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COMPLEX-VALUED TIME SERIES MODELING FOR IMPROVED
ACTIVATION DETECTION IN FMRI STUDIES

BY DANIEL W. ADRIAN∗, RANJAN MAITRA†,1 AND DANIEL B. ROWE‡,2

Grand Valley State University∗, Iowa State University† and Marquette University‡

A complex-valued data-based model with pth order autoregressive er-
rors and general real/imaginary error covariance structure is proposed as an
alternative to the commonly used magnitude-only data-based autoregressive
model for fMRI time series. Likelihood-ratio-test-based activation statistics
are derived for both models and compared for experimental and simulated
data. For a dataset from a right-hand finger-tapping experiment, the activa-
tion map obtained using complex-valued modeling more clearly identifies the
primary activation region (left functional central sulcus) than the magnitude-
only model. Such improved accuracy in mapping the left functional central
sulcus has important implications in neurosurgical planning for tumor and
epilepsy patients. Additionally, we develop magnitude and phase detrending
procedures for complex-valued time series and examine the effect of spatial
smoothing. These methods improve the power of complex-valued data-based
activation statistics. Our results advocate for the use of the complex-valued
data and the modeling of its dependence structures as a more efficient and
reliable tool in fMRI experiments over the current practice of using only
magnitude-valued datasets.

1. Introduction. Functional magnetic resonance imaging (fMRI) is a popu-
lar noninvasive method for studying brain function. Since its inception 25 years
ago, fMRI has led to important developments in neurosurgical planning, cogni-
tive neuroscience, and the perception of mental illness, among other fields [Rosen
and Savoy (2012)]. The imaging modality is based on the fact that when neurons
fire in response to a stimulus or a task, the blood oxygen level in neighboring
vessels changes, affecting the magnetic resonance (MR) signal on the order of
0.5–3% due to the differing magnetic susceptibilities of oxygenated and deoxy-
genated hemoglobin [Lazar (2008)]. This difference is behind the so-called Blood
Oxygen Level Dependent (BOLD) contrast [Belliveau et al. (1991), Kwong et al.
(1992), Ogawa et al. (1990), Bandettini et al. (1993)] which is utilized as a sur-
rogate for neural activity and is used to acquire time-course sequences of images.
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The stimulus time course commonly consists of a block design, in which stimulus
and resting periods are alternated regularly, or is event related, in which case the
stimulus is applied instantaneously at several time points with the subject at rest at
other times.

Each MR image is obtained in a series of steps from the k-space data [Brown,
Kincaid B. M and Ugurbil (1982), Ljunggren (1983), Tweig (1983)] which en-
codes different frequency contributions to each voxel. The varied frequencies re-
sult from different magnetic field gradients [Jezzard and Clare (2001)] and need
to be inverted to localize measurements at each voxel. This step is implemented
by applying the inverse Fourier transform [Jain (1989)] on the k-space data and
results in a complex-valued observation at each voxel and each time-point. Thus,
acquired fMRI data at each voxel and time point can, in reality, be written in terms
of its real and imaginary (or equivalently, magnitude and phase) components.

Acquired MR datasets have typically used only the magnitude measurements
at each voxel for display and analysis. This practice of using only the magnitude
data while discarding the phase at each voxel has carried over to fMRI practice
so much that most statistical analyses routinely ignore the phase data and base
their inferences on only the magnitude time series at each voxel [Rowe and Logan
(2004)]. Thus, in a literal sense, it could be said that fMRI analyses have almost
exclusively thrown away half of its collected data, and though the magnitude val-
ues unarguably contain more information than do the phase measurements about
the BOLD response of interest, we argue and demonstrate in this paper that the
phase contains information also important to the analysis.

The general strategy in so-called “magnitude-only” statistical analysis of fMRI
data is to fit, at each voxel, a model—commonly a general linear model [Friston
et al. (1995)]—to the time series observations against a transformation of the in-
put stimulus. This transformation is the expected BOLD response and is effec-
tively modeled in terms of a convolution of the stimulus time course with the
hemodynamic response function (HRF), which measures the delay and dispersion
of the BOLD response to an instantaneous neuronal activation [Friston, Jezzard
and Turner (1994), Glover (1999)]. This provides the setting for the application
of the Statistical Parametric Mapping (SPM) technique of Friston et al. (1990),
in which the time series at each voxel is reduced to a test statistic that summa-
rizes the association between each voxel time course and the expected BOLD re-
sponse [Bandettini et al. (1993)]. The resulting map is then thresholded to iden-
tify voxels that are significantly activated [Genovese, Lazar and Nichols (2002),
Worsley et al. (1996), Logan and Rowe (2004)]. Commonly, the images at each
time point are spatially smoothed before each voxel time series is modeled and
the test statistics are computed. Smoothing can improve the contrast-to-noise ratio
(CNR) by averaging away the noise in neighboring voxels, as long as the activation
is not smoothed away as well [Smith (2001), Lazar (2008)].

A different approach using both magnitude and phase data (i.e., the complete
complex-valued data) in the analysis has several advantages. For instance, the
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phase time series can be useful in the so-called “brain or vein” problem, that is, in
determining whether a voxel showing a task-related magnitude change represents
(desired) grey matter or (an undesired) draining vein. This is because it has been
demonstrated that voxels containing large, coherently oriented vessels (i.e., drain-
ing veins) can exhibit a task-related phase change [Hoogenrad et al. (1998), Menon
(2002)]; in contrast, according to theory, voxels containing small, randomly ori-
ented vessels exhibit little phase change. Recent findings also indicate that phase
changes can occur outside of voxels containing draining veins as well, and thus
(while complicating the “brain or vein” problem) phase data can provide additional
physiological information [Feng et al. (2009), Zhao et al. (2007)]. In addition, pre-
liminary evidence indicates that phase information may be important in neuronal
current MRI (ncMRI), which aims to directly detect neuron firings (instead of us-
ing the BOLD surrogate) but its development is still in its early stages [Bandettini,
Petridou and Bodurka (2005)]. Lastly, simulations [Rowe and Logan (2004)] show
that magnitude-only data-based activation tests have a substantial drop of power at
low signal-to-noise ratios (SNRs) while corresponding complex-valued data-based
tests have constant (and higher) power over all SNRs. This is a potentially impor-
tant result for future fMRI studies incorporating greater spatial resolution, as voxel
volume is inversely proportional to SNR.

1.1. Statistical models for complex-valued voxel time series. We now in-
troduce notation for complex-valued fMRI time series. Focusing on a single
voxel (and suppressing voxel-related subscripts), the complex-valued observa-
tion at time t can be denoted by yRt + iyI t in terms of real/imaginary com-
ponents or by rt e

iφt = rt (cosφt + i sinφt) in terms of magnitude/phase compo-

nents. Thus, it holds that yRt = rt cosφt , yIt = rt sinφt , rt = (y2
Rt + y2

I t )
1
2 , and

φt = arctan4(yI t , yRt ), the 4-quadrant arctangent [see Glisson (2011), page 348]
corresponding to arctan(yI t/yRt ). For statistical analysis, we consider the com-
plex number yRt + iyI t to be the bivariate random vector (yRt , yI t )

′ and also de-
note the (real-valued) real, imaginary, magnitude, and phase time series vectors,
respectively, by yR = (yR1, . . . , yRn)

′, yI = (yI1, . . . , yIn)
′, r = (r1, . . . , rn)

′, and
φ = (φ1, . . . , φn)

′, with n denoting the number of scans. Most statistical mod-
els for complex-valued voxel time series are based on the fact that yRt and yIt

are independent normal random variables with the same variance [Wang and Wei
(1994)]. These models may be categorized as whether the magnitude and phase
are uncoupled [Lai and Glover (1997), Lee et al. (2007)] or (correctly) coupled, as
in Nan and Nowak (1999), Rowe and Logan (2004), and Rowe (2005). Here we
specifically present the Rowe and Logan (2004) model

(1.1)
(

yR

yI

)
=

(
Xβ cos θ

Xβ sin θ

)
+

(
ηR

ηI

)

because of its simplicity and because our investigation (see Section 4.2) indicates
its adequacy for our dataset. The model couples the expected response of the mag-
nitude time series Xβ with the phase location parameter θ that is assumed constant
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throughout the time series. Here the columns of the design matrix X represent fea-
tures of the fMRI signal including the baseline signal and the expected BOLD
response. The errors (η′

R,η′
I )

′ ∼ N(0,� ⊗ �), where � and � are matrices of or-
der 2 and n representing the real/imaginary and temporal covariance, respectively,
and ⊗ represents the direct (Kronecker) product. This model generalizes the de-
sign matrix and covariance structure of Nan and Nowak (1999), and was originally
proposed by Rowe and Logan (2004) who, however, proceeded by assuming inde-
pendence (i.e., by assuming that � = σ 2I 2 and � = In, where I k is the identity
matrix of order k) when deriving maximum likelihood estimates (MLEs) and a
likelihood ratio test (LRT) for activation. Rowe (2005) further generalized model
(1.1) by introducing time-dependent phase location parameters according to a lin-
ear model. Under this updated model, Rowe (2005) derived LRTs for task-related
phase changes such as those caused by draining veins, as discussed previously.

1.2. Overview of contributions of this paper. This work offers three major
contributions to complex-valued voxel-wise modeling of fMRI time series. First,
we develop methodology to correct for instability in the magnitude and phase sig-
nals via a “complex-valued running line,” which fits a running-line smoother to
the magnitude and phase time series simultaneously via a complex-valued model.
Correcting for nuisance signals in magnitude time series which, whether caused
by scanner drift or aliased physiological effects [Lazar (2008)], are a well-known
processing step in the analysis pipeline. Less known is that instability of phase
time series can cause complex-valued data-based detection methods to become
less powerful than their magnitude-only counterparts. Consequently, methods have
been developed to correct the phase for inhomogeneities in the static magnetic field
[Hahn, Nencka and Rowe (2009)], physiological noise [Petridou et al. (2009)],
and head motion [Hahn, Nencka and Rowe (2012), Hahn and Rowe (2012)]. In
our case, preprocessing via the complex-valued running line controls for nonlinear
nuisance magnitude signals, allows for the assumption of constant phase location
parameter in model (1.1), and provides a better model fit.

Second, we apply a more general covariance structure to model (1.1) than pre-
viously considered in Rowe and Logan (2004), which assumed that the real and
imaginary errors were independent with the same variance (� = σ 2I 2) and also
temporally independent (� = In). Based on work in magnitude fMRI time series,
it is widely realized that the temporal independence assumption is not supported in
reality for several reasons. For one, the hemodynamic response to a single neural
activation takes six seconds to peak and 15–20 seconds to return to baseline and
so the measured response occurs over several scans [Friston, Jezzard and Turner
(1994)]. The subject’s cardiac and respiratory cycles provide another source of
autocorrelation [Friston et al. (2000)]. Following Bullmore et al. (1996), who ex-
tended the linear model for magnitude-only time series by adding autoregressive
(AR) errors, we apply AR(p) temporal dependence in the real and imaginary errors
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FIG. 1. Images of the (a) real, (b) imaginary, (c) magnitude, and (d) phase components of the
middle slice for time points 1, 8, 15, and 22 (moving left to right).

of (1.1). We also generalize the real/imaginary covariance �, allowing separate
variances for the real and imaginary errors as well as real/imaginary correlation.

Third, we study the effects of spatial smoothing on complex-valued fMRI data,
including the correlations induced and their effect on activation detection. Nencka,
Hahn and Rowe (2009) developed a theoretical framework for understanding the
statistical effects of spatial smoothing (and other preprocessing operations), which
was expanded upon in Bruce, Karaman and Rowe (2011) to examine the correla-
tions induced by acquisition methods utilizing multiple receiver coils. However, to
our knowledge, the effects of spatial smoothing upon complex-valued data-based
activation detection have not previously been investigated.

The remainder of this paper is organized as follows. Section 2 introduces our
showcase application, a complex-valued fMRI dataset acquired from a finger-
tapping experiment, the type of which is utilized as a noninvasive neurosurgi-
cal planning tool. In this context, we introduce the complex-valued running line
methodology and derive an LRT statistic for activation based on the extension
of model (1.1) including temporal and real/imaginary correlation (Section 3). We
compare this test statistic to a magnitude-only AR(p) model-based LRT statis-
tic, analyzing the finger-tapping experiment dataset under different amounts of
smoothing in Section 4 and running simulation studies in Section 5 to explore the
nature and validity of the results. We conclude with some discussion in Section 6.
This paper also has an online supplement [Adrian, Maitra and Rowe (2018)] pro-
viding further details on methodology, performance evaluations, data analysis, and
simulation studies. Sections, figures, and tables in the supplement referred to in
this paper are labeled with the prefix “S-.”

2. Motivating example: Aiding neurosurgical planning via accurate acti-
vation detection in a finger-tapping experiment. Our showcase application for
this paper comes from a commonly performed unilateral sequential finger-tapping
experiment. In this case, the MR images were acquired with TR = 1 s while the
(normal healthy male) volunteer was instructed through visual cues to either lie at
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rest or to rapidly tap fingers of his right hand (hence unilateral) sequentially in the
order of index, middle, ring, and little fingers. The experiment followed a block de-
sign with 16 epochs of 15s of tapping alternating with 15s of rest concluding with
an additional 10s of rest at the end of the experiment. Hence, the dataset contains
a temporal sequence of n = 490 images for use in our analysis. Each image was
composed of seven 2.5 mm thick 96 × 96 axial slices with a 24.0 cm FOV. [The
data are the last 490 time points analyzed in Karaman, Bruce and Rowe (2015),
where it was inadvertently referred to as a bilateral finger-tapping experiment.] For
this dataset, the phase components of the time series images were not discarded but
stored along with the magnitude images used in traditional fMRI analysis. The data
processing flow included Nyquist ghost removal and correction for global zero-
order off-resonance using three navigator echos [Jesmanowicz, Wong and Hyde
(1993), Nencka, Hahn and Rowe (2008)], image reconstruction from k-space by
inverse Fourier transform [Kumar, Welti and Ernst (1975), Rowe (2016)], and es-
timation and correction of the dynamic field using temporal off-resonance align-
ment of single-echo timeseries (TOAST) [Hahn, Nencka and Rowe (2009, 2012)].
A binary mask of voxels above 15% of the maximum voxel signal magnitude was
generated from the first image of the Karaman, Bruce and Rowe (2015) dataset,
representing voxels within the brain.

Figure 1 shows images of the real, imaginary, magnitude, and phase compo-
nents of the middle slice at time points one, eight, 15, and 22. (See Figure S-1
for displays of the other slices.) These images appear largely unchanged over time
because the BOLD stimulus response is very small compared to the overall MR
signal. Figure 2 displays the real, imaginary, magnitude, and phase time series for
one of the voxels showing the most activation. It is evident that the real, imaginary,
and magnitude time series at this voxel oscillate with a period similar to the stim-
ulus time course; in contrast, the phase time series has relatively constant location
(though the fit of the constant phase assumption has some room for improvement,
as we will see).

Figure 2 also provides some pointers as to why the fMRI community has found
it difficult to recognize that discarding half of the data (the phase) is not necessarily
a prudent practice. This is because the magnitude data have the best definition,
while the phase data have high variability and do not seemingly provide much
visual content. However, the phase data have additional information on variability
in the MR signal, and we contend and demonstrate that harnessing this additional
information can improve specificity in fMRI analysis.

Paradigms involving hand stimulation, such as in the finger-tapping experiment
introduced here, have deeper clinical significance, especially in the context of uti-
lizing fMRI as a noninvasive neurosurgical planning tool for tumor and epilepsy
patients. Such experiments have shown that the central sulcus is the location of
hand function in the sensorimotor cortex for normal healthy adults [Rumeau et al.
(1994)]. At risk of confusion, it is important to distinguish between the functional
central sulcus and the anatomical central sulcus, as the two do not in general
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FIG. 2. Time series of (from top) the real, imaginary, magnitude, and phase observations for one of
the voxels showing the most activation. Lighter lines in each display represents the raw time series,
while the darker lines show the result after applying a simple, central moving average filter with 5
nearest neighbors. The bottom display is of the block design of the stimulus and its convolution with
the HRF.
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FIG. 3. (a) Anatomical image of the fifth slice and (b) corresponding contour plot identifying the
left central sulcus.

agree. The functional central sulcus is the brain activation region of hand func-
tion determined by the fMRI experiment [Lee et al. (1999)]. On the other hand,
the anatomical central sulcus refers to brain anatomy instead of function, in this
case the sulcus, or fold, in the cerebral cortex which separates the frontal lobe from
the parietal lobe. As a neurosurgical planning tool, such fMRI experiments seek
to identify the functional central sulcus in order to better assess the risk/benefit
of surgery through knowledge of the relative locations of the proposed surgical
target and of specific functional areas on the cortical surface [Lee et al. (1999)].
Traditionally, determining such knowledge required an invasive procedure, but the
usage of fMRI allows it to be determined noninvasively and preoperatively.

For a normal healthy subject, the functional central sulcus should align with
its anatomical twin, but for many studies, “functional activation may extend over
two or three sulci,” which results in “ambiguous identification of the (functional)
central sulcus” [see Lee, Jack and Riederer (1998), who also assert that “any level
of ambiguity is unacceptable for surgical mapping”]. Thus, methodology that re-
duces this ambiguity as far as possible is a desirable clinical goal. Figure 3 shows
the location of the left anatomical central sulcus [Harnsberger et al. (2007)] on
the T∗

2-weighted anatomical image of our subject’s brain used to create the mask.
(We focus on the left central sulcus because its functional version will be activated
by right-hand finger tapping due to the decussation of nerve fibers in the upper
slices of the brain.) Therefore, the experiment here provides a test case for evalu-
ating not only our methodology but also for the potential applicability of fMRI as
a noninvasive clinical tool for the planning of neurosurgeries.

3. Methodological development.

3.1. Trend removal via a complex-valued running line. Our methodology for
the complex-valued running line was motivated by approaches to remove trend
in magnitude-data fMRI analysis, of which there are several. In our experience,
global polynomial fitting methods are not sufficiently flexible to model the gamut
of nonlinear trends, and frequency filtering methods can infer spurious trends at
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the ends of the time series. A good alternative is a running line as introduced by
Marchini and Ripley (2000), which is similar to a moving average except that a
least squares linear fit is applied to the k nearest neighbors of every time point.
For periodic designs, Marchini and Ripley (2000) suggest letting k equal twice the
period, and we adopt this practice here. Using this value of k removes nuisance
trends while preserving task-related magnitude and phase changes.

To extend this methodology to complex-valued time series, we fit the Rowe
(2005) model in each neighborhood. Specifically we find the value of the complex-
valued running line at t∗ by fitting the model

(3.1)
(

yRt

yI t

)
=

(
ρt cos θt

ρt sin θt

)
+

(
ηRt

ηI t

)

for t in the neighborhood N(t∗) = {t : max(t∗ − k,1) ≤ t ≤ min(t∗ + k,n)}. In
(3.1), the magnitude ρt and the phase θt are linear functions of time: specifi-
cally, ρt = β0 + stβ1, where st is the t th entry of an arithmetic sequence, and
θt = γ0 + g(stγ1), where g(·) = 2 arctan(·). The adaptation of the link function
g(·) follows from Fisher and Lee (1992)’s methodology for regression with an-
gular responses that was applied to phase-only fMRI time series in Rowe, Meller
and Hoffman (2007) and allows unique ML estimation of γ1. (It is recommended
that the arithmetic sequence be centered around zero for faster convergence of the
MLE of γ1.) Details on the ML estimation of the parameters are given in Sec-
tion S-2.1. Using these MLEs, the magnitude and phase of the complex-valued
running line at time t∗ are given by ρ̂t∗ = β̂0 + st∗ β̂1 and θ̂t∗ = γ̂0 + g(st∗ γ̂1).
(To save computer time, we can perform ML estimation for every j time points
and use linear interpolation to obtain the values in between these time points.)
The detrended complex-valued time series is then given by r̃t e

iφ̃t , t = 1, . . . , n,
where r̃t = rt − ρ̂t + ρ̄, with ρ̄ = (1/n)

∑n
t=1 ρ̂t , and φ̃t = φt − θ̂t + θ0, where

θ0 is an analyst-specified central phase that is the same at each voxel. Centering
each phase time series around θ0 establishes phase coherence which is needed be-
cause the phase does not generally match between slices—see Figure S-1(d) and
Figure 6 of Jesmanowicz, Nencka and Hyde (2014). Phase coherence of the voxel
time series is desirable for the application of spatial smoothing, which we discuss
next.

3.2. Spatial smoothing of complex-valued fMRI data. Following detrending
with the complex-valued running line, we smooth the real and imaginary images
(separately) at each time point with a three-dimensional discrete isotropic Gaus-
sian filter [Bruce, Karaman and Rowe (2011), Nencka, Hahn and Rowe (2009)].
We vary the amounts of smoothing by applying filters with different bandwidths
expressed in terms of the full-width-at-half-maximum (FWHM). As a result, we
produce a total of four datasets: three that are smoothed with FWHMs = 2, 4,
and 6 voxels and one in which no smoothing is performed. We place special fo-
cus on the results of the smoothed dataset with FWHM = 4 voxels because this
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represents a moderate amount of smoothing and is the default value used by the
Analysis of Functional Neuroimaging (AFNI) software [Cox (1996), Cox (2012),
Cox and Hyde (1997)].

3.3. Overview of activation detection. We compare the activation detected in
these datasets by LRT statistics under complex-valued and magnitude-only data-
based models, both of which assume AR(p) errors; the statistics are denoted by
	C,p and 	M,p , respectively. For now, the AR order p is assumed to be known;
in practice, p will be detected via the methodology to be described in Section 3.5.
As mentioned in Section 1, the complex-valued model is an extension of the Rowe
and Logan (2004) model,

(3.2)
(

yR

yI

)
=

(
Xβ cos θ

Xβ sin θ

)
+

(
ηR

ηI

)
,

where X contains columns for the baseline and expected BOLD response and we
assume a constant phase location parameter θ . (Due to the complex-valued running
line, it is not necessary for X to contain additional columns, such as polynomials,
to model the magnitude trend; further, the constant phase assumption is strength-
ened.) The errors (η′

R,η′
I )

′ ∼ N(0,� ⊗ �), where

(3.3) � = Cov(yRt , yI t ) =
(

σ 2
R ρσRσI

ρσRσI σ 2
I

)

and � = Rn is such that Cov(ηR) = σ 2
RRn and Cov(ηI ) = σ 2

I Rn; thus the model
assumes that the autocorrelation of the real and imaginary errors are determined by
the same AR coefficients α = (α1, . . . , αp)′. The magnitude-only model is given
by r = Xβ + ε, where X is the same as in (3.2) and ε follows a pth order autore-
gressive structure. (Note that the corresponding parameters in the magnitude-only
and complex-valued models are not necessarily equivalent, but we do not distin-
guish them notationally for the sake of simplicity.)

Under either model, the activation test may be posed generally as H0 : Cβ = 0
vs. Ha : Cβ �= 0, and the LRT statistics have χ2

m asymptotic null distributions,
where m = rank(C). We derive the complex-valued model-based LRT statistic
(LRTS) in Section 3.4; we relegate magnitude-only LRTS derivations to the sup-
plement (Section S-2.2). At each voxel, a p-value is computed from the obtained
LRTS. We use cluster thresholding [Forman et al. (1995), Logan, Geliazkova and
Rowe (2008)] on these p-values to determine activated voxels by tagging clus-
ters of a minimum size where voxels have p-values below a specified significance
level.

3.4. Modeling for AR(p) complex-valued fMRI time series. Denoting the
model parameters by τ = (α,β, θ, σ 2

R,σ 2
I , ρ) and utilizing the properties of Kro-

necker products, model (3.2) has log-likelihood function given by

logL(τ |yR,yI ) = −n/2 log
[
σ 2

Rσ 2
I

(
1 − ρ2)] − log |Rn| − h/

[
2
(
1 − ρ2)]

,
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where

(3.4) h =
(

ηR

ηI

)′ ⎛⎝ 1
σ 2

R

R−1
n − ρ

σRσI
R−1

n

− ρ
σRσI

R−1
n

1
σ 2

I

R−1
n

⎞
⎠(

ηR

ηI

)
.

The maximum likelihood estimate (MLE) of β is

(3.5) β̂ =
β̂R[ cos θ̂

σ̂ 2
R

− ρ̂ sin θ̂
σ̂Rσ̂I

] + β̂I [ sin θ̂

σ̂ 2
I

− ρ̂ cos θ̂
σ̂Rσ̂I

]
cos2 θ̂

σ̂ 2
R

+ sin2 θ̂

σ̂ 2
I

− 2 ρ̂ sin θ̂ cos θ̂
σ̂Rσ̂I

,

where β̂R = (X′R̂−1
n X)−1X′R̂−1

n yR , β̂I = (X′R̂−1
n X)−1X′R̂−1

n yI , and R̂
−1
n is a

function of α̂, the MLE of α, according to the (2p + 1)-diagonal matrix given

in Pourahmadi (2001), Section 4.4. [The sparseness of the matrix R̂
−1
n is a com-

putational advantage of the AR(p) model.] Further, the MLE of θ is

(3.6) θ̂ = [
arcsin

(
c/

√
a2 + b2

) − arctan4(b, a)
]
/2,

where a, b, and c (defined in terms of d , e, and f to be defined a little later)
are given by a = d/σ̂ 2

I − e/σ̂ 2
R , b = −f (1/σ̂ 2

R + 1/σ̂ 2
I ) − ρ̂(d + e)/(σ̂Rσ̂I ), and

c = ρ̂(d − e)/(σ̂Rσ̂I ) + f (1/σ̂ 2
R − 1/σ̂ 2

I ). The terms d , e, and f are given by
d = BRR/σ̂ 4

R + ρ̂2BII /(σ̂
2
Rσ̂ 2

I )−2ρ̂BRI /(σ̂
3
Rσ̂I ), e = BII /σ̂

4
I + ρ̂2BRR/(σ̂ 2

Rσ̂ 2
I )−

2BRI ρ̂/(σ̂Rσ̂ 3
I ), and f = (1 + ρ̂2)BRI /(σ̂

2
Rσ̂ 2

I ) − ρ̂/(σ̂Rσ̂I )(BRR/σ̂ 2
R + BII /σ̂

2
I ),

where we have BRR = β̂
′
R(X′R̂−1

n X)β̂R , BII = β̂
′
I (X

′R̂−1
n X)β̂I , and BRI =

β̂
′
R(X′R̂−1

n X)β̂I . The MLEs for σ 2
R , σ 2

I , and ρ are given by

σ̂ 2
R = (yR − Xβ̂ cos θ̂ )′R̂−1

n (yR − Xβ̂ cos θ̂ )/n;(3.7)

σ̂ 2
I = (yI − Xβ̂ sin θ̂ )′R̂−1

n (yI − Xβ̂ sin θ̂ )/n;(3.8)

ρ̂ = (yR − Xβ̂ cos θ̂ )′R̂−1
n (yI − Xβ̂ sin θ̂ )/(nσ̂Rσ̂I ).(3.9)

Lastly, we obtain α̂ by solving the system of equations [Miller (1995)]

(3.10) d̂0k =
p∑

j=1

[
d̂ij + (j/n)d̂0,|j−k|

]
α̂j ,

for k = 1, . . . , p, with d̂ij = d̂
(RR)
ij /σ̂ 2

R + d̂
(I I )
ij /σ̂ 2

I − ρ̂/(σ̂Rσ̂I )[d̂(RI)
ij + d̂

(IR)
ij ],

0 ≤ i, j ≤ p. In the preceding development, we have d̂
(ιζ )
ij = ∑n−i−j

t=1 η̂ι,t+i η̂ζ,t+j

with ι, ζ ∈ R, I , wherein η̂Rt = yRt − x′
t β̂ cos θ̂ , η̂I t = yIt − x′

t β̂ sin θ̂ , and x′
t

is the t th row of X, t = 1, . . . , n. In practice, starting values for β̂ and θ̂ can be
computed under the assumption of independence [see equation (2.10) in Rowe and
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Logan (2004)]. ML estimation then consists of iteratively updating (3.5)–(3.10)
until convergence. The LRT statistic is

(3.11) 	C,p = n log
(

σ̃ 2
Rσ̃ 2

I (1 − ρ̃2)

σ̂ 2
Rσ̂ 2

I (1 − ρ̂2)

)
− 2 log

(∣∣R̃−1
p

∣∣/∣∣R̂−1
p

∣∣),
where σ̃ 2

R , σ̃ 2
I , and ρ̃ are restricted MLEs under H0 : Cβ = 0 (see Section S-2.3),

Rp is the p × p correlation matrix such that Cov(ηR1, . . . , ηRp) = σ 2
RRp and

Cov(ηI1, . . . , ηIp) = σ 2
I Rp and R̂

−1
p and R̃

−1
p are functions of α̂ and α̃, respec-

tively, as in Pourahmadi (2001), Section 4.4. [Equation (3.11) relies on the equality
|Rn| = |Rp|, which is another computational advantage of the AR model.]

3.5. Choosing the order of the AR model. We suggest a sequential testing ap-
proach to decide on the AR order p. Starting with k = 1, and for increasing k,
we posit H0 : p = k − 1 vs. Ha : p ≥ k (or, in terms of the AR coefficients,
H0 : ∀j ≥ k,αj = 0 vs. Ha : ∃j ≥ k : αj �= 0). The estimated AR order is then
p̂ = k′ − 1, where k′ is the first k in the sequence of tests for which H0 can
not be rejected. Note that, in the procedure, the significance level controls the
probability of over detection of the order (i.e., the order detected is greater than
the true order) in the sense described in Section S-2.4. For both the magnitude-
only and the complex-valued models, we employ a LRT-based test statistic given
by 2(�̂k − �̂k−1), where �̂k is the optimized log-likelihood for the AR(k) model.
From standard results, this test statistic is asymptotically χ2

1 -distributed under
H0 : p = k−1. We denote the orders detected by the magnitude-only and complex-
valued model test statistics by p̂M and p̂C , respectively.

4. Application to fMRI study. We discuss the application of the methodol-
ogy to the finger-tapping dataset described in Section 2.

4.1. Analysis pipeline and specifications. We analyzed the complex-valued
(CV) and magnitude-only (MO) datasets separately, yet in tandem. First, the CV
running line was applied to each CV voxel time series, and a regular running line
was applied to each magnitude voxel time series. The central phase of each de-
trended CV time series was set to be θ0 = π/4 (for reasons discussed in Section S-
3.3). Then, three datasets were created from both the CV and MO datasets by
smoothing the real, imaginary, and magnitude images at each time point with 3-
dimensional Gaussian filters with FWHMs = 2, 4, and 6 voxels; thus, including
the spatially unsmoothed datasets, there were a total of four CV and MO datasets.
The CV and MO models were then applied to each voxel time series. For both
models, the design matrix X had n = 490 rows and q = 2 columns: one column
was for an intercept modeling the baseline MR signal and the other was the wave-
form modeling the expected BOLD response [Glover (1999)]. Consequently, with
β = (β0, β1)

′, the activation tests posited H0 : β1 = 0 vs. Ha : β1 �= 0 with the
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FIG. 4. A voxel’s (a), (c) magnitude and (b), (d) phase time series (a), (b) before and (c), (d) after
correction by the complex-valued running line. Figures (a), (b) also show the CV running-line fit.

LRT statistics being χ2
1 -distributed under H0. For both the CV and MO models,

we computed two test statistics, one using the detected AR order at each voxel
and, for comparison, also with p ≡ 0. Thus, we compared the performance of
four LRT statistics, denoted by 	C,p̂C

, 	M,p̂M
, 	C,0, and 	M,0. For each LRT

statistic (LRTS) and smoothing level, we computed activation maps using clus-
ter thresholding with third-order neighborhood structure, a size threshold of 11
voxels [Forman et al. (1995)], and a significance level threshold of 0.001 [as rec-
ommended by Woo, Krishnan and Wager (2014)].

4.2. Addressing model fit and model assumptions. We first examined the per-
formance of the CV running line. Figure 4 shows a voxel’s magnitude and phase
time series before and after correction by the CV running line and suggests that
nuisance trends were well removed in both time series. For a global assessment,
we fit model (3.1) to the entirety of each voxel time series (not just the near-
est neighbors) and computed an LRTS for H0 : γ1 = 0 vs. Ha : γ1 �= 0. Using a
Bonferroni-corrected significance level of 0.05, 63.3% of the voxels rejected H0.
This suggests that even when with the application of advances such as TOAST
[Hahn, Nencka and Rowe (2009, 2012)] (done here, see Section 2) to stabilize the
phase data, a phase detrending preprocessing step such as the CV running line may
be needed to allow for the constant phase location assumption of model (3.2). This
preprocessing step is important because phase instability can degrade the power
of complex-valued data-based activation tests [Hahn, Nencka and Rowe (2009)],
making them less powerful than their magnitude-only data-based counterparts.

We refer to Section S-3.1 for additional assessments of complex-valued model
fit and assumptions. These include assessments of the assumptions of phase cou-
pling and the equality of the AR coefficients for the real and imaginary errors, an
assessment of the autoregressive fit to the autocorrelation, and a comparison of the
computational times for the CV and MO data-based analyses.

4.3. Activation maps. Figure 5 displays activation maps under the four LRTSs
for the fifth slice of the dataset smoothed three-dimensionally with FWHM = 4
voxels. We display the fifth slice in order to compare the regions detected to be
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FIG. 5. Activation maps for the finger-tapping experiment after cluster thresholding. The p-value
of the observed test statistic for each voxel identified as activated under each model is overlaid on
the anatomic slice under investigation.

functionally active with the anatomical left central sulcus in Figure 3(b). Although
all four statistics show functional activation in the anatomical left central sulcus
(as it should for our normal subject), the activation map using 	C,p̂C

identifies
it with the least ambiguity. For instance, the 	M,p̂M

map shows less significant
p-values in the left central sulcus, suggesting that it is less powerful than 	C,p̂C

.
Further, the independent error model-based maps detect brain regions outside the
left central sulcus, and detection inside the region is more diffuse than the 	C,p̂C

map. Thus, the superior ability of the complex-valued AR(p) model to more ac-
curately identifying the correct activation region points to its applicability in fMRI
finger stimulation experiments for neurosurgical planning in tumor and epilepsy
patients, where the goal is to locate the functional central sulcus accurately (vide
our discussion in Section 2).

For a broader view, Section S-3.2 presents activation images for three slices
and using smoothing levels of FWHMs = 2, 4, and 6 voxels and no smoothing.
The better performance of the complex-valued AR(p) model-based statistic held
over all slices and smoothing kernels. However, with spatially unsmoothed data,
there was much less difference between the maps of the four activation statistics,
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FIG. 6. Voxel-wise parameter estimates (a) ρ̂ and (b) α̂1 for (moving left to right within each
subfigure) spatial smoothing with FWHM = 0, 2, 4, and 6 voxels. (FWHM = 0 means no spatial
smoothing.)

and it was difficult to determine a clear winner. We explain this result in terms
of the effect of smoothing (or none) on model parameter estimates in the next
section. Section S-3.2 also displays maps obtained by false discovery rate (FDR)
thresholding and assuming p = 1. Results (see Figure S-7) were similar to those
in Figure 5.

4.4. Effect of spatial smoothing on parameter estimates. We examined the ef-
fect of smoothing on the complex-valued AR(p) model parameter estimates and
the activation maps. (Recall from the previous section that the 	C,p̂C

maps were
favored when spatial smoothing was performed at any level, but there was not
much difference between the maps for the unsmoothed data.) For easier interpre-
tation of the extent of temporal correlation, we assumed p = 1 for each voxel.
(Spatial and frequency distributions of the detected AR orders are given in Fig-
ures S-9, S-10 and and S-11.) Figure 6 contains images of the real/imaginary
correlation ρ̂ and the temporal AR parameter α̂1 for the fifth slice (correspond-
ing images for the other parameters are given in Figure S-12). The unsmoothed
data, ρ̂ and α̂1 are close to zero, indicating that the independence assumptions
applied in Rowe and Logan (2004) may be adequate. This explains why the in-
dependent model-based statistics had similar activation maps to their counterparts
that assumed an AR model for the unsmoothed data. Further, simulations in Rowe
and Logan (2004) indicated that at the SNRs of the finger-tapping dataset, there
were very small differences between the activation detection power between the
complex-valued and magnitude-only model-based statistics under the assumptions
of temporal and real/imaginary independence. However, we found that increased
smoothing was associated with greater values of |ρ̂| and α̂1. This result may be
unexpected: while it would be expected that the spatial smoothing would induce
spatial correlation [Nencka, Hahn and Rowe (2009)], it may be puzzling that it
would also induce temporal correlation—in this case, both within and between the
real and imaginary time series. Figure 7 displays the real and imaginary time se-
ries for a representative voxel [see Figure 8(a)] for the unsmoothed and smoothed
(FWHM = 4 voxels) data and provides another view of our remarks above. For
the unsmoothed data, the real and imaginary time series resemble white noise and
the real/imaginary components are not correlated; however, with spatial smooth-
ing, the path of the time series resembles an AR process with correlated real and
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FIG. 7. Time series plots of the real and imaginary values—showing only the first 200 s for ease of
viewing—for the representative voxel in Figure 8(a) for the (top) unsmoothed and (bottom) smoothed
data with FWHM = 4 voxels.

imaginary components. This may be explained by the application of smoothing
on spatio-temporal data [Karaman et al. (2014)]. In summary, the assumption
of temporal and real/imaginary independence is increasingly untenable with in-
creasing smoothing (also see Figure S-13). This may be a reason behind the more
spurious and diffuse activation displayed in the independent model-based activa-
tion maps. It may also explain the apparent reduced power of the magnitude-only
AR(p) model-based map, as the real/imaginary correlation cannot be estimated
using magnitude-only data. We report our tests of these assertions with simulation
studies in Section 5.

By way of explaining the effect of spatial smoothing on the parameter estimates,
we offer the following spatiotemporal model for complex-valued fMRI data fol-
lowing detrending via the CV running line. Letting yRst and yIst be the real and
imaginary measurements at voxel s and time t , respectively, the model states that

(4.1)
(

yRst

yIst

)
= (

x′
tβs + vst

)(
cos θ

sin θ

)
+

(
wRst

wIst

)
,

where x′
tβs is the mean response and θ is the central phase as before (and

is equal for all s following the application of the CV running line), and vst

and (wRst ,wIst )
′ represent two sources of variation. Thus, (4.1) suggests that

the real and imaginary errors in model (3.2) can be further decomposed into
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FIG. 8. (a) Location of voxel in the fifth slice from which our representative time series was chosen.
Correlation between the real component of the time series at the voxel and each (b) real or (c)
imaginary time series in a 37 × 37 spatial neighborhood centered at the voxel in (d). Corresponding
correlations between the imaginary time series at the voxel in (a) and the (d) real and (e) imaginary
time series. (f) Correlation expected in (b) and (e) due to spatial smoothing assuming independence.
[Such correlations in (c) and (d) are expected to be zero because the real and imaginary component
images are smoothed separately.]

ηRst = vst cos θ + wRst and ηIst = vst sin θ + wIst . This decomposition is sup-
ported by the fMRI literature, where it is well established that the (magnitude)
noise contains multiple components, including “both white [e.g., thermal (John-
ston) noise] and colored components [e.g., pulsatile motion of the brain caused by
cardiac cycles or local modulation of the static magnetic field (B0) by respiratory
movement]” [Friston et al. (2000)]. [See also Purdon and Weisskoff (1998), who
model fMRI noise time series as an AR(1) time series plus added white noise.] In
our model, vst represents the colored (i.e., autocorrelated) and (wRst ,wIst ) repre-
sent the white components. In addition to being autocorrelated, the model assumes
that vst are spatially correlated [Zarahn, Aguirre and D’Esposito (1997)]; for ex-
ample, their covariance could be modeled as a Kronecker product of spatial and
temporal AR(1) covariance matrices, as in Kruggel and von Cramon (1999). This
fits the framework of Karaman et al. (2014) for describing the effects of processing
such as spatial smoothing on spatiotemporally uncorrelated, temporally correlated,
spatially correlated, and spatiotemporally correlated data. Figure 8 demonstrates
that the spatial correlations in the finger-tapping dataset are much more extensive
than would be expected by spatial smoothing alone. In contrast, wRst , wIst are as-
sumed to be mutually, temporally, and spatially independent; the independence of
the real and imaginary thermal noise components is well established [Gudbjartsson
and Patz (1995)].

We now discuss how model (4.1) supports the observed dependence of the pa-
rameter estimates on spatial smoothing. First, the fact that the temporal and real/
imaginary cross-correlations are near-zero for the unsmoothed data suggests that
the variances of wRst and wIst are larger than vst . However, under spatial smooth-
ing, the variance due to (wRst ,wIst ) decreases—more rapidly with increasing
FWHM—due to the averaging of the independent random variables. On the other
hand, because the vst s are spatially correlated, their fluctuations are less affected
by such averaging. The net effect is that the temporal correlation increases with
spatial smoothing. Also, our choice of θ0 = π/4 for all voxels in applying the CV
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running line means that the real and imaginary time series share a common vst in
model (4.1). Thus, the fact that smoothing reduces the variation of (wRst ,wIst )

more than vst means that it increases the real/imaginary cross-correlation as well.
To clarify the above discussion, we present some derivations under simplifying
assumptions in Section S-3.3.1.

To conclude, it is interesting to note that the parameter estimates also depend on
the choice of the central phase θ0. We explore this fact in Section S-3.3.2, including
how it is expected under model (4.1) and that the choice of θ0 = π/4 supports the
assumption that the real and imaginary errors share the same AR coefficients.

5. Simulations. Analysis of the finger-tapping dataset in Section 4 yielded the
observation that if the dataset was smoothed, the complex-valued AR(p)-model-
based activation map identified the appropriate region with the least ambiguity.
With unsmoothed data however, the maps provided by the four competing statis-
tics 	C,p̂C

, 	M,p̂M
, 	C,0, and 	M,0 were very similar. We attributed this to the

fact that the estimated temporal and real/imaginary correlations were negligible
without smoothing but sizable with smoothing. To understand and clarify these
results in settings of known ground truth, we performed simulation studies to ex-
amine (1) the effect of the real/imaginary covariance, including the real/imaginary
correlation and the relative sizes of the real and imaginary variances (Section 5.2),
(2) the effect of temporal correlation (Section 5.3), and (3) the effect of spatial
smoothing through simulating a region of interest (ROI) (Section 5.4).

5.1. Simulation setup. We simulated complex-valued voxel time series ac-
cording to (3.2) with X specified as in Section 4.1. From properties of the con-
ditional multivariate normal distribution, these simulated real and imaginary time
series, denoted by y∗

R and y∗
I , respectively, can be generated as

y∗
R ∼ N

(
Xβ cos θ, σ 2

RRn

)
,

y∗
I |y∗

R ∼ N
(
Xβ sin θ + ρσI /σR

(
y∗

R − Xβ cos θ
)
, σ 2

R

(
1 − ρ2)

Rn

)
.

(5.1)

Because we generated magnitude and phase data without nuisance trends, we
did not apply the CV running line. Further, we did not apply spatial smooth-
ing to the simulated data, but instead quantified its effect through the simulation
parameters. Otherwise, our simulation studies mimicked the finger-tapping data
analysis pipeline in using the same X, order detection procedure, H0 and Ha ,
and specifications for cluster thresholding. The corresponding magnitude time se-
ries were computed from these simulated complex-valued time series, resembling
fMRI data collection in practice. In practice fMRI data are unitless, so we param-
eterized the simulations through the SNR ≡ β0/σ and the CNR ≡ β1/σ , where
σ 2 = (σ 2

R + σ 2
I )/2, making the results applicable to any fMRI dataset. Unless

otherwise specified, the simulation parameters were SNR = 190, CNR = 0.05,
θ = π/4, and σ = 0.011, which are typical estimates from the dataset smoothed
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FIG. 9. Plots showing the (a) false positive rate, (b) power and (c) AUC for the complex-valued
and magnitude-only activation statistics in terms of σR/σI and ρ. Color and line types indicate the
same settings across all displays.

with FWHM = 4 voxels. Other parameters varied according to the study per-
formed. At each set of parameters, we replicated 100,000 time series (Sections 5.2
and 5.3) and 10,000 ROIs (Section 5.4).

We evaluated the activation statistics using measures that differed according
to the simulation study. In Sections 5.2 and 5.3, we generated voxel time series
without a spatial context and used standard hypothesis testing methodology. In
these studies, we calculated the true and false positive rates as the proportions of
truly activated and nonactivated time series detected as activated, using the χ2

1 null
distribution. For a test statistic to be of any practical use, its false positive rate
must (at least approximately) be equal to the significance level. In addition, we
calcuated the area under the receiver operating characteristic (ROC) curve (AUC)
as per calculations detailed in Section S-4.1. For evaluating performance in ob-
taining activation maps in Section 5.4, so we used the Jaccard (1901) Index (JI)
to measure the percent overlap between the estimated and true activation maps
for different statistics. The JI, or modified overlap, introduced by Maitra (2010)
in fMRI as a preferable alternative to the more-commonly used overlap or Dice
coefficient [Dice (1945), Sørensen (1948)], is defined between the ith and j th ac-
tivation maps as mωij = Vij /(Vi +Vj −Vij ), where Vi , Vj , and Vij are the number
of voxels declared activated in map i, map j , and both maps i and j , respectively.
Thus mωij can be interpreted as the proportion of voxels that are activated in both
maps i and j from among those activated in either of them.

5.2. Effect of covariance of real and imaginary errors. To examine the effect
of the covariance �, we varied the ratio of standard deviations σR/σI and the cor-
relation coefficient ρ, with the former varied such that σ is constant so the SNR
and CNR remain unaffected. To isolate this effect, we assumed temporal indepen-
dence when simulating time series and calculating activation statistics. Figure 9(a)
shows that the false positive rates of both the CV- and MO-model-based statistics
are approximately equal to the significance of 0.05 at all covariance parameters,
so both statistics are potentially useful. However, the powers and AUCs of 	C,0
is greater than 	M,0 whenever the real and imaginary variances are unequal, and
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increasingly so as σR/σI gets farther from one. In view of this result, we note that
the distributions of σ̂R/σ̂I for the finger-tapping dataset at various smoothing lev-
els are given in Figure S-12(f). We see that σ̂R/σ̂I tends to be close to one for the
unsmoothed data but is farther from one for the smoothed data. This is a poten-
tial reason that the 	C,p̂C

map showed more power than the 	M,p̂M
map for the

smoothed data, but the two maps were similar for the unsmoothed data.
Interestingly also, the power and AUC functions in Figure 9 are greater for

negative ρ than for positive ρ. In fact, this is part of a larger issue where the
specific form of the power/AUC functions in terms of σR/σI and ρ depends on
the value of θ . This is discussed in detail in Section S-4.2. No matter the values of
θ and �, however, the power and AUC of the CV model-based activation statistic
are always greater than or equal to its MO model-based counterpart.

5.3. Varying the AR(1) coefficient. To examine the effect of the temporal de-
pendence upon the activation statistics, we simulated time series with AR(1) errors
with coefficients varying from 0 to 0.8. To isolate this effect, we let σR = σI and
ρ = 0. (A separate simulation with ρ = 0.5, not shown here, gave nearly iden-
tical results.) We first studied the ability of each model to detect the correct AR
order. Figure 10(a) demonstrates that the complex-valued model detects the true
order (1) for a greater proportion of simulated time series than the magnitude-only
model. This greater power to reject H0 : α1 = 0 may be attributed to the fact that
the complex-valued dataset contains twice as many autocorrelated quantities as the
magnitude-only data. Note also that most of the errors are of under-detection of the
order since the significance level of 0.05 controls over-detection errors.

Zarahn, Aguirre and D’Esposito (1997) found that the false positive rates of
(magnitude-only data-based) activation statistics under the assumption of inde-
pendence are inflated. To see whether this result carries over to the context of
the complex-valued data, we computed the activation statistics 	C,p̂C

and 	M,p̂M

FIG. 10. Effect, for the complex-valued and magnitude-only fits, of increasing the AR(1) coefficient
on (a) order detection and (b) the false positive rate.
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(based on the detected orders) and also 	C,p and 	M,p for p = 0,1,2. As shown
in Figure 10(b), compared to the significance level of 0.05, the false positive rates
of the LRTSs under independence are indeed inflated, and increasingly so as the
AR(1) coefficient increases. (Remarkably, the false positive rate balloons to 0.38
for α1 = 0.8.) Thus, it is evident that independent-error-based activation statis-
tics are unreliable even with small amounts of autocorrelation. With the correct
order, however, the LRTSs properly control the false positive rates. This control
also holds when the order is overspecified; note that the lines for p = 2 are not
shown because they coincide with those for p = 1. Our results here are thus sim-
ilar to those in Section 4 where the spurious activation regions detected under the
independence-assumed maps for the smoothed data could be considered false pos-
itives.

The false positive rates of 	M,p̂M
and 	C,p̂C

are in between those of the correct
order-based statistics and the independence-based statistics because of order detec-
tion errors. However, the false positive rate of 	C,p̂C

is closer to 0.05 than 	M,p̂M
,

which points to another advantage of the complex-valued model. To explain why,
let Pf (·) be the false positive rate, which can be expressed as the weighted average

(5.2) Pf (	D,p̂D
) = ∑

k

P (p̂D = k)Pf (	D,k),

where D = C or M for the complex-valued or magnitude-only data models, re-
spectively. In this case, we can approximate the average over all orders k to include
only k = 0 and 1 for two reasons: first, the proportion of voxels with p̂ > 1 is small,
and second, Pf (	D,k) ≈ Pf (	D,1) for k > 1. Thus, we have the approximation

(5.3) Pf (	D,p̂D
) ≈ P(p̂D = 0)Pf (	D,0) + P(p̂D ≥ 1)Pf (	D,1).

The fact that Pf (	M,p̂M
) > Pf (	C,p̂C

) then follows from that Pf (	D,0) is
greater than Pf (	D,1), for D = C,M , and that P(p̂M = 0) > P (p̂C = 0).

Section S-4.3 reports results of simulations to study the effect of autoregressive
dependence for lags more than one. To conclude, we have shown that order under-
detection inflates the false activation detection rate but over-detection does not,
so we recommend using a larger significance level for sequentially detecting the
order.

5.4. Examining a region of interest (ROI). To perform a simulation study in-
corporating the spatial aspect of fMRI analysis, we simulated from the small region
(ROI) of the finger-tapping dataset shown in Figure 11(a). The voxel time series
within the ROI were simulated using model (3.2) with p = 1 and the four sets of
parameter estimates in Table 1, each of which is representative of these estimates
under one of the four levels of spatial smoothing.

For each parameter set, we used the same parameters for each voxel in the repli-
cate ROIs except for β1, which was zero or positive depending on whether the
voxel was part of the anatomical left central sulcus in Figure 3(b). We computed
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TABLE 1
Parameter values used in simulating the ROIs in Section 5.4

FWHM β0 β1 θ σR σI ρ α1

0 1.89 0.0090 π/4 0.0887 0.0882 0.011 0.036
2 1.89 0.0027 π/4 0.0225 0.0225 0.133 0.177
4 1.89 0.0019 π/4 0.0113 0.0118 0.343 0.373
6 1.89 0.0018 π/4 0.0086 0.0094 0.394 0.473

four activation maps for each replicate ROI based on the four activation statis-
tics, using cluster thresholding on each map. Figures 11(b), (c), (e), (f) show the
true and false activation rates over the replicated ROIs for the parameter set cor-
responding to the smoothed data with FWHM = 4 voxels. (See Figure S-18 for
similar plots for the other parameter sets.) The false positive rates in Figure 11(e,
f) for the independent error-based activation statistics are greater than their coun-
terparts which have autocorrelated errors. As in Section 5.3, autocorrelation in the
simulated time series makes the independent-model-based activation statistics fail
to follow the χ2

1 null distribution under H0, as illustrated in Figure S-19. In fact, the
false positive rates increase with amount of smoothing. However, they are similar

FIG. 11. (a) Location of simulated ROI (blue box) with voxels (dark orange) chosen to be activated
according to the anatomical left central sulcus in Figure 3. (b), (c), (e), (f) Images of true activation
detection rates (legend in d) and false positive rates (legend in g) for the simulated ROIs for the
parameter values corresponding to spatial smoothing with FWHM = 4 voxels.
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TABLE 2
Mean Jaccard similarity coefficients over replications of simulated ROIs for each LRT statistic,
measuring the proportion of overlap between the statistic-based activation maps and the truth,

when different amounts of spatial smoothing is applied (determined by FWHM, with 0 denoting no
spatial smoothing)

FWHM = 0 FWHM = 2 FWHM = 4 FWHM = 6

Magnitude-only model 0.844 0.730 0.678 0.717

Complex-valued model 0.843 0.741 0.700 0.744

for all four activation statistics with the unsmoothed data, which can be attributed
to its near absence of autocorrelation.

The above findings once again suggest that independence model-based acti-
vation statistics are inapplicable with spatial smoothing because of their inflated
false positive rates. Therefore, we remove them from consideration when com-
puting Jaccard indices to measure the agreement between the simulation-based
activation maps and the known truth. Table 2 gives the mean Jaccard indices over
ROI replications; see Figure S-20 for kernel density estimates of the distributions.
On the whole, the Jaccard indices are similar under the parameter set represent-
ing the unsmoothed data, but with smoothing, the complex-valued model-based
indices are greater than their the magnitude-only model-based counterparts, indi-
cating that activation maps obtained via complex-valued AR(p) modeling have
higher agreement with the truly activated voxels. This conforms with our obser-
vations for the finger-tapping dataset. (It should be noted that the Jaccard indices
in Table 2 are not meant to be compared between parameter sets, but rather only
between complex-valued and magnitude-only models within the same parameter
set.)

6. Discussion. In this paper, we have expanded and further developed
complex-valued time series analysis of fMRI data. As explained in the Introduc-
tion, such datasets are truly complex-valued when collected, but most analysis
methods routinely discard the phase information, utilizing only the magnitude
images in the data analysis. In this paper therefore, we have proposed a general
model for complex-valued time series, extending the independence assumptions
of Rowe and Logan (2004), and have derived a LRTS for detecting activated brain
voxels under this model framework. We compared its performance to a statistic
similarly derived under a Gaussian-assumed magnitude-only linear model. We
applied this methodology to a unilateral finger-tapping dataset of the type used
for neurosurgical planning, in which the purpose is clear identification of the left
functional central sulcus. Our analysis showed that the complex-valued AR(p)

model-based activation map more clearly and accurately identifies this brain re-
gion than the magnitude-only model and the independence-based complex-valued
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model in cases where the images were spatially smoothed, as commonly done
in practice. For the unsmoothed data, the activation maps performed similarly.
To explain this result, we found that temporal and real/imaginary correlation is
induced by smoothing and proposed a model to interpret these findings. For fur-
ther clarification, we performed several simulation studies. In one, we found that
the complex-valued model has greater detection power than the magnitude-only
model because it estimates the variances and correlation between of the real and
imaginary errors, which are not estimable under the magnitude-only model. In
another, we found that independence-based activation statistics can have greatly
inflated false positive rates when even small amounts of autocorrelation are present
in the time series. Further, we found that the complex-valued model is better able
to discriminate between activated and nonactivated voxels, as measured by both
the AUC and the Jaccard index. We also emphasize that these results occurred at
SNR values typical of fMRI data (on the order of 50 for the unsmoothed data and
higher for the smoothed data), which represents an improvement over findings in
previous complex-valued fMRI studies [Nan and Nowak (1999), Rowe and Lo-
gan (2004)] that only showed substantial improvements in complex-valued over
magnitude-only model-based activation detection at SNRs below five.

There are many areas that could benefit from further attention. In this paper, we
have shown improved activation detection with complex-valued AR modeling of
fMRI time series and shown its potential in the context of neurosurgical planning
by accurately mapping the (left) functional central sulcus. Note, however, that the
objective of neurosurgical planning is preoperative brain mapping that allows for
the preservation of cerebral function during brain tumor resection. Such planning
also may need to map tactile, visual, language or other functional areas which
will involve other experimental paradigms, for which complex-valued fMRI time
series analysis of the kind we have recommended in this paper can potentially
provide greater accuracy. Further, while we hope that the development of this paper
will encourage statisticians to recommend that this data not be routinely discarded
but analyzed more thoroughly for more accurate activation results, we note that
vast numbers of legacy magnitude-valued fMRI datasets exist (and continue to be
collected). Especially at lower SNRs, the observations in these datasets are Rice-
distributed, but they have all been analyzed using Gaussian AR models. Therefore,
it would be of interest to develop methodology for Rice-distributed time series.
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SUPPLEMENTARY MATERIAL

Supplement to “Complex-valued time series modeling for improved acti-
vation detection in fMRI studies” (DOI: 10.1214/17-AOAS1117SUPP; .pdf).
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Section S-1 displays the real, imaginary, magnitude, and phase components of
the data for all slices of the finger-tapping dataset used in this paper. Section S-2
provides additional details and derivations on our methodology. Further details on
the analysis of the finger-tapping dataset are provided in Section S-3 while more
simulation-based analyses are in Section S-4.
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