.5b), the formation of the excited ICT state (fast-

rising component) is ultrafast with ~200 fs time constant and the charge 

recombination (CR) time is 19.4 ps (Table 7.2). Compared to the spectra of COF, the 

TA spectra of Re-COF show a similar SE band at 500 nm and the formation of the  

 

 

Table 7.2 The fitting parameters for the kinetic traces at 600 nm for COF and Re-COF 

 

 

 

excited ICT state (Figure 7.5c). However, its excited ICT band is much broader than 

Re-COF Re(bpy)CO)3Cl

vector N R(Å) σ2x 10-3(Å2) N R(Å) σ2x 10-3(Å2)

Re-C 2, 1 1.86, 2.05 1, 10 2, 1 1.90, 1.98 1, 10

Re-N 2 2.24 1 2 2.18 1

Re-Cl 1 2.42 9.17 1 2.49 5.81

Sample 1,ps (A1,%) 2,ps (A2,%) 3,ps (A3,%) 4,ps (A4,%) ave,ps

COF 0.2r (100) 41.1 (36.1) 7.1 (63.9) 19.4

Re-COF 0.2r (100) 1.5 (39.9) 12.4 (38.0) 751 (22.1) 171

rthe rising component in a multi-exponential decay function
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that in COF with additional absorption beyond 650 nm, which can be attributed to its 

broader ground state (GS) spectrum. More interestingly, this excited ICT state of Re-

COF (Re-COF@ICT, Figure 7.5b) exhibits much longer lifetime (τ = 171 ps) than 

that of COF, suggesting that the incorporation of Re(bpy)(CO)3Cl inhibits CR in Re-

COF. 

 

Figure 7.5 Transient optical spectra of COF (a) and Re-COF (c) following 530 nm 

excitation. (b) The comparison of kinetics for ICT of COF and Re-COF. (d) The 

XANES spectrum of Re-COF at Re L3-edge. The bottom panel is the difference 

spectrum after subtracting the laser-off spectrum from laser-on spectrum collected at 

150 ps delay time. 

 

 

   To gain insight on the role of Re(bpy)(CO)3Cl play in elongating the excited ICT 

lifetime, we directly examined the electron density at the Re center in Re-COF 

following the excitation of COF using element specific XTA spectroscopy. Figure  
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Figure 7.6 Optimization of light-driven CO2 reduction reaction. (a) The amount of CO 

produced using different solvents and sacrificial donors. (b) The selectivity of Re-COF 

for CO2 reduction. (c) The amount of CO generated under the conditions without TEOA, 

in the dark, without CO2, supernatant after catalysis, and replacing Re-COF by COF. 

(d) The comparison of the amount of CO generated between Re-COF and homogeneous 

Re(bpy)(CO)3Cl with 2.7x10-7 mol of Re complex in both samples. 

 

 

7.5d shows the X-ray absorption near edge structure (XANES) spectrum of Re-COF 

collected at Re L3-edge, which is featured by a prominent white line transition 

corresponding to dipole allowed 2p3/2-5d transition.325-326 Also shown in Figure 7.5d is 

the transient XANES spectrum of Re-COF, i.e. the difference spectrum obtained by 

subtracting the GS spectrum from the spectrum collected at 150 ps. The distinct 

positive signal observed at 10.531 keV directly supports that Re edge shifts to lower 

energy, suggesting that photoexcitation of Re-COF leads to the reduction of Re center 

in Re-COF. This is further supported by the negative feature observed at 10.538 keV: 
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the reduction of Re decreased the number of empty d orbitals, prohibiting 2p3/2 -5d  

 

 

Figure 7.7 (a) Amount of CO produced as a function of time. The top left inset shows 

the zoomed in profile in the first 2 hours’ reaction, and the lower right inset shows the 

recyclability of the system after three 3-hour experiments. The in situ diffuse 

reflectance UV-visible spectra of Re-COF under standard photocatalytic conditions 

within 15 min (b) and 3 h (c). The inset of c shows the in-situ spectra collected from 5 

h to 9 h. 

 

 

transition and thus decreasing its absorption intensity. These results, together with 

elongated ICT lifetime observed in TA studies, suggest that the electrons in the 

excited ICT state of Re-COF are partially located in Re(bpy)(CO)3Cl, i.e., electron 

transfer (ET) indeed occurs from COF to Re complex, which well explains the 

retarded CR process in Re-COF. 

   The demonstration of ET from COFs to Re(bpy)(CO)3Cl suggests the feasibility 

of using Re-COF as photocatalytic systems for solar fuel conversion. Accordingly, we 

proceeded to examine its photocatalytic activity for CO2 reduction usder Xe lamp 

(cut-off wavelength = 420 nm) illumination. Under the optimized conditions (Figure 

7.6), The system can generate ~15 mmol CO/g of Re-COF steadily for >20 h after ⁓ 

15 min induction period, accounting for a TON of 48 (Figure 7.7a) and 22 times better 
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than its homogeneous counterpart (Figure 7.6). Since no products have been detected 

in the liquid phase and only 2% H2 was produced in the gas phase (Figure 7.6), this 

system has high selectivity for CO2 reduction to generate CO (98%). Isotopic 

experiment using 13CO2 was performed under the same catalytic conditions, and the 

produced 13CO (m/z = 29) shown by gas chromatography mass spectrometry (Figure 

7.8) confirms that the generated CO comes from CO2. The recycling experiments after 

every three hours of reaction show that the catalytic activity persists for at least 3 

cycles (lower right inset of Figure 7.7a).  

 

Figure 7.8 GCMS chromatograms and mass analysis of CO obtained from the 

photocatalytic CO2 reduction reaction under (a) 12CO2 and (b) 13CO2 atmosphere after 

4 h photoirradiation using Xe lamp. (c) m/z 28 is assigned to 12CO.  (d) m/z 29 is 

assigned to 13CO. 

 

 

   To gain more mechanistic insight, we collected the in situ diffuse reflectance UV-
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visible spectra of the catalytic system under the standard catalytic conditions. As 

shown in Figure 7.7b, immediately following illumination, prominent new absorption 

in the 550-800 nm region that resembles the broad absorption of the ICT band in TA 

was observed and can thus be attributed to the formation of the excited ICT state. The 

intensity of this ICT band increases in the first 15 mins, accompanied by the depletion 

of absorption at 400-500 nm with an isosbestic point at 539 nm, suggesting that such 

spectral evolution corresponds to the same process. While similar spectral evolution 

was observed in the system without CO2, significantly less evolution was observed in 

the absence of TEOA (Figure 7.9), which suggests that reduction quenching of Re-

COF by TEOA with the formation of a formal TEOA+-(COF-Re)- CS state contributes 

to the evolution. The time window for this spectral evolution agrees well with the 

induction period observed in catalytic reaction and can thus be attributed to the 

accumulation of TEOA+-(COF-Re)- CS state before catalysis initiates (Step I in 

Figure 7.7a). 

 

 

Figure 7.9 The in situ diffuse reflectance UV-visible spectra of control systems within 

30 min (step I). (a) Re-COF/CO2, (b) COF/TEOA/CO2, (c) Re-COF/TEOA/N2. 

 

 

   After the induction period, the broad absorption at 550-800 nm decreases 
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significantly within 3 h while the feature at < 430 nm grows and a new isosbestic 

point is observed at 430 nm (Step II, Figure 7.7c), which results in a distinct spectral 

feature from that of Step I and suggests the formation of a new intermediate species. 

Note that negligible or very slight evolution corresponding to Step II was observed in 

the system without CO2 or by replacing Re-COF by COF (Figure 7.10), suggesting 

that the intermediate species formed during Step II is associated with CO2 and Re-

moiety. After Step II, the evolution of the spectra stops (Step III, inset of Figure 7.7c), 

which is consistent with the time window for steady generation of CO, suggesting that 

the system reaches an equilibrium state. 

 

 

Figure 7.10 The in situ diffuse reflectance UV-visible spectra of control systems from 

30 min. to 3 h (step II). (a) Re-COF/CO2, (b) COF/TEOA/CO2, (c) Re-COF/TEOA/N2. 

 

 

   Taking together, these spectroscopic results point to a mechanistic pathway 

proposed in Scheme 7.1d. Upon illumination, the catalytic cycle initiates with the 

formation of ICT state which is quickly reduced by TEOA, forming a TEOA+-(COF-

Re)- CS state (Step I). This formal CS state with reduced Re-COF is then able to 

capture CO2 to form the next intermediate species (Step II). According to previous 

literature,290, 318-320, 327-328 this intermediate species is likely the CO2 adducts such as 
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TEOA+-(COF-Re[CO2])
- or/and TEOA+-(COF-Re[CO2H])-, which is formed after the 

dissociation of Cl– from Re-moiety. As the spectra persist during steady state 

generation of CO (Step III), the consumption of the CO2 adducts to eventually form 

CO represents the rate limiting step of the catalytic reaction, although multiple 

processes might be involved before CO is released.34-36, 43-44 

 

 

7.3 Conclusion and future work 

 

 

   In conclusion, we report a newly designed COF hybrid catalyst by incorporating 

Re(bpy)(CO)3Cl into the framework of 2D triazine COF via post-synthetic 

modification. We show that this system can efficiently reduce CO2 with better activity 

than its homogenous counterpart and high selectivity and stability. Using TA and XTA 

spectroscopy, we show that this system can undergo facile ICT through ET from 

photoexcited COF to Re moiety. Using in situ diffuse reflectance UV-visible 

spectroscopy, we unraveled three key intermediate species that are responsible for CS, 

induction period, and rate limiting step in CO2 reduction. These results not only 

demonstrated the great potential of COFs as effective solar fuel photocatalysts but 

also provided unprecedented new insight into the catalytic mechanism for CO2 

reduction. 

   Inspired by this study, the future work should focus on investigating the light 

harvesting and excited state dynamics of COFs, which is one of the key properties 

that dictate the function of COFs for photocatalysis. We synthesized highly emissive 

C-sp2 COFs based on star shaped donor-accepter pairs. The understanding of 
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fundamental photophysical events in such COFs by using transient absorption 

spectroscopy and TCSPC will provide guidance in material design, which facilitate 

solar to fuel application of COFs.  
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