
Marquette University Marquette University

e-Publications@Marquette e-Publications@Marquette

Mathematical and Statistical Science Faculty
Research and Publications

Mathematical and Statistical Science,
Department of

7-2018

Generating Permutations with Restricted Containers Generating Permutations with Restricted Containers

Michael H. Albert
University of Otago

Cheyne Homberger
University of Maryland - Baltimore County

Jay Pantone
Marquette University, jay.pantone@marquette.edu

Nathaniel Shar
Rutgers University

Vincent Vatter
University of Florida

Follow this and additional works at: https://epublications.marquette.edu/math_fac

Recommended Citation Recommended Citation
Albert, Michael H.; Homberger, Cheyne; Pantone, Jay; Shar, Nathaniel; and Vatter, Vincent, "Generating
Permutations with Restricted Containers" (2018). Mathematical and Statistical Science Faculty Research
and Publications. 7.
https://epublications.marquette.edu/math_fac/7

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by epublications@Marquette

https://core.ac.uk/display/287921428?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://epublications.marquette.edu/
https://epublications.marquette.edu/math_fac
https://epublications.marquette.edu/math_fac
https://epublications.marquette.edu/math
https://epublications.marquette.edu/math
https://epublications.marquette.edu/math_fac?utm_source=epublications.marquette.edu%2Fmath_fac%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://epublications.marquette.edu/math_fac/7?utm_source=epublications.marquette.edu%2Fmath_fac%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages

Marquette University

e-Publications@Marquette

Mathematics and Statistical Sciences Faculty Research and
Publications/College of Arts and Sciences

This paper is NOT THE PUBLISHED VERSION; but the author’s final, peer-reviewed manuscript. The
published version may be accessed by following the link in the citation below.

Journal of Combinatorial Theory, Series A, Vol. 157 (July 2018): 205-232. DOI. This article is © Elsevier
and permission has been granted for this version to appear in e-Publications@Marquette. Elsevier
does not grant permission for this article to be further copied/distributed or hosted elsewhere without
the express permission from Elsevier.

Generating Permutations with Restricted
Containers

Michael H. Albert
Department of Computer Science, University of Otago, Dunedin, New Zealand
Cheyne Homberger
Department of Mathematics, University of Maryland Baltimore County, Baltimore, MD
Jay Pantone1
Department of Mathematics, Dartmouth College, Hanover, NH
Nathaniel Shar
Department of Mathematics, Rutgers University, New Brunswick, NJ
Vincent Vatter1
Department of Mathematics, University of Florida, Gainesville, FL

Abstract
We investigate a generalization of stacks that we call 𝒞𝒞- machines. We show how this viewpoint rapidly leads
to functional equations for the classes of permutations that 𝒞𝒞-machines generate, and how these systems of
functional equations can be iterated and sometimes solved. General results about the rationality, algebraicity,

https://doi.org/10.1016/j.jcta.2018.02.006
http://epublications.marquette.edu/
https://www.sciencedirect.com/topics/mathematics/functional-equation
https://www.sciencedirect.com/topics/mathematics/permutation

and the existence of Wilfian formulas for some classes generated by 𝒞𝒞-machines are given. We also draw
attention to some relatively small permutation classes which, although we can generate thousands of terms of
their counting sequences, seem to not have D-finite generating functions.

Keywords
Permutation patterns, Enumeration, Stack, Sorting machine

1. Introduction
1.1. History and context
The study of permutation patterns is generally considered to have been started by Knuth, when he proved in the
first volume of The Art of Computer Programming [23, Section 2.2.1] that a permutation can be generated by a
stack if and only if it avoids 312 (i.e., does not contain three entries in the same relative order as 312). That
initial work was followed by a series of papers dealing with permutations sorted or generated by machines of
varying kinds. Prompted apparently by an observation of Pratt [30], this led to the general consideration
of permutation classes, which has become a highly active area of combinatorial research in its own right. We
refer to the last author's survey [35] for a broad overview of this area.

Many works in this area have focused on enumerative questions about permutation classes, as we do here. We
would like to emphasize however that the ability to effectively enumerate a class is really a proxy indicating that
we understand its structure at some sufficient level of detail—one of the main goals of research in the area is to
refine our understanding of such structure.

In this work we look back to the structure of permutations generated by machines, where a machine is simply a
container subject to certain restrictions (analogous to the stack in Knuth's original work). We show that this
notion captures the equivalence between various permutation classes, specifically most of those enumerated by
the Catalan or Schröder numbers. We are able to provide rigorous formulas that enumerate some other
permutation classes of this type. Finally, because of the simplicity of the underlying mechanism we are able to
compute a large number of initial terms in the generating functions of some other, seemingly equally
uncomplicated, permutation classes and establish by empirical methods that their generating functions appear
not to be D-finite.

1.2. Concepts and definitions
We are solely concerned with classical permutation patterns, in which the permutation π contains the
permutation σ if π contains a subsequence order isomorphic (i.e., with the same pairwise comparisons) to σ.
Otherwise, π avoids σ. For example, 53412 contains 321, as evidenced by any of the subsequences 531, 532,
541, or 542. The containment relation is a partial order, and a permutation class is a downset, or lower order
ideal, of permutations under this order.

As with any downset in a poset, every permutation class can be described as

Av(𝐵𝐵) = {𝜋𝜋:𝜋𝜋 avoids all 𝛽𝛽 ∈ 𝐵𝐵}

for some set B of permutations. We may take the set B to be an antichain, i.e., a set of pairwise incomparable
permutations, and if B is an antichain its choice is unique, and we refer to it as the basis of the class in question.
Given a permutation class 𝒞𝒞 and nonnegative integer n, we denote by 𝒞𝒞𝑛𝑛 the set of permutations in 𝒞𝒞 of
length 𝑛𝑛, and refer to

� |𝒞𝒞𝑛𝑛|𝑥𝑥𝑛𝑛
𝑛𝑛≥1

= �𝑥𝑥|𝜋𝜋|

𝜋𝜋∈𝒞𝒞

https://www.sciencedirect.com/topics/mathematics/permutation
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#br0230
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#br0300
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#br0350
https://www.sciencedirect.com/topics/mathematics/poset
https://www.sciencedirect.com/topics/mathematics/antichain
https://www.sciencedirect.com/topics/mathematics/nonnegative-integer

as its generating function. Two classes are Wilf-equivalent if they have the same generating function.
The growth rate of the permutation class 𝒞𝒞 is defined as

gr(𝒞𝒞) = lim
𝑛𝑛→∞

 �|𝒞𝒞𝑛𝑛|𝑛𝑛

when this limit exists.

Some permutation classes are trivially Wilf-equivalent via the symmetries of the permutation order. Given a
permutation 𝜋𝜋 = 𝜋𝜋(1)𝜋𝜋(2)⋯𝜋𝜋(𝑛𝑛), the reverse of π is the permutation 𝜋𝜋r defined by 𝜋𝜋r(𝑖𝑖) = 𝜋𝜋(𝑛𝑛 + 1 − 𝑖𝑖),
the complement of π is the permutation 𝜋𝜋c defined by 𝜋𝜋c(𝑖𝑖) = 𝑛𝑛 + 1 − 𝜋𝜋(𝑖𝑖), and the (group-theoretic) inverse
of π is the permutation 𝜋𝜋−1 defined by 𝜋𝜋−1(𝜋𝜋(𝑖𝑖)) = 𝜋𝜋(𝜋𝜋−1(𝑖𝑖)) = 𝑖𝑖. From the geometric viewpoint, reversing a
permutation consists of reflecting its plot over any vertical line, complementing it consists of reflecting its plot
over any horizontal line, and inverting it consists of reflecting its plot over a line of slope 1.

We need to define the two operations on permutations illustrated in Fig. 1. Given permutations π of
length k and σ of length ℓ, their (direct) sum is defined as

(𝜋𝜋 ⊕ 𝜎𝜎)(𝑖𝑖) = �
𝜋𝜋(𝑖𝑖) for 1 ≤ 𝑖𝑖 ≤ 𝑘𝑘,
𝜎𝜎(𝑖𝑖 − 𝑘𝑘) + 𝑘𝑘 for 𝑘𝑘 + 1 ≤ 𝑖𝑖 ≤ 𝑘𝑘 + ℓ.

The analogous operation depicted on the right of Fig. 1 is called the skew sum. We can now characterize the
class of permutations which can be generated by a 𝒞𝒞-machine.

Fig. 1. The sum and skew sum operations.

We are concerned here with a fairly general family of machines. Suppose that 𝒞𝒞 is a permutation class. A 𝒞𝒞-
machine is a machine consisting of a container that holds partial permutations. In using this 𝒞𝒞-machine to
generate permutations from the input 12⋯𝑛𝑛 we may at any time perform one of three operations:

• remove the next entry from the input and immediately append it to the end of the output (a bypass),
• remove the next entry from the input and place it anywhere in the container in such a way that the

partial permutation in the container is in the same relative order as a permutation in the
class 𝒞𝒞 (a push), or

• remove the leftmost entry from the container and append it to the end of the output (a pop).

The operation of this machine could be analogized to the situation of an administrator who, upon receiving a
new task, may choose either to perform it immediately (the bypass option) or file it away. The administrator
may also, of course, choose to perform some of the filed tasks, but only in the order in which they lie in the filing
cabinet, and the possible orderings of the tasks within the filing cabinet is restricted.

We refer to a sequence of operations of this form as a generation sequence for the permutation π that is
eventually produced. Formally, a generation sequence corresponds to a sequence of letters specifying which of
these three actions was taken and in the case of a push operation, where the new element was pushed.

For a simple example, consider the Av(12)-machine, illustrated on the left of Fig. 2. In this machine the
container may only contain entries in decreasing order. Thus in generating permutations with the Av(12)-
machine, if we push an entry from the input to the container we must place it at the leftmost end of the
container (because at any point in time all entries in the input are necessarily greater than every entry in the
container). We may also pop from the beginning of the container. In this machine (but not in general) a bypass is

https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#fg0010
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#fg0010
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#fg0020

equivalent to a push followed immediately by a pop, and therefore we may ignore bypasses. Thus the Av(12)-
machine is equivalent to a stack.

Fig. 2. The Av(12)-machine, which generates Av(312), and the Av(21)-machine, which generates Av(321). The internal
lines in diagrams of this type represent the allowed positions of the elements stored in the machine, so in the first case any
entries in the machine must be decreasing when read left to right, and in the second case they must be increasing.

Before beginning the general study of 𝒞𝒞-machines, we consider one more specific example, the Av(21)-machine,
illustrated on the right of Fig. 2. In this machine we may only push into the rightmost end of the container, and
since pops only occur from the far left of the machine, the bypass operation is necessary. We claim that this
machine generates the class Av(321). It is evidently impossible for the machine to generate 321, as the 3 would
have to be the result of a bypass while the 21 pattern lies in the container, which is not possible. In the other
direction, we know that permutations in Av(321) consist of two increasing subsequences: their left-to-right
maxima (the entries 𝜋𝜋(𝑗𝑗) satisfying 𝜋𝜋(𝑗𝑗) > 𝜋𝜋(𝑖𝑖) for all 𝑖𝑖 < 𝑗𝑗) and their non-left-to-right maxima. Upon reading
the next symbol from the input, if it is to be a left-to-right maximum we first pop all entries in the container that
come before it and then perform a bypass to put it in the correct position in the output, while if the next symbol
from the input is not a left-to-right maximum we can simply push it into the container. When the input is empty,
we finish by flushing (popping all the entries of) the container.

It is well-known that Av(312) and Av(321) are both counted by the Catalan numbers, so the Av(21)-
and Av(12)-machines generate equinumerous permutation classes. This is no accident. Indeed, Section 2 shows
how the description of Av(312) and Av(321) via 𝒞𝒞-machines implicitly defines a bijection between these two
classes which preserves the location and value of left-to-right maxima. This was observed in a similar context by
Doyle [14].

1.3. The main property
It follows directly from the definitions that if 𝒞𝒞 is a permutation class then so is the collection of permutations
output from the C-machine. The following theorem shows that there is a close connection between the bases of
these two classes.

Theorem 1.1
For any set B of permutations, the Av(𝐵𝐵)-machine generates the class

Av(1 ⊖𝐵𝐵) = Av({1 ⊖𝛽𝛽:𝛽𝛽 ∈ 𝐵𝐵}).

Proof
The Av(𝐵𝐵)-machine cannot generate any permutation of the form 1 ⊖𝛽𝛽 for 𝛽𝛽 ∈ 𝐵𝐵; to do so, the container
would have to contain a copy of 𝛽𝛽 at the point when the first entry of 1 ⊖𝛽𝛽 was next in the input.

For the converse, suppose that π avoids 1 ⊖𝛽𝛽 for all 𝛽𝛽 ∈ 𝐵𝐵. Label the positions of the left-to-right maxima
of π as 1 = 𝑖𝑖1 < 𝑖𝑖2 < ⋯ < 𝑖𝑖𝑘𝑘. At the moment that 𝜋𝜋(𝑖𝑖𝑗𝑗) is the next symbol of the input, all entries which lie
before it in π are smaller than it (because it is a left-to-right maximum) so we may suppose that these entries
have already exited or bypassed the container. Thus at this moment, the entries of π which lie to the right and
are smaller than 𝜋𝜋(𝑖𝑖𝑗𝑗) should be in the container. This is possible because these entries avoid all of the
permutations in B (because π avoids 1 ⊖𝐵𝐵). Thus upon reaching this point, we may bypass the container to
place 𝜋𝜋(𝑖𝑖𝑗𝑗) directly in the output. We may then output all entries of the container which lie to the left

https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#fg0020
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#se0070
https://www.sciencedirect.com/topics/mathematics/bijection
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#br0140

of 𝜋𝜋(𝑖𝑖𝑗𝑗+1) in π, and proceed as before. At the end of the process, we flush the container to complete the
generation of π. □

The simple characterization provided by Theorem 1.1 allows us to tell immediately if a class is generated by a 𝒞𝒞-
machine: a class is generated by a 𝒞𝒞-machine if and only if all of its basis elements begin with their largest
entries. It also allows us to tell what 𝒞𝒞-machine generates a given class. In particular, let us consider a question
raised by Miklós Bóna at the conference Permutation Patterns 2007 [33, Question 4]. Atkinson, Murphy, and
Ruškuc [5] showed that the permutation class sortable by two “ordered” stacks in series, despite having the
infinite basis

{2(2𝑘𝑘 − 1)416385⋯ (2𝑘𝑘)(2𝑘𝑘 − 3): 𝑘𝑘 ≥ 2},

is equinumerous to the class Av(1342), first counted by Bóna [8] (a simpler proof of this Wilf-equivalence result
has since been given by Bloom and Vatter [7]). Bóna asked

“Is there a natural sorting machine / algorithm which can sort precisely the class Av(1342)?”

The answer (up to symmetry) is yes: the symmetric class Av(4213) is generated by the Av(213)-machine.

From the form of the basis for the class produced by a 𝒞𝒞-machine (or from a simple consideration of its
operation) all such classes are closed under the sum operation. It then follows immediately from Fekete's
Lemma that all such classes have a proper growth rate (see Arratia [4]).

1.4. Operation of the machine
For any class 𝒞𝒞, the 𝒞𝒞-machine seemingly has three operations at its disposal: bypass, push, and pop. For
enumerative purposes we must establish a unique generation sequence for every permutation that can be
generated. To this end, we adopt conventions that handle two situations where non-uniqueness could arise:

(U1) we should pop from the container whenever possible, and
(U2) we should bypass the container whenever possible.

Another way to phrase these two rules is that in trying to generate a particular permutation π from the input
sequence 12⋯𝑛𝑛 if at some point the next symbol of π is the first symbol in the container then it should be
output immediately (by U1), while if it is the next symbol on the input then it should be produced by an
immediate bypass (by U2). The rules (U1) and (U2) correspond to choosing the “leftmost” possible action at all
times. Another valuable observation is that (U1) and (U2) together imply that in any generation sequence, no
pop will immediately follow a push, because otherwise the pop should have either been a bypass or occurred
earlier. In our resulting functional equations, this issue will frequently arise as a flag which indicates whether
pops are permitted in the corresponding state. Our next result verifies that (U1) and (U2) indeed guarantee
uniqueness.

Proposition 1.2
For any class 𝒞𝒞 and any permutation π that can be generated by the 𝒞𝒞-machine, there is a unique generation
sequence satisfying (U1) and (U2) that produces π from the 𝒞𝒞-machine. Moreover, the left-to-right maxima of π
are exactly those symbols produced by bypass operations.

Proof
Suppose that π can be generated by the 𝒞𝒞-machine. Clearly we can find a generation sequence for π which
satisfies (U1) and (U2), so it suffices to show that this generation sequence is uniquely determined by π, (U1),
and (U2).

https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#en0010
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#br0330
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#br0050
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#br0080
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#br0070
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#br0040
https://www.sciencedirect.com/topics/mathematics/nonuniqueness
https://www.sciencedirect.com/topics/mathematics/functional-equation

At the point when π(i) is the next symbol in the input, all smaller symbols lie either in the container or the
output. By (U1), we must first pop all symbols that we can before doing anything to 𝜋𝜋(𝑖𝑖). By (U2), if 𝜋𝜋(𝑖𝑖) is a left-
to-right maximum, it must bypass the container. Otherwise 𝜋𝜋(𝑖𝑖) is not a left-to-right maximum so it must be
pushed into the container (since it is preceded in π by some greater symbol which is still in the input) and since
container symbols are output in left-to-right order its placement relative to the other entries (if any) currently
held in the container is uniquely determined by its position in π. □

1.5. Structure of the paper
As will be demonstrated, if a class can be generated by a 𝒞𝒞-machine, then it is fairly automatic to use the
machine to determine a set of functional equations (including catalytic variables) for its generating function.
Roughly speaking the remainder of this paper consists of an exploration of that claim in a series of examples
where dealing with the resulting generating functions becomes more and more difficult.

We begin with the classical cases enumerated by the Catalan and Schröder numbers in Section 2. Here the
solutions of the functional equations can be derived easily using the kernel method. There is still value in
bringing the 𝒞𝒞 -machine context into play here as it establishes uniform arguments for these Wilf-equivalences
and also provides bijections between the corresponding classes that preserve both the values and positions of
the left-to-right maxima.

In Section 3 we consider two cases (the “Fibonacci machines”) where algebraic solutions of the functional
equations can still be rigorously obtained.

Section 4 establishes some general results which show that for very small classes 𝒞𝒞, the corresponding classes
produced by their 𝒞𝒞-machines have easily computed enumerations.

Already in some of the earlier sections, but particularly when we proceed to Section 5, it is clear that while the
translation from 𝒞𝒞-machines to functional equations is ‘fairly’ automatic, it can require some effort to simplify
these functional equations into a form that either permits a solution or allows for the efficient generation of a
large number of terms. In the latter case it is often more useful to consider how to represent the internal state
of the 𝒞𝒞-machine using a small number of parameters. When this is possible, dynamic programming approaches
allow for the generation of thousands of initial terms of the corresponding sequences.

Alas, sometimes this simplification proves impossible, as for the notoriously unenumerated class Av(4231).
While we may view this class as the output of the Av(231)-machine, that perspective does not improve our
knowledge of its enumeration. However, the C-machine approach does allow us to compute a great number of
terms for some of its subclasses. To pick an example we find particularly alluring, in Section 5 we show how to
generate 5,000 terms of the enumeration of the class Av(4231,4123,4312). Despite the abundance of data we
have for this example, we are not able to fit its generating function to any algebraic differential equation.
Interestingly this means that in the chain of classes

Av(4231,4123,4312) ⊂ Av(4231,4312) ⊂ Av(4231),

the first class is easy to enumerate (we can compute terms in polynomial time) seems to lack a D-finite
generating function, the second has an algebraic generating function (see Section 2.2 where we analyze it as
a 𝒞𝒞-machine), and the third seems very difficult to enumerate (the current record is 50 terms, computed by
Conway, Guttmann, and Zinn-Justin [13] building on the work of Johansson and Nakamura [21] and Conway and
Guttmann [12]).

Noonan and Zeilberger [28] conjectured in 1996 that every finitely based permutation class has a D-finite
generating function. Zeilberger changed his mind about the conjecture less than a decade later (see [16]) and
Garrabrant and Pak [17] have recently disproved it. We believe that the class

https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#se0070
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#se0100
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#se0130
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#se0170
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#se0170
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#se0090
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#br0130
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#br0210
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#br0120
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#br0280
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#br0160
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#br0170

Av(4231,4123,4312)

represents a good candidate to be the first concrete counterexample to the false conjecture.

2. Catalan and Schröder classes
In this section we show how the perspective of 𝒞𝒞-machines allows us to define length-
preserving bijections between a number of classes enumerated by the Catalan and Schröder numbers. While
this ground is well-trodden, we believe that at the very least the 𝒞𝒞-machine perspective presents a particularly
straightforward view of these Wilf-equivalences.

2.1. Catalan classes
The rules (U1) and (U2) of Section 1.4 implicitly give a bijection between Av(312) and Av(321). When generating
a permutation with either the Av(12)- or Av(21)-machine, we must pop whenever possible and all left-to-right
maxima must bypass the container. Moreover, since in either case the contents of the container must form
a monotone sequence, whenever we push into the container, there is a unique position for the new entry to be
placed. In fact, this argument establishes that there is a unique bijection between Av(312) and Av(321) that
preserves the locations and values of left-to-right maxima. This bijection is equivalent, by symmetry, to one
presented by Knuth [23].

Note that this bijection also restricts to a bijection between permutations that can be generated by
the Av(12,𝑘𝑘⋯21) - and Av(21,12⋯𝑘𝑘) -machines, implying that the classes Av(312, (𝑘𝑘 +
1) … 21) and Av(321, (𝑘𝑘 + 1)12 … 𝑘𝑘) are Wilf-equivalent. This result was first established by Chow and
West [11], who showed that the generating functions of these classes are quotients of Chebyshev polynomials.
Of course, these generating functions simply count Dyck paths of maximum height k.

We now consider a different viewpoint which will become necessary when we analyze more complicated
machines. We can think of the Av(21)-machine operating under the rules (U1) and (U2) as being in one of two
states that we call “can pop” and “can't pop”. The machine is in the “can't pop” state whenever we have just
pushed a symbol into the container and in the “can pop” state at all other times, as shown in Fig. 3.

Fig. 3. An automaton representing the Av(21)-machine.

Let 𝑓𝑓(𝑥𝑥,𝑢𝑢) denote the generating function for paths to the “can pop” state, where 𝑥𝑥 tracks the number of
output symbols, and 𝑢𝑢 tracks the number of symbols in the container. Also let 𝑔𝑔(𝑥𝑥,𝑢𝑢) denote the generating
function for paths to the “can't pop” state with the same variables. By considering all possible transitions among
these two states, we derive the system of equations

𝑓𝑓(𝑥𝑥,𝑢𝑢) = 1 + 𝑥𝑥(𝑓𝑓(𝑥𝑥,𝑢𝑢) + 𝑔𝑔(𝑥𝑥,𝑢𝑢)) +
𝑥𝑥
𝑢𝑢

(𝑓𝑓(𝑥𝑥,𝑢𝑢) − 𝑓𝑓(𝑥𝑥, 0)),

𝑔𝑔(𝑥𝑥,𝑢𝑢) = 𝑢𝑢(𝑓𝑓(𝑥𝑥,𝑢𝑢) + 𝑔𝑔(𝑥𝑥,𝑢𝑢)).

https://www.sciencedirect.com/topics/mathematics/counterexample
https://www.sciencedirect.com/topics/mathematics/bijection
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#se0050
https://www.sciencedirect.com/topics/mathematics/permutation
https://www.sciencedirect.com/topics/mathematics/monotone-sequence
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#br0230
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#br0110
https://www.sciencedirect.com/topics/mathematics/chebyshev-polynomial
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#fg0030

Then by a simple application of the kernel method2 we get

𝑓𝑓(𝑥𝑥, 0) = (1 − √1 − 4𝑥𝑥)/2𝑥𝑥.

2.2. The Schröder classes
It is an easy computation to show that the classes defined by avoiding two patterns of length four (the 2×4
classes) form 56 symmetry classes. After a significant amount of work [9], [24], [25], [26], [27], it has been
shown that these 56 symmetry classes fall into 38 Wilf equivalence classes, of which explicit generating
functions have been found for all but 5. By far the largest of these Wilf equivalence classes consists of 10
symmetry classes enumerated by the Schröder numbers (this Wilf equivalence class was found by
Kremer [24], [25]). Of these 10 symmetry classes, 6 can be generated by 𝒞𝒞-machines, in a completely parallel
manner, as we describe in this section.

The first Schröder class we consider is Av(4312,4213), which is generated by the Av(312,213)-machine shown
in Fig. 4. As indicated by the dark lines in this figure, permutations in Av(312,213) consist of an increasing
sequence followed by a decreasing sequence.

Fig. 4. The Av(312,213)-machine generates a Schröder class.

By (U1) and (U2), pops and bypasses in the Av(312,213)-machine function the same as they do in the Av(21)-
machine, but pushes function differently. When the container is empty there is only one position to push into,
and when the container is nonempty there are two positions to push into: either immediately to the left of the
maximum entry in the container or immediately to the right of this entry. By making a small variation to the
functional equations for the Av(21)-machine, we are led to the system

𝑓𝑓(𝑥𝑥,𝑢𝑢) = 1 + 𝑥𝑥(𝑓𝑓(𝑥𝑥,𝑢𝑢) + 𝑔𝑔(𝑥𝑥,𝑢𝑢)) +
𝑥𝑥
𝑢𝑢

(𝑓𝑓(𝑥𝑥,𝑢𝑢) − 𝑓𝑓(𝑥𝑥, 0)),

𝑔𝑔(𝑥𝑥,𝑢𝑢) = 2𝑢𝑢((𝑓𝑓(𝑥𝑥,𝑢𝑢) − 𝑓𝑓(𝑥𝑥, 0)) + 𝑔𝑔(𝑥𝑥,𝑢𝑢)) + 𝑢𝑢𝑓𝑓(𝑥𝑥, 0).

Here the 𝑓𝑓(𝑥𝑥,𝑢𝑢) equation has stayed the same, but the 𝑔𝑔(𝑥𝑥,𝑢𝑢) equation has changed to reflect the number of
positions we may push into.

This example is sufficiently simple to solve by hand using the kernel method and yields

𝑓𝑓(𝑥𝑥, 0) =
3 − 𝑥𝑥 − √1 − 6𝑥𝑥 + 𝑥𝑥2

2
.

Proposition 2.1
The permutation classes Av(4312,4213), Av(4132,4231), Av(4312,4231), Av(4213,4132), Av(4321,4312),
and Av(4213,4123) are all enumerated by the Schröder numbers. Furthermore, there are length-preserving
bijections between them that also preserve the location and value of the left-to-right maxima.

Proof
Fig. 4 and Fig. 5 show the six classes whose associated machines generate the Schröder classes listed. In each
case it is evident that, when the machine contains one or more elements there are exactly two ways to insert a
new maximum element. Recall that Proposition 1.2 guarantees that given any permutation π that can be
generated by a 𝒞𝒞-machine, there is a unique generation sequence satisfying (U1) and (U2). Since all these

https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#fn0020
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#br0090
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#br0240
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#br0250
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#br0260
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#br0270
https://www.sciencedirect.com/topics/mathematics/equivalence-class
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#br0240
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#br0250
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#fg0040
https://www.sciencedirect.com/topics/mathematics/decreasing-sequence
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#fg0040
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#fg0050
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#en0030

machines have the same generation sequences this provides length preserving bijections between the
corresponding classes produced, and these bijections preserve the location and values of left-to-right maxima
because these are precisely the elements of the output produced by bypass operations. □

Fig. 5. Five classes whose machines generate Schröder classes.

As far as we are aware, bijections between these classes preserving the location and values of the left-to-right
maxima have not been presented in the literature before, although their existence also follows from the results
of Bloom and Elizalde [6, Section 6].

The remaining four Schröder classes are:

Av(4312,3412), Av(4213,2413), Av(4213,3214), Av(3142,2413).

None of these (or any of their symmetries) have both basis elements beginning with a 4 and therefore they
cannot be enumerated by the mechanisms of 𝒞𝒞-machines as we are presenting them here. While it might be
possible to generalize or vary the operation of 𝒞𝒞-machines to account for these classes, it is easy to see by direct
computation that there cannot be bijections that preserve the positions and values of left-to-right maxima
between the six Schröder classes we have considered and the other four Schröder classes. Thus such variations
would at the very least modify the type of permutation statistics that are preserved by a consideration of
distinct 𝒞𝒞-machines operating with a common operation sequence.

3. Fibonacci machines
Here we consider the class of permutations ℱ⊕ formed by sums of the permutations 1 and 21 and the
symmetric class of permutations ℱ⊖ formed by skew sums of the permutations 1 and 12 as shown in Fig. 6 (the
presence of two dots in each cell indicates that we may put zero, one, or two entries in each cell). We call these
classes the Fibonacci classes, as the number of permutations of length 𝑛𝑛 in each class is the 𝑛𝑛th Fibonacci
number, 𝐹𝐹𝑛𝑛, with initial conditions 𝐹𝐹0 = 𝐹𝐹1 = 1.

Fig. 6. The ℱ⊕ - and ℱ⊖ -machines.

At first glance it might seem that if two permutation classes 𝒞𝒞 and 𝒟𝒟 are Wilf-equivalent then so should be the
classes generated by the 𝒞𝒞-machine and the 𝒟𝒟 -machine. However, the operation of a machine is not
symmetric: input arrives at the top, but output is produced from the left. Unless there is a bijection underlying
the original Wilf-equivalence that respects this asymmetry, the corresponding machines will behave differently.
To give a concrete example of why this is the case with respect to the ℱ⊕ - and ℱ⊖ -machines, suppose we fill
the ℱ⊕ -machine with 2143, then perform a bypass, and then a pop. The container will then hold 143, and there
is a unique way to perform a push, then a bypass, and then empty the machine. On the other hand, the

https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#br0060
https://www.sciencedirect.com/topics/mathematics/permutation
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#fg0060
https://www.sciencedirect.com/topics/mathematics/fibonacci
https://www.sciencedirect.com/topics/mathematics/bijection

analogous generation sequence applied to the ℱ⊖ -machine would tell us to fill it with 3412, then perform a
bypass and a pop. At that point the container will hold 412, leaving us with two ways to perform a push
(resulting in either 5412 or 4512), then a bypass, and then to empty the machine.

It is known that ℱ⊕ = Av(231,312,321) and ℱ⊖ = Av(123,132,213). Thus Theorem 1.1 implies that the ℱ⊕ -
machine generates the class Av(4231,4312,4321), while the ℱ⊖ -machine generates the
class Av(4123,4132,4213). Note that these classes are both subclasses of Schröder classes considered in the
previous section.

3.1. The ℱ⊕ -machine
In this subsection we consider the class Av(4231,4312,4321) generated by the ℱ⊕ -machine.

Theorem 3.1
The permutation class Av(4231,4312,4321) generated by the ℱ⊕ -machine has a generating function which is
algebraic of degree 4 and growth rate

(3 − √5)(7 + 3√5 + 2�22 + 10√5)
4

,

approximately 5.16207.

Proof
We start by crafting an automaton to represent the ℱ⊕ -machine, similar to that in Fig. 3 for the Av(21)-
machine. However, this automaton is more complicated than any of the corresponding automata for the Catalan
and Schröder classes due to one important fact: the number of places where we can push the next element into
the machine can vary between 1 and 2 (in the machines for the Catalan classes it was always 1, and in the
machines for the Schröder classes, it was always 2 so long as the machine was non-empty). As such, the
automaton for the ℱ⊕ -machine, shown in Fig. 7, has 5 states: E represents an empty machine, 𝑆𝑆𝑝𝑝 (resp. 𝑆𝑆𝑛𝑛)
represent states in which the rightmost layer has only one entry and pops are permitted (resp. forbidden)
and 𝐷𝐷𝑝𝑝 (resp. 𝐷𝐷𝑛𝑛) represent states in which the rightmost layer has two entries and pops are permitted (resp.
forbidden).

Fig. 7. An automaton representing the ℱ⊕ -machine.

Let 𝐸𝐸(𝑥𝑥), 𝑆𝑆𝑝𝑝(𝑥𝑥,𝑢𝑢), 𝑆𝑆𝑛𝑛(𝑥𝑥,𝑢𝑢), 𝐷𝐷𝑝𝑝(𝑥𝑥,𝑢𝑢), 𝐷𝐷𝑛𝑛(𝑥𝑥,𝑢𝑢) be the generating functions that track states as described above,
such that 𝑥𝑥 counts the number of entries that have been output (via pops and bypasses) and 𝑢𝑢 counts the

https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#en0010
https://www.sciencedirect.com/topics/mathematics/considered-class
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#fg0030
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#fg0070

number of entries in the machine excluding the rightmost layer. The automaton in Fig. 7 translates to the
following system of functional equations.

𝐸𝐸(𝑥𝑥) = 1 + 𝑥𝑥𝐸𝐸(𝑥𝑥) + 𝑥𝑥𝑆𝑆𝑝𝑝(𝑥𝑥, 0)

𝑆𝑆𝑝𝑝(𝑥𝑥,𝑢𝑢) = 𝑥𝑥(𝑆𝑆𝑛𝑛(𝑥𝑥,𝑢𝑢) + 𝑆𝑆𝑝𝑝(𝑥𝑥,𝑢𝑢)) +
𝑥𝑥
𝑢𝑢

(𝑆𝑆𝑝𝑝(𝑥𝑥,𝑢𝑢) − 𝑆𝑆𝑝𝑝(𝑥𝑥, 0)) + 𝑥𝑥(𝐷𝐷𝑝𝑝(𝑥𝑥, 0))

𝑆𝑆𝑛𝑛(𝑥𝑥,𝑢𝑢) = 𝐸𝐸(𝑥𝑥) + 𝑢𝑢(𝑆𝑆𝑛𝑛(𝑥𝑥,𝑢𝑢) + 𝑆𝑆𝑝𝑝(𝑥𝑥,𝑢𝑢)) + 𝑢𝑢2(𝐷𝐷𝑛𝑛(𝑥𝑥,𝑢𝑢) + 𝐷𝐷𝑝𝑝(𝑥𝑥,𝑢𝑢))

𝐷𝐷𝑝𝑝(𝑥𝑥,𝑢𝑢) = 𝑥𝑥(𝐷𝐷𝑛𝑛(𝑥𝑥,𝑢𝑢) + 𝐷𝐷𝑝𝑝(𝑥𝑥,𝑢𝑢)) +
𝑥𝑥
𝑢𝑢

(𝐷𝐷𝑝𝑝(𝑥𝑥,𝑢𝑢) −𝐷𝐷𝑝𝑝(𝑥𝑥, 0))

𝐷𝐷𝑛𝑛(𝑥𝑥,𝑢𝑢) = 𝑆𝑆𝑛𝑛(𝑥𝑥,𝑢𝑢) + 𝑆𝑆𝑝𝑝(𝑥𝑥,𝑢𝑢)

Note that because, for example, in 𝑆𝑆𝑝𝑝(𝑥𝑥,𝑢𝑢) the variable 𝑢𝑢 tracks the contents of the machine not considering
the rightmost layer, the generating function 𝑆𝑆𝑝𝑝(𝑥𝑥, 0) represents states with only a single entry in the machine.

We can use the first, third, and fifth equation to eliminate 𝐸𝐸(𝑥𝑥), 𝑆𝑆𝑛𝑛(𝑥𝑥,𝑢𝑢), and 𝐷𝐷𝑛𝑛(𝑥𝑥,𝑢𝑢) from the system, leaving

𝑆𝑆𝑝𝑝(𝑥𝑥,𝑢𝑢) =
𝑥𝑥(1 − 𝑢𝑢2)

𝑢𝑢(1 − 𝑢𝑢 − 𝑢𝑢2)
𝑆𝑆𝑝𝑝(𝑥𝑥,𝑢𝑢) −

1 − 𝑥𝑥 − 𝑢𝑢 − 𝑢𝑢2 + 𝑥𝑥𝑢𝑢2

𝑢𝑢(1 − 𝑥𝑥)(1 − 𝑢𝑢 − 𝑢𝑢2)
𝑆𝑆𝑝𝑝(𝑥𝑥, 0)

+
𝑥𝑥𝑢𝑢2

1 − 𝑢𝑢 − 𝑢𝑢2
𝐷𝐷𝑝𝑝(𝑥𝑥,𝑢𝑢) + 𝑥𝑥𝐷𝐷𝑝𝑝(𝑥𝑥, 0) +

𝑥𝑥
(1 − 𝑥𝑥)(1 − 𝑢𝑢 − 𝑢𝑢2)

𝐷𝐷𝑝𝑝(𝑥𝑥,𝑢𝑢) =
𝑥𝑥

1 − 𝑢𝑢 − 𝑢𝑢2
𝑆𝑆𝑝𝑝(𝑥𝑥,𝑢𝑢) +

𝑥𝑥2

(1 − 𝑥𝑥)(1 − 𝑢𝑢 − 𝑢𝑢2)
𝑆𝑆𝑝𝑝(𝑥𝑥, 0)

+
𝑥𝑥(1 − 2𝑢𝑢2)

𝑢𝑢(1 − 𝑢𝑢 − 𝑢𝑢2)
𝐷𝐷𝑝𝑝(𝑥𝑥,𝑢𝑢) −

𝑥𝑥
𝑢𝑢
𝐷𝐷𝑝𝑝(𝑥𝑥, 0) +

𝑥𝑥
(1 − 𝑥𝑥)(1 − 𝑢𝑢 − 𝑢𝑢2)

Solving the second equation for 𝐷𝐷𝑝𝑝(𝑥𝑥,𝑢𝑢) and substituting into the first leaves a single equation in terms
of 𝑆𝑆𝑝𝑝(𝑥𝑥,𝑢𝑢), 𝑆𝑆𝑝𝑝(𝑥𝑥, 0), and 𝐷𝐷𝑝𝑝(𝑥𝑥, 0). Solving that equation for 𝑆𝑆𝑝𝑝(𝑥𝑥,𝑢𝑢) and clearing denominators gives

(†) 𝐾𝐾(𝑥𝑥,𝑢𝑢)𝑆𝑆𝑝𝑝(𝑥𝑥,𝑢𝑢) = 𝑅𝑅1(𝑥𝑥,𝑢𝑢)𝑆𝑆𝑝𝑝(𝑥𝑥, 0) + 𝑅𝑅2(𝑥𝑥,𝑢𝑢)𝐷𝐷𝑝𝑝(𝑥𝑥, 0) + 𝑅𝑅3(𝑥𝑥,𝑢𝑢)

With

𝐾𝐾(𝑥𝑥,𝑢𝑢) = (𝑥𝑥 − 1)(𝑢𝑢4 − 3𝑢𝑢3𝑥𝑥 + 𝑢𝑢2𝑥𝑥2 + 𝑢𝑢3 − 𝑢𝑢𝑥𝑥2 − 𝑢𝑢2 + 2𝑥𝑥𝑢𝑢 − 𝑥𝑥2)
𝑅𝑅1(𝑥𝑥,𝑢𝑢) = −𝑥𝑥(𝑢𝑢3𝑥𝑥 − 𝑢𝑢2𝑥𝑥2 − 𝑢𝑢3 + 2𝑢𝑢2𝑥𝑥 + 𝑢𝑢𝑥𝑥2 − 𝑢𝑢2 − 𝑥𝑥𝑢𝑢 + 𝑥𝑥2 + 𝑢𝑢 − 𝑥𝑥)
𝑅𝑅2(𝑥𝑥,𝑢𝑢) = 𝑥𝑥𝑢𝑢(𝑥𝑥 − 1)(𝑢𝑢3 − 𝑢𝑢2𝑥𝑥 + 𝑢𝑢2 − 𝑢𝑢 + 𝑥𝑥)
𝑅𝑅3(𝑥𝑥,𝑢𝑢) = −𝑥𝑥𝑢𝑢(𝑥𝑥𝑢𝑢 − 𝑢𝑢 + 𝑥𝑥).

Theorem 2 of Bousquet-Mélou and Jehanne [10] confirms that there are four fractional power
series 𝑢𝑢1(𝑥𝑥), … , 𝑢𝑢4(𝑥𝑥), counted with multiplicity, such that 𝐾𝐾(𝑥𝑥,𝑢𝑢𝑖𝑖(𝑥𝑥)) = 0. By checking initial terms, we find in
fact that the 𝑢𝑢𝑖𝑖(𝑥𝑥) are distinct. Moreover, substituting any 𝑢𝑢𝑖𝑖(𝑥𝑥) into Equation (†) produces a new equation

0 = 𝑅𝑅1(𝑥𝑥,𝑢𝑢𝑖𝑖(𝑥𝑥))𝑆𝑆𝑝𝑝(𝑥𝑥, 0) + 𝑅𝑅2(𝑥𝑥,𝑢𝑢𝑖𝑖(𝑥𝑥))𝐷𝐷𝑝𝑝(𝑥𝑥, 0) + 𝑅𝑅3(𝑥𝑥,𝑢𝑢𝑖𝑖(𝑥𝑥)).

Combining the equation above for 𝑖𝑖 = 1,2 with the two equations 𝐾𝐾(𝑥𝑥,𝑢𝑢1(𝑥𝑥)) = 0 and 𝐾𝐾(𝑥𝑥,𝑢𝑢2(𝑥𝑥)) = 0 gives a
system of four polynomial equations from which we might hope to eliminate the variables 𝑢𝑢1, 𝑢𝑢2, and 𝐷𝐷𝑝𝑝(𝑥𝑥, 0).
This elimination can be performed efficiently through the use of Gröbner bases.3 As a result, we find that

0 = 𝑥𝑥 ⋅ (1 + 𝑆𝑆𝑝𝑝(𝑥𝑥, 0)) ⋅ 𝐴𝐴(𝑥𝑥, 𝑆𝑆𝑝𝑝(𝑥𝑥, 0)),

where

https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#fg0070
https://www.sciencedirect.com/topics/mathematics/functional-equation
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#br0100
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#fm0170
https://www.sciencedirect.com/topics/mathematics/polynomial-equation
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#fn0030

𝐴𝐴(𝑥𝑥, 𝑆𝑆𝑝𝑝(𝑥𝑥, 0)) = (2𝑥𝑥3 + 8𝑥𝑥2 − 𝑥𝑥)𝑆𝑆𝑝𝑝(𝑥𝑥, 0)4 − (𝑥𝑥4 + 3𝑥𝑥3 − 58𝑥𝑥2 + 19𝑥𝑥 − 1)𝑆𝑆𝑝𝑝(𝑥𝑥, 0)3

+(3𝑥𝑥4 − 30𝑥𝑥3 + 130𝑥𝑥2 − 56𝑥𝑥 + 7)𝑆𝑆𝑝𝑝(𝑥𝑥, 0)2

−(𝑥𝑥4 + 3𝑥𝑥3 − 58𝑥𝑥2 + 19𝑥𝑥 − 1)𝑆𝑆𝑝𝑝(𝑥𝑥, 0)
+(2𝑥𝑥3 + 8𝑥𝑥2 − 𝑥𝑥).

Hence, 𝐴𝐴(𝑥𝑥, 𝑆𝑆𝑝𝑝(𝑥𝑥, 0)) is the minimal polynomial for the algebraic generating function 𝑆𝑆𝑝𝑝(𝑥𝑥, 0). One can combine
this minimal polynomial with the equation 𝐸𝐸(𝑥𝑥) = 1 + 𝑥𝑥𝐸𝐸(𝑥𝑥) + 𝑥𝑥𝑆𝑆𝑝𝑝(𝑥𝑥, 0) (for example, with a resultant
calculation) to find the minimal polynomial for 𝐸𝐸(𝑥𝑥):

(2𝑥𝑥2 + 8𝑥𝑥 − 1)𝐸𝐸(𝑥𝑥)4 + (𝑥𝑥3 + 4𝑥𝑥2 − 46𝑥𝑥 + 5)𝐸𝐸(𝑥𝑥)3

+(3𝑥𝑥3 − 21𝑥𝑥2 + 94𝑥𝑥 − 9)𝐸𝐸(𝑥𝑥)2

+(𝑥𝑥3 + 12𝑥𝑥2 − 82𝑥𝑥 + 7)𝐸𝐸(𝑥𝑥)
+3𝑥𝑥2 + 26𝑥𝑥 − 2 = 0.

At this point Maple can explicitly solve for 𝐸𝐸(𝑥𝑥) and inspection reveals that the growth rate of the class is as
stated in the theorem. □

The enumeration of this class is given by sequence A257561 in the OEIS [31].

3.2. The ℱ⊖ -machine
The ℱ⊖ -machine differs from the ℱ⊕ -machine because in the ℱ⊖ -machine a pop can reduce the size of the
leftmost layer—which in this case is the layer we might push into—thereby opening up more possibilities for the
next push and forcing us in some sense to remember the size of the layer to its right (in case a pop empties the
leftmost layer).

Theorem 3.2
The class Av(4123,4132,4213) generated by the ℱ⊖ -machine has generating function 𝑠𝑠(𝑥𝑥) which is algebraic
of degree 3 and its growth rate is

67240 + (779√57− 1927)(1502 + 342√57)1 3⁄ − (19√57− 457)(1502 + 342√57)2 3⁄

40344
,

approximately 5.21914.

Proof
Because of the difference between the ℱ⊖ - and ℱ⊕ -machines noted above, a direct approach to computing
the generating function of Av(4123,4132,4213) based around an iterative scheme for accounting for the
generation sequences is not feasible. For this reason we construct a context-free grammar instead.

Let 𝑊𝑊𝑛𝑛 be the language of words (tracking states of the ℱ⊖ -machine) that begin from a state where the
leftmost layer is a single entry with no immediate legal pop and end with the same entry alone in the leftmost
layer with a pop now allowed. Similarly, 𝑅𝑅𝑛𝑛 will be the language of words beginning in a state where the
leftmost layer contains two entries with no immediate legal pop and ending with the same two entries in the
leftmost layer with a pop now allowed. Let 𝑊𝑊𝑝𝑝 (resp., 𝑅𝑅𝑝𝑝) be the language of words that start with a single entry
(resp., two entries) in the leftmost layer with a legal pop allowed and end with the same single entry (resp., two
entries) in the leftmost layer with a legal pop allowed.

These definitions yield the following context-free grammar for legal operation sequences in the ℱ⊖ -machine.

https://www.sciencedirect.com/topics/mathematics/minimal-polynomial
http://oeis.org/A257561
http://oeis.org/
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#br0310
https://www.sciencedirect.com/topics/mathematics/iterative-scheme

𝑆𝑆 ⟶ 𝜖𝜖 | 𝑥𝑥𝑆𝑆 | (+𝑤𝑤)𝑊𝑊𝑛𝑛(−𝑤𝑤)𝑆𝑆
𝑊𝑊𝑝𝑝 ⟶ 𝜖𝜖 | 𝑥𝑥𝑊𝑊𝑝𝑝 | (+𝑤𝑤)𝑊𝑊𝑛𝑛(−𝑤𝑤)𝑊𝑊𝑝𝑝 | (+𝑟𝑟)𝑅𝑅𝑛𝑛(−𝑟𝑟)𝑊𝑊𝑝𝑝

𝑊𝑊𝑛𝑛 ⟶ 𝑥𝑥𝑊𝑊𝑝𝑝 | (+𝑤𝑤)𝑊𝑊𝑛𝑛(−𝑤𝑤)𝑊𝑊𝑝𝑝 | (+𝑟𝑟)𝑅𝑅𝑛𝑛(−𝑟𝑟)𝑊𝑊𝑝𝑝

𝑅𝑅𝑝𝑝 ⟶ 𝜖𝜖 | 𝑥𝑥𝑅𝑅𝑝𝑝 | (+𝑤𝑤)𝑊𝑊𝑛𝑛(−𝑤𝑤)𝑅𝑅𝑝𝑝
𝑅𝑅𝑛𝑛 ⟶ 𝑥𝑥𝑅𝑅𝑝𝑝 | (+𝑤𝑤)𝑊𝑊𝑛𝑛(−𝑤𝑤)𝑅𝑅𝑝𝑝

The nonterminals S, 𝑊𝑊𝑝𝑝, and 𝑅𝑅𝑝𝑝 each have a production rule to ϵ because the starting condition satisfies the
ending condition for each of these languages, whereas this is not true for 𝑊𝑊𝑛𝑛 and 𝑅𝑅𝑛𝑛. The production rules of
the form 𝑇𝑇 ⟶ 𝑥𝑥𝑇𝑇 represent a bypass operation. As popping is always permitted after a bypass, the bypass is
always followed by a state in which popping is legal (e.g., 𝑊𝑊𝑛𝑛 ⟶ 𝑥𝑥𝑊𝑊𝑝𝑝).

The remaining production rules correspond to pushing an element in a new layer (represented by (+𝑤𝑤)) or
adding an entry to an existing layer of size one (represented by (+𝑟𝑟)), then performing an appropriate
sequence 𝑊𝑊𝑛𝑛 or 𝑅𝑅𝑛𝑛, then popping the entry added earlier (represented by (−𝑤𝑤) or (−𝑟𝑟)). Lastly, each of these
production rules ends by allowing a repeated occurrence of either 𝑊𝑊𝑝𝑝 in the case where the production symbol
is 𝑊𝑊𝑝𝑝 or 𝑊𝑊𝑛𝑛 or of 𝑅𝑅𝑝𝑝 in the case where the production symbol is 𝑅𝑅𝑝𝑝 or 𝑅𝑅𝑛𝑛.

This context-free grammar is unambiguous because in every rule the start symbols of the various cases are
distinct. Hence, we can translate the grammar to equations, replacing (−𝑤𝑤) and (−𝑟𝑟) with 𝑥𝑥 to keep track of
pop operations, and ignoring (+𝑤𝑤) and (+𝑟𝑟) because we do not need to keep track of pushes. This yields the
following system.

𝑠𝑠 = 1 + 𝑥𝑥𝑠𝑠 + 𝑥𝑥𝑤𝑤𝑛𝑛𝑠𝑠
𝑤𝑤𝑝𝑝 = 1 + 𝑥𝑥𝑤𝑤𝑝𝑝 + 𝑥𝑥𝑤𝑤𝑛𝑛𝑤𝑤𝑝𝑝 + 𝑥𝑥𝑟𝑟𝑛𝑛𝑤𝑤𝑝𝑝
𝑤𝑤𝑛𝑛 = 𝑥𝑥𝑤𝑤𝑝𝑝 + 𝑥𝑥𝑤𝑤𝑛𝑛𝑤𝑤𝑝𝑝 + 𝑥𝑥𝑟𝑟𝑛𝑛𝑤𝑤𝑝𝑝
𝑟𝑟𝑝𝑝 = 1 + 𝑥𝑥𝑟𝑟𝑝𝑝 + 𝑥𝑥𝑤𝑤𝑛𝑛𝑟𝑟𝑝𝑝
𝑟𝑟𝑛𝑛 = 𝑥𝑥𝑟𝑟𝑝𝑝 + 𝑥𝑥𝑤𝑤𝑛𝑛𝑟𝑟𝑝𝑝

Another Gröbner basis calculation reveals that s satisfies

1 + (𝑥𝑥 − 1)𝑠𝑠(𝑥𝑥) − 𝑥𝑥𝑠𝑠(𝑥𝑥)2 + 𝑥𝑥𝑠𝑠(𝑥𝑥)3.

This implies that the growth rate of the class is as stated in the theorem. □

The enumeration of the class is given by sequence A106228 in the OEIS [31].

4. Machines for restricted classes
As the reader may have noticed, the analysis of 𝒞𝒞-machines typically depends on the specific structure of the
class 𝒞𝒞 itself. However, by placing restrictions on the characteristics of the class 𝒞𝒞 it is possible to establish some
general characteristics of the classes corresponding to the associated 𝒞𝒞-machine. In this section we explore
three such restrictions for which we are able to establish general results: to finite, bounded,
and polynomial classes.

4.1. Finite classes
First we consider the case where 𝒞𝒞 is a finite class. Following Albert, Atkinson, and Ruškuc [2], we say that
the rank of the entry π(i) is the number of entries below it and to its right. When 𝒞𝒞 is finite, the class
of permutations that can be generated by the 𝒞𝒞-machine necessarily has bounded rank. Moreover, because
every finite class has a finite basis (an easy consequence of the Erdős–Szekeres Theorem), the class of
permutations that can be generated by the 𝒞𝒞-machine has a finite basis, and the results of [2] imply that this
class has a rational generating function.4

https://www.sciencedirect.com/topics/mathematics/nonterminals
https://www.sciencedirect.com/topics/mathematics/satisfies-condition
http://oeis.org/A106228
http://oeis.org/
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#br0310
https://www.sciencedirect.com/topics/mathematics/polynomial
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#br0020
https://www.sciencedirect.com/topics/mathematics/permutation
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#br0020
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#fn0040

Theorem 4.1
If 𝒞𝒞 is a finite class then the class of permutations that can be generated by the 𝒞𝒞-machine has a rational
generating function.

More in the spirit of the “𝒞𝒞-machine approach” an alternative way to prove this theorem would be to note that
for a finite class 𝒞𝒞 there are only finitely many states that the 𝒞𝒞-machine can take (at most twice the total
number of permutations in 𝒞𝒞 allowing for the “can't pop”, “can pop” distinction). Therefore, after choosing an
alphabet that allows us to represent all the different ways that a new maximum element can be added to the
machine, the 𝒞𝒞-machine can be thought of as a finite state automaton. The conclusion of the theorem follows
immediately.

4.2. Polynomial classes
We next consider the case where |𝒞𝒞𝑛𝑛| is bounded by a polynomial (in 𝑛𝑛), in which case we call 𝒞𝒞 a polynomial
class. Kaiser and Klazar [22] established two significant results regarding polynomial classes. First, they showed
that polynomial classes are actually enumerated by polynomials for sufficiently large 𝑛𝑛 (i.e., they are not just
polynomially bounded). Second, they showed that if the enumeration of a class is ever less than
the nth combinatorial Fibonacci number (defined by 𝐹𝐹0 = 𝐹𝐹1 = 1 and 𝐹𝐹𝑛𝑛 = 𝐹𝐹𝑛𝑛−1 + 𝐹𝐹𝑛𝑛−2) then the class is a
polynomial class. This second statement is referred to as the Fibonacci Dichotomy. Later, Huczynska and
Vatter [20] reproved the Fibonacci Dichotomy using what are known as grid classes and gave an explicit
characterization of polynomial classes. While we do not need to appeal to the details of this characterization, we
do require the following fact that follows from it.

Proposition 4.2
Every polynomial class is finitely based.

Proposition 4.2 is explicitly proved in the conclusion of Huczynska and Vatter [20] and also follows from the later
and more general Vatter [34, Theorem 6.2].

Our result about polynomial classes requires one further notion. Inspired by Wilf's influential Monthly article
“What is an answer?” [36], Zeilberger [37] defined a Wilfian formula for the sequence {an} to be a polynomial-
time (in 𝑛𝑛) algorithm that computes an. For example, an algebraic generating function can easily be converted
into a Wilfian formula (one needs only to compute derivatives), but many sequences that do not have algebraic
generating functions still have Wilfian formulas (e.g., the Catalan numbers modulo 2).

Theorem 4.3
If 𝒞𝒞 is a polynomial class then the class of permutations that can be generated by the 𝒞𝒞-machine has a Wilfian
formula.

Proof
Let 𝒞𝒞 be a polynomial class and choose a polynomial 𝑐𝑐(𝑛𝑛) such that |𝒞𝒞𝑛𝑛| ≤ 𝑐𝑐(𝑛𝑛) for all 𝑛𝑛. By Proposition
4.2, 𝒞𝒞 = Av(𝐵𝐵) for a finite set B. Let 𝑚𝑚 denote the length of the longest basis element of B. Thus we can

determine whether a permutation of length 𝑛𝑛 lies in 𝒞𝒞 in time 𝑏𝑏(𝑛𝑛) = |𝐵𝐵| �𝑛𝑛𝑚𝑚�. We seek to show that there is a

polynomial 𝑝𝑝(𝑛𝑛) such that we can determine the number of permutations of length n that can be generated by
the 𝒞𝒞-machine in time at most 𝑝𝑝(𝑛𝑛).

To accomplish this, we create an automaton that has two states for each permutation of length at most n in 𝒞𝒞.
Of these two states, one corresponds to the “can pop” condition and the other to the “can't pop” condition,
while the permutation associated to the state records the order isomorphism type of the contents of the
machine. We can build this automaton by working up from the states corresponding to the empty permutation

https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#br0220
https://www.sciencedirect.com/topics/mathematics/fibonacci
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#br0200
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#en0120
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#br0200
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#br0340
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#br0360
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#br0370
https://www.sciencedirect.com/topics/mathematics/polynomial-time
https://www.sciencedirect.com/topics/mathematics/polynomial-time
https://www.sciencedirect.com/topics/mathematics/modulo
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#en0120
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#en0120

by considering all possible pushes, pops (if the “can pop” condition is true for that state), and bypasses. For each
state whose corresponding permutation has length 𝑘𝑘, there are at most 𝑘𝑘 + 3 such actions. Pops and bypasses
are trivial to analyze, while for each possible push we can determine if the push leads to a permutation in 𝒞𝒞 in
time 𝑏𝑏(𝑘𝑘 + 1). Therefore we can construct this automaton in time at most

�(𝑘𝑘 + 3)𝑏𝑏(𝑘𝑘 + 1)𝑐𝑐(𝑘𝑘),
𝑛𝑛−1

𝑘𝑘=0

which is a polynomial of degree at most 2 + 𝑚𝑚 + deg 𝑐𝑐. To compute |𝒞𝒞𝑛𝑛| from this automaton we simply count
the number of closed walks beginning and ending at the state corresponding to the empty permutation that
contain a total of 𝑛𝑛 pops and bypasses. As the automaton has only a polynomial number of states, the number
of these walks can be computed in polynomial time. □

The argument above carries through almost directly when 𝒞𝒞 is not quite a polynomial class, but instead the sum
closure of a polynomial class. For example the permutations in Av(231,321) are all sums of permutations of the
form 𝑘𝑘12⋯ (𝑘𝑘 − 1). The corresponding machine is analyzed in the next section.

Needless to say, the algorithm described in the proof of Theorem 4.3 should not be implemented. To obtain a
more practical algorithm for enumerating these 𝒞𝒞-machines, one would want to implement a dynamic
programming algorithm exploiting the specific structure of 𝒞𝒞. We present several examples of this in Section 5.

4.3. Bounded classes
We conclude this section with the consideration of bounded classes: those classes 𝒞𝒞 for which there exists an
integer 𝑐𝑐 such that |𝒞𝒞𝑛𝑛| ≤ 𝑐𝑐 for all 𝑛𝑛 ≥ 0. Obviously bounded classes are a special case of polynomial classes,
but because our result is stronger we must describe the structure of bounded classes in more detail. In doing so
we follow Homberger and Vatter [19].

An interval in a permutation is a sequence of contiguous entries whose values form an interval of natural
numbers. A monotone interval is an interval in which the entries are monotone (increasing or decreasing). Given
a permutation 𝜎𝜎 of length 𝑚𝑚 and nonempty permutations 𝛼𝛼1, … ,𝛼𝛼𝑚𝑚, the inflation of 𝜎𝜎 by 𝛼𝛼1, … ,𝛼𝛼𝑚𝑚 is the
permutation 𝜋𝜋 = 𝜎𝜎[𝛼𝛼1, … ,𝛼𝛼𝑚𝑚] obtained by replacing each entry 𝜎𝜎(𝑖𝑖) by an interval that is order isomorphic
to 𝛼𝛼𝑖𝑖, while maintaining the relative order of the intervals themselves. For example,

3142[1,321,1,12] = 6 321 7 45.

We define a peg permutation to be a permutation where each entry is decorated with a +, −, or •, such as

𝜌𝜌
˜

= 3•1−4•2+

The grid class of the peg permutation 𝜌𝜌
˜
, denoted Grid(𝜌𝜌

˜
), is the set of all permutations that may be obtained by

inflating 𝜌𝜌 (the underlying, non-decorated version of 𝜌𝜌
˜
) by monotone intervals of type determined by the signs

of 𝜌𝜌
˜
: 𝜌𝜌(𝑖𝑖) may be inflated by an increasing (resp., decreasing) interval if 𝜌𝜌

˜
(𝑖𝑖) is decorated with a + (resp., −)

while it may only be inflated by a single entry (or the empty permutation) if 𝜌𝜌
˜
(𝑖𝑖) is dotted. Thus if 𝜋𝜋 ∈

Grid(𝜌𝜌
˜
) then its entries can be partitioned into monotone intervals which are “compatible” with 𝜌𝜌

˜
.

Given a set 𝐺𝐺
˜
 of peg permutations, we denote the union of their corresponding grid classes by

https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#en0130
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#se0170
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#br0190

Grid(𝐺𝐺
˜
) = � Grid(𝜌𝜌

˜
).

𝜌𝜌
˜
∈𝐺𝐺

˜

In their characterization of polynomial classes, Huczynska and Vatter [20] proved that every polynomial class is

contained in Grid(𝜌𝜌
˜
) for a single peg permutation 𝜌𝜌

˜
. From this and the work of Albert, Atkinson, Bouvel, Ruškuc,

and Vatter on atomic geometric grid classes [1, Theorem 10.3], the following result follows.

Theorem 4.4

For every polynomial class 𝒞𝒞 there is a finite set 𝐺𝐺
˜
 of peg permutations such that 𝒞𝒞 = Grid(𝐺𝐺

˜
).

The containment relation on ℕ𝑚𝑚 is a partial order. Thus we may define downsets (sets closed downward under
containment) and upsets of vectors. The intersection of a downset and an upset is referred to as a convex set.

We say that 𝑣𝑣
→

 fills the peg permutation 𝜌𝜌
˜
 if 𝑣𝑣

→
(𝑖𝑖) = 1 whenever 𝜌𝜌

˜
(𝑖𝑖) is decorated with a • and 𝑣𝑣

→
(𝑖𝑖) ≥

2 whenever 𝜌𝜌
˜
(𝑖𝑖) is decorated with a + or −. Given any peg permutation 𝜌𝜌

˜
 of length 𝑚𝑚 and a set of vectors 𝒱𝒱 ⊆

ℙ𝑚𝑚 that fill 𝜌𝜌
˜
, we define

𝜌𝜌
˜
[𝒱𝒱] = �𝜌𝜌

˜
[𝑣𝑣
→

].
𝑣𝑣
→
∈𝒱𝒱

We now have all the terminology and notation to state the relevant structure theorem.

Theorem 4.5
Homberger and Vatter [19]

For every polynomial permutation class 𝒞𝒞 there is a finite set 𝐺𝐺
˜
 of peg permutations, each associated with its

own convex set 𝒱𝒱
𝜎𝜎
˜ of vectors of positive integers which fill it, such that 𝒞𝒞 can be written as the disjoint union

𝒞𝒞 = ⨄
𝜌𝜌
˜
∈𝐺𝐺

˜
𝜌𝜌
˜
[𝒱𝒱

𝜌𝜌
˜].

This theorem is more useful than Theorem 4.4 for the description of an enumerative scheme leading
to Theorem 4.6 below precisely because the union it describes is disjoint.

We establish our result about bounded classes using counter automata, which are finite state automata with the
additional ability to store a single nonnegative integer called a counter. When determining which transition to
take, a counter automaton is allowed to check if the value of the counter is 0, and during each transition the
value of the counter may be incremented or decremented by 1. Equivalently, for any fixed positive
integer 𝑁𝑁 and all 𝑛𝑛 satisfying 0 ≤ 𝑛𝑛 ≤ 𝑁𝑁, a counter automaton is allowed to check if the value of the counter is
equal to 𝑛𝑛 and is allowed to increase or decrease the counter by 𝑛𝑛. Deterministic counter automata are a proper
subset of deterministic pushdown automata and therefore the languages they accept have algebraic generating
functions (see Droste, Kuich, and Vogler [15, Chapter 7]).

Theorem 4.6
If 𝒞𝒞 is a bounded class then the class of permutations that can be generated by the 𝒞𝒞-machine has an algebraic
generating function.

https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#br0200
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#br0010
https://www.sciencedirect.com/topics/mathematics/convex-set
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#br0190
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#en0150
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#en0170
https://www.sciencedirect.com/topics/mathematics/nonnegative-integer
https://www.sciencedirect.com/topics/mathematics/proper-subset
https://www.sciencedirect.com/topics/mathematics/proper-subset
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#br0150

Proof

Suppose 𝒞𝒞 is a bounded class and let 𝐺𝐺
˜
 and the convex sets 𝒱𝒱

𝜌𝜌
˜ for each 𝜌𝜌

˜
∈ 𝐺𝐺

˜
 be as in the statement

of Theorem 4.5. We build a counter automaton whose states represent the subpermutation in the container of
the 𝒞𝒞 -machine at any point in time. However, as 𝒞𝒞 contains infinitely many permutations (otherwise it would
fall under the purview of Theorem 4.1) and a standard counter automaton must have a finite number of states,
some compression is necessary.

Each 𝜌𝜌
˜
 comes equipped with a convex set 𝒱𝒱

𝜌𝜌
˜ of vectors in ℕ|𝜌𝜌

˜
|. Only one component of these vectors is allowed

to grow unboundedly as otherwise the class 𝒞𝒞 would not be bounded. For each 𝜌𝜌
˜
∈ 𝐺𝐺

˜
 let 𝑀𝑀

𝜌𝜌
˜ denote the

maximum value of all other components for 𝑣𝑣
→
∈ 𝒱𝒱

𝜌𝜌
˜ and define

𝑀𝑀 = max ({𝑀𝑀
𝜌𝜌
˜ :𝜌𝜌

˜
∈ 𝐺𝐺

˜
}).

That is, 𝑀𝑀 is the maximum of all second-largest components over all 𝑣𝑣
→
∈ 𝒱𝒱

𝜌𝜌
˜ and 𝜌𝜌

˜
∈ 𝐺𝐺

˜
.

Any state of the 𝒞𝒞 -machine in which the container holds a subpermutation 𝜌𝜌
˜
[𝑣𝑣
→

] with 𝑣𝑣
→

(𝑖𝑖) ≤ 𝑀𝑀 for all 𝑖𝑖 is simply

represented by a state of the counter automaton labeled 𝜌𝜌
˜
[𝑣𝑣
→

]. Any state of the 𝒞𝒞-machine in which the

container holds a subpermutation 𝜌𝜌
˜
[𝑣𝑣
→

] with some 𝑣𝑣
→

(𝑖𝑖) > 𝑀𝑀 is represented by a state of the counter automaton
labeled

𝜌𝜌
˜
[𝑣𝑣
→

(1), … , 𝑣𝑣
→

(𝑖𝑖 − 1),�,𝑣𝑣
→

(𝑖𝑖 + 1), … , 𝑣𝑣
→

(|𝜌𝜌
˜
|)].

Here the ⁎ symbol represents an inflation of size at least 𝑀𝑀 + 1, and it is this parameter that the counter keeps
track of by storing the value min {0, 𝑣𝑣

→
(𝑖𝑖) −𝑀𝑀}.

Next we split each state described above into two copies: one labeled “can pop” and one labeled “can't pop”.
We add to this a state labeled ϵ to account for the empty machine which is both the start state and the unique
accepting state. The transitions between each pair of states are readily computed by examining the allowed
pushes, pops, and bypasses. Transitions to states with no ‘⁎’ marker must set the counter at 0, while transitions
to states with a ‘⁎’ marker may or may not change the counter (they can also, of course, change the

underlying 𝜌𝜌
˜
).

The counter automaton constructed above accepts all valid push/pop sequences that leave the container of
the 𝒞𝒞-machine empty. If transitions are weighted so that those corresponding to bypasses and pops have
weight x and those corresponding to pushes have weight 1, then the weighted generating function counting
accepting paths of length n is equal to the generating function for the class generated by the 𝒞𝒞-machine. □

As with all the results of this section, note that Theorem 4.6 represents only a sufficient condition for
algebraicity. In particular, it does not apply to any of the Schröder machines which nevertheless generate classes
with algebraic generating functions.

5. Potentially non-D-finite classes
Here we present four permutation classes for which, despite the fact that they can be generated by fairly
simple 𝒞𝒞-machines, we do not know (and cannot even conjecture) their generating functions. Indeed, while we

https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#en0160
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#en0110
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#en0170
https://www.sciencedirect.com/topics/mathematics/permutation

can implement the dynamic programming approach hinted at in the proof of Theorem 4.3 to obtain many terms
in the counting sequence of these classes (5,000 in the first case we present), we cannot fit a D-finite generating
function to any of them. The first case we present has three basis elements of length four while the three
following it are so-far-unenumerated “2×4 classes”. We present the first example in detail but provide only
sketches of the (very similar) arguments for the remaining examples.

5.1. 𝐀𝐀𝐀𝐀(𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒,𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒,𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒)
Theorem 1.1 implies that the class Av(4123,4231,4312) is generated by the Av(123,231,312)-machine. The
members of Av(123,231,312) can be drawn as shown below, where the labeling of entries with an a or b is for
the subsequent analysis.

When the container is empty we may only push an 𝑎𝑎 entry. When it contains a decreasing permutation (all of
whose entries are viewed as 𝑎𝑎 entries), we may push either an 𝑎𝑎 or a 𝑏𝑏 entry. After pushing a b entry we may
only push 𝑏𝑏 entries until we have popped all of the 𝑎𝑎 entries, at which point all current 𝑏𝑏 entries
become 𝑎𝑎 entries.

We represent the states of the Av(123,231,312)-machine by triples (𝑎𝑎, 𝑏𝑏,𝑃𝑃) where 𝑎𝑎 and 𝑏𝑏 are the number
of 𝑎𝑎 and 𝑏𝑏 entries respectively, and 𝑃𝑃 is either 𝑇𝑇(𝑟𝑟𝑢𝑢𝑟𝑟) or 𝐹𝐹(𝑎𝑎𝑎𝑎𝑠𝑠𝑟𝑟), depending on whether popping is allowed.
The preceding discussion shows:

Proposition 5.1
The transition rules for the Av(123,231,312)-machine are:

(0,0,𝑇𝑇) → {(1,0, F), 0,0, T)},
(a, 0, F) → {(a + 1,0, F), (a, 1, F), (a, 0, T)}
(a, 0, T) → {(a + 1,0, F), (a, 1, F), (a, 0, T), (a − 1,0, T)},
(a, b, F) → {(a, b + 1, F), (a, b, T)},
(a, b, T) → {(a, b + 1, F), (a, b, T), (a − 1, b, T)}(for a ≥ 2),
(1, b, T) → {(1, b + 1, F), (1, b, T), (b, 0, T)},

where 𝑎𝑎, 𝑏𝑏 ≥ 1 unless stated otherwise.

These transition rules can be adapted to a dynamic programming algorithm, which can be used to compute the
first 5,000 terms of the enumeration in a moderate amount of time. The enumeration of this class is
sequence A257562 in the OEIS [31].

One can also derive a functional equation for the generating function of this class using these transition rules.
Define an A state to be one in which there are no b entries and a B state to be one in which there are b entries
(and therefore, also a entries). We require that popping is always permitted at the beginning of a B state (we
explain this in more detail below). The empty state is considered an A state, and A is also the start state.

Let 𝐴𝐴(𝑎𝑎, 𝑥𝑥) be the generating function in which the coefficient of 𝑎𝑎𝑘𝑘𝑥𝑥𝑛𝑛 counts the number of ways to reach
an A state with 𝑘𝑘 entries labeled 𝑎𝑎 and 𝑛𝑛 entries output so far. Let 𝐵𝐵(𝑎𝑎, 𝑏𝑏, 𝑥𝑥) be the generating function in which
the coefficient of 𝑎𝑎𝑘𝑘𝑏𝑏ℓ𝑥𝑥𝑛𝑛 counts the number of ways to reach a B state with 𝑘𝑘 − 1 entries labeled 𝑎𝑎, ℓ entries

https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#en0130
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#en0010
http://oeis.org/A257562
http://oeis.org/
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#br0310
https://www.sciencedirect.com/topics/mathematics/functional-equation

labeled 𝑏𝑏, and 𝑛𝑛 entries output so far. As B tracks one fewer than the number of a entries, it follows
that 𝐵𝐵(0, 𝑏𝑏, 𝑥𝑥) enumerates the B states with exactly one 𝑎𝑎 entry.

Proposition 5.2
The generating functions 𝐴𝐴(𝑎𝑎, 𝑥𝑥) and 𝐵𝐵(𝑎𝑎, 𝑏𝑏, 𝑥𝑥) that describe the operation of the Av(123,231,312)-machine
satisfy the functional equations

𝐴𝐴(𝑎𝑎, 𝑥𝑥) = 1 +
𝑥𝑥
𝑎𝑎

(𝐴𝐴(𝑎𝑎, 𝑥𝑥) − 𝐴𝐴(0,𝑥𝑥)) + 𝑎𝑎𝐴𝐴(𝑎𝑎, 𝑥𝑥) + 𝑥𝑥𝐵𝐵(0,𝑎𝑎, 𝑥𝑥),

𝐵𝐵(𝑎𝑎, 𝑏𝑏, 𝑥𝑥) =
𝑏𝑏𝑥𝑥

𝑎𝑎(1 − 𝑏𝑏)(1 − 𝑥𝑥)
(𝐴𝐴(𝑎𝑎, 𝑥𝑥) − 𝐴𝐴(0, 𝑥𝑥)) +

𝑏𝑏𝑥𝑥
(1 − 𝑏𝑏)(1 − 𝑥𝑥)

𝐵𝐵(𝑎𝑎, 𝑏𝑏, 𝑥𝑥)

+
𝑥𝑥

𝑎𝑎(1 − 𝑥𝑥)
(𝐵𝐵(𝑎𝑎, 𝑏𝑏, 𝑥𝑥) − 𝐵𝐵(0, 𝑏𝑏, 𝑥𝑥)).

Proof
The a in the denominator in the first term in 𝐵𝐵(𝑎𝑎, 𝑏𝑏, 𝑥𝑥) accounts for the fact that 𝐵𝐵(𝑎𝑎, 𝑏𝑏, 𝑥𝑥) tracks one fewer
than the number of 𝐴𝐴(𝑎𝑎, 𝑥𝑥).

An A state is reached from another A state either by popping an 𝑎𝑎 entry (if there is one) or by pushing
an 𝑎𝑎 entry. We ignore bypasses in this viewpoint; if we pop an 𝑎𝑎 entry while there are no b entries, then
that 𝑎𝑎 entry could have been treated as a bypass. An A state is reached from a B state only by popping the
last 𝑎𝑎 entry in a B state with a single a entry. Therefore, the generating function 𝐴𝐴(𝑎𝑎, 𝑥𝑥) satisfies

𝐴𝐴(𝑎𝑎, 𝑥𝑥) = 1 +
𝑥𝑥
𝑎𝑎

(𝐴𝐴(𝑎𝑎, 𝑥𝑥) − 𝐴𝐴(0, 𝑥𝑥)) + 𝑎𝑎𝐴𝐴(𝑎𝑎, 𝑥𝑥) + 𝑥𝑥𝐵𝐵(0,𝑎𝑎, 𝑥𝑥).

The term 1 accounts for the start state. The term (𝑥𝑥/𝑎𝑎)(𝐴𝐴(𝑎𝑎, 𝑥𝑥) − 𝐴𝐴(0, 𝑥𝑥)) accounts for popping an 𝑎𝑎 entry if
there is one. The term 𝑎𝑎𝐴𝐴(𝑎𝑎, 𝑥𝑥) accounts for pushing an 𝑎𝑎 entry. Lastly, the term 𝑥𝑥𝐵𝐵(0,𝑎𝑎, 𝑥𝑥) accounts for
popping the final 𝑎𝑎 from a B state with exactly one 𝑎𝑎 entry, forcing all 𝑏𝑏 entries to become 𝑎𝑎 entries. It is
important here that we assumed popping is always permitted in a B state.

We can reach a B state from an A state with at least one 𝑎𝑎 by pushing a 𝑏𝑏. However, we do not want a
term (𝑥𝑥/𝑎𝑎)(𝐴𝐴(𝑎𝑎, 𝑥𝑥) − 𝐴𝐴(0, 𝑥𝑥)) in the functional equation for 𝐵𝐵(𝑎𝑎, 𝑏𝑏, 𝑥𝑥) because the state resulting from
pushing a single 𝑏𝑏 does not allow for popping—this would violate our uniqueness conventions, because the
entry that can be popped is the leftmost 𝑎𝑎 entry which we could have popped before pushing the 𝑏𝑏 entry. For
this reason, we consider more elaborate transitions to B states: instead of pushing a single 𝑏𝑏 entry, we push a
sequence of 𝑏𝑏 entries followed by at least one bypass (accounted for by the first term in 𝐵𝐵(𝑎𝑎, 𝑏𝑏, 𝑥𝑥) above) while
a pop of an a entry may be followed by any number of bypasses (accounted for by the second term above). □

One can in principle iterate this functional equation starting with 𝐴𝐴0(𝑎𝑎, 𝑥𝑥) = 1 and 𝐵𝐵0(𝑎𝑎, 𝑏𝑏, 𝑥𝑥) = 0 to obtain
terms of 𝐴𝐴(0, 𝑥𝑥). It is clear from the description of pushing and popping that after 2n iterations the coefficient of
each 𝑥𝑥𝑖𝑖 for 0 ≤ 𝑖𝑖 ≤ 𝑛𝑛 in the resulting 𝐴𝐴2𝑛𝑛(0,𝑥𝑥) will match the coefficient of 𝑥𝑥𝑖𝑖 in 𝐴𝐴(0, 𝑥𝑥). However, this is much
slower than the dynamic programming approach.

After obtaining 5,000 terms of the sequence enumerating Av(4123,4231,4312) we apply the method of
differential approximation [18], an experimental method that uses initial terms of a sequence to non-rigorously
approximate asymptotic growth of the form

𝐶𝐶𝛾𝛾𝑛𝑛𝑛𝑛−1−𝛼𝛼.

For this class, we predict 𝐶𝐶 ≈ 0.01897, 𝛾𝛾 ≈ 4.46841, and 𝛼𝛼 = −1, so we conjecturally have the approximate
asymptotics

https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#br0180
https://www.sciencedirect.com/topics/mathematics/asymptotics

|Av𝑛𝑛(4123,4231,4312)| ∼ 0.01897 ⋅ (4.46841)𝑛𝑛.

We can approximate these constants to around 100 decimal places of accuracy.

A function 𝑓𝑓(𝑥𝑥) is said to be differentially algebraic if there exists some 𝑘𝑘 ≥ 0 and
some polynomial 𝑃𝑃(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑘𝑘+2) such that

(⋆) 𝑃𝑃(𝑥𝑥,𝑓𝑓(𝑥𝑥),𝑓𝑓′(𝑥𝑥), … ,𝑓𝑓(𝑘𝑘)(𝑥𝑥)) = 0

for all 𝑥𝑥. Equation (⋆) is called an algebraic differential equation. All algebraic and differentially finite (D-finite)
generating functions are also differentially algebraic.

We have written a Maple program to use terms of a counting sequence to guess an algebraic differential
equation which might be satisfied by the generating function of a given sequence. This program has not been
able to guess an algebraic differential equation that might be satisfied by the generating function
for Av(4123,4231,4312), despite searching through all possible algebraic differential equations

𝑃𝑃(𝑥𝑥,𝑓𝑓(𝑥𝑥),𝑓𝑓′(𝑥𝑥), … ,𝑓𝑓(𝑘𝑘)(𝑥𝑥)) = 0

with 𝑥𝑥1-degree at most 𝑑𝑑, differential order at most 𝑘𝑘, and (𝑥𝑥2, … , 𝑥𝑥𝑘𝑘+2)-total degree at most 𝑚𝑚 such that

(𝑑𝑑 + 1) �𝑚𝑚 + 𝑘𝑘 + 1
𝑚𝑚 � + 5 ≤ 5000.

In light of this, we make the following conjecture.

Conjecture 5.3
The generating function of the class Av(4123,4231,4312) is not differentially algebraic.

In particular, Conjecture 5.3 would imply that the generating function for this class is not D-finite. Note that
every subclass of Av(123,231,312) has bounded enumeration, and thus by Theorem 4.6 their machines
generate classes with algebraic generating functions. Thus it appears that the Av(123,231,312)-machine is a
minimal non-algebraic machine.

5.2. Three 𝟒𝟒 × 𝟒𝟒 classes
There are three so-far unenumerated 2 × 4 classes which may be generated by 𝒞𝒞-machines. For full details on
these three cases, we refer to the third author's thesis [29, Chapter 5], giving only an outline here. The
containers of these machines are shown in Fig. 8. The first two containers, Av(123,231) and Av(123,231), may
be analyzed using three parameters which record the sizes of the three blocks.

Fig. 8. From left to right, the classes Av(123,231), Av(123,312), and Av(231,321).

The class Av(231,321), however, is not a polynomial class; in fact, there are 2𝑛𝑛−1 permutations of length 𝑛𝑛 in
this class. As such, the strategy of using a different variable to represent entries in each block is not effective.
Instead, we label the entries of the maximum increasing final block (if there are any) by 𝑎𝑎, we label all entries in
the rightmost sum component of the form 1 ⊖ (12⋯ℓ) by 𝑏𝑏. The remaining entries of the container are
labeled by 𝑐𝑐. Fig. 9 shows three examples. As this assignment implies, we do not need to keep track of the actual
shape formed by the 𝑐𝑐 entries, even though they can take many different forms. Once an entry becomes
a c entry, it stays a 𝑐𝑐 entry until it is popped.

https://www.sciencedirect.com/topics/mathematics/polynomial
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#fm0400
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#en0220
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#en0170
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#br0290
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#fg0080
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#fg0090

Fig. 9. Three examples of the variable assignments in the Av(231,321)-machine.

With dynamic programming, we are able to easily compute 1,000 terms in each of first two enumerations, and
600 in the final case, and could extend this enumeration were it of interest. Again we use the method of
differential approximation to fit these sequences to asymptotics of the form 𝐶𝐶𝛾𝛾𝑛𝑛𝑛𝑛−1−𝛼𝛼. The data for these
three cases is collected in the table below.

Class Sequence γ≈ α≈ OEIS [31]
Av(4123,4231) 1,2,6,22,89,380,1677,7566 4.97689 −1 A165542

Av(4123,4312) 1,2,6,22,89,382,1711,7922 3 + 2√2 1/2 A165545

Av(4231,4321) 1,2,6,22,90,396,1837,8864 5.89249 −1 A053617

As in the previous subsection, we have also used these terms to attempt to conjecture differentiably algebraic
generating functions fitting the known data, with no success. This even holds in the second example, despite the
consistency of the conjectured values of 𝛾𝛾 and 𝛼𝛼 with simple algebraic generating functions.

Conjecture 5.4
None of the classes Av(4123,4231), Av(4123,4312), or Av(4231,4321) have differentially algebraic
generating functions.

6. Concluding remarks
There are many more permutation classes that could be enumerated—either obtaining an explicit generating
function or generating hundreds or thousands of terms—with 𝒞𝒞-machines. While Section 4 initiates the study of
the more general theory of how restrictions on a class 𝒞𝒞 may imply certain properties of the class generated by
the 𝒞𝒞-machine, the four classes considered in Section 5 suggest that extending this classification may require
great care.

For instance, we presented the class Av(4123,4231,4312) generated by the Av(123,231,312)-machine. Recall
that the class Av(123,231,312) is a polynomial class represented by the peg permutation 1−2− and that we
conjecture that the class Av(4123,4231,4312) does not have a differentially algebraic generating function. One
might suspect that the cause of this complicated behavior is the presence of two entries inflated by + or − in the
peg permutation representing the class. However, there are (up to symmetry) four other two-cell machines,
those represented by the peg permutations 1+2−, 2+1+, 2+1−, and 2−1+. The last three can be shown to
generate Wilf-equivalent classes by considering their corresponding generation sequences, and all can be shown
to generate classes whose generating functions are algebraic.

It appears that the Av(123,231,312)-machine of Section 5 is harder to model than the other four two-cell
machines for the same reason the kernel method fails to apply: when there is a single entry in the 1− cell and at
least one entry in the 2− cell, the act of popping the leftmost entry causes all entries in the 2− cell to shift
downward into the 1− cell. While we now know that the Noonan–Zeilberger Conjecture is false thanks to the

http://oeis.org/
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#br0310
http://oeis.org/A165542
http://oeis.org/A165545
http://oeis.org/A053617
https://www.sciencedirect.com/topics/mathematics/fitting-function
https://www.sciencedirect.com/topics/mathematics/permutation
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#se0130
https://www.sciencedirect.com/topics/mathematics/considered-class
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#se0170
https://www.sciencedirect.com/topics/mathematics/polynomial
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#se0170

work of Garrabrant and Pak [17], among all potential concrete counterexamples, the
class Av(4123,4231,4312) analyzed in Section 5.1 is simplest yet identified.

Acknowledgements
We are grateful to Mireille Bousquet-Mélou for suggesting a number of improvements to an earlier version of
the paper, and to the referees for their careful reading of this work.

References
[1] M.H. Albert, M.D. Atkinson, M. Bouvel, N. Ruškuc, V. Vatter Geometric grid classes of permutations Trans.

Amer. Math. Soc., 365 (11) (2013), pp. 5859-5881
[2] M.H. Albert, M.D. Atkinson, N. Ruškuc Regular closed sets of permutations Theoret. Comput. Sci., 306 (1–

3) (2003), pp. 85-100
[3] M.H. Albert, S. Linton, N. Ruškuc The insertion encoding of permutations Electron. J. Combin., 12 (1) (2005),

Article 47 31 pp
[4] R. Arratia On the Stanley–Wilf conjecture for the number of permutations avoiding a given pattern

Electron. J. Combin., 6 (1999) Note 1, 4 pp
[5] M.D. Atkinson, M.M. Murphy, N. Ruškuc Sorting with two ordered stacks in series Theoret. Comput.

Sci., 289 (1) (2002), pp. 205-223
[6] J. Bloom, S. Elizalde Pattern avoidance in matchings and partitions Electron. J. Combin., 20 (2) (2013),

Article 5 38 pp
[7] J. Bloom, V. Vatter Two vignettes on full rook placements Australas. J. Combin., 64 (1) (2016), pp. 77-87
[8] M. Bóna Exact enumeration of 1342-avoiding permutations: a close link with labeled trees and planar maps

J. Combin. Theory Ser. A, 80 (2) (1997), pp. 257-272
[9] M. Bóna The permutation classes equinumerous to the smooth class Electron. J. Combin., 5 (1998),

Article 31 12 pp
[10] M. Bousquet-Mélou, A. Jehanne Polynomial equations with one catalytic variable, algebraic series and

map enumeration J. Combin. Theory Ser. B, 96 (5) (2006), pp. 623-672
[11] T. Chow, J. West Forbidden subsequences and Chebyshev polynomials Discrete Math., 204 (1–3) (1999),

pp. 119-128
[12] A.R. Conway, A.J. Guttmann On the growth rate of 1324-avoiding permutations Adv. in Appl.

Math., 64 (2015), pp. 50-69
[13] A.R. Conway, A.J. Guttmann, P. Zinn-Justin 1324-avoiding permutations revisited arXiv:1709.01248

[math.CO]
[14] P.G. Doyle Stackable and queueable permutations arXiv:1201.6580 [math.CO]
[15] M. Droste, W. Kuich, H. Vogler (Eds.), Handbook of Weighted Automata, Monographs in Theoretical

Computer Science, Springer-Verlag, Berlin, Germany (2009)
[16] M. Elder, V. Vatter Problems and conjectures presented at the Third International Conference on

Permutation Patterns, University of Florida, March 7–11, 2005 arXiv:math/0505504
[17] S. Garrabrant, I. Pak Pattern avoidance is not P-recursive arXiv:1505.06508 [math.CO]
[18] A.J. Guttmann, G.S. Joyce On a new method of series analysis in lattice statistics J. Phys. A: Math.

Gen., 5 (9) (1972), p. L81
[19] C. Homberger, V. Vatter On the effective and automatic enumeration of polynomial permutation classes J.

Symbolic Comput., 76 (2016), pp. 84-96
[20] S. Huczynska, V. Vatter Grid classes and the Fibonacci dichotomy for restricted permutations Electron. J.

Combin., 13 (2006), Article 54 14 pp

https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#br0170
https://www.sciencedirect.com/topics/mathematics/counterexample
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#se0180
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#bbr0010
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#bbr0020
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#bbr0030
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#bbr0040
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#bbr0050
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#bbr0060
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#bbr0070
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#bbr0080
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#bbr0090
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#bbr0100
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#bbr0110
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#bbr0120
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#bbr0130
http://arxiv.org/abs/1709.01248
http://arxiv.org/abs/1709.01248
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#bbr0140
http://arxiv.org/abs/1201.6580
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#bbr0150
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#bbr0160
http://arxiv.org/abs/math/0505504
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#bbr0170
http://arxiv.org/abs/1505.06508
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#bbr0180
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#bbr0190
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#bbr0200

[21] F. Johansson, B. Nakamura Using functional equations to enumerate 1324-avoiding permutations Adv. in
Appl. Math., 56 (2014), pp. 20-34

[22] T. Kaiser, M. Klazar On growth rates of closed permutation classes Electron. J. Combin., 9 (2) (2003),
Article 10 20 pp

[23] D.E. Knuth The Art of Computer Programming, Vol. 1 Addison-Wesley, Reading, Massachusetts (1968)
[24] D. Kremer Permutations with forbidden subsequences and a generalized Schröder number Discrete

Math., 218 (1–3) (2000), pp. 121-130
[25] D. Kremer Postscript: “Permutations with forbidden subsequences and a generalized Schröder number”

Discrete Math., 270 (1–3) (2003), pp. 333-334
[26] D. Kremer, W.C. Shiu Finite transition matrices for permutations avoiding pairs of length four patterns

Discrete Math., 268 (1–3) (2003), pp. 171-183
[27] I. Le Wilf classes of pairs of permutations of length 4 Electron. J. Combin., 12 (2005), Article 25 27 pp
[28] J. Noonan, D. Zeilberger The enumeration of permutations with a prescribed number of “forbidden”

patterns Adv. in Appl. Math., 17 (4) (1996), pp. 381-407
[29] J. Pantone Structural Analysis of Permutation Classes PhD thesis University of Florida (2015)
[30] V.R. Pratt Computing permutations with double-ended queues, parallel stacks and parallel queues STOC

'73: Proceedings of the Fifth Annual ACM Symposium on the Theory of Computing, ACM, New
York (1973), pp. 268-277

[31] The On-line Encyclopedia of Integer Sequences (OEIS) published electronically at http://oeis.org/
[32] V. Vatter Finitely labeled generating trees and restricted permutations J. Symbolic Comput., 41 (5) (2006),

pp. 559-572
[33] V. Vatter Problems and conjectures presented at the problem session

S. Linton, N. Ruškuc, V. Vatter (Eds.), Permutation Patterns, London Mathematical Society Lecture Note
Series, vol. 376, Cambridge University Press, Cambridge, England (2010), pp. 339-344

[34] V. Vatter Small permutation classes Proc. Lond. Math. Soc. (3), 103 (5) (2011), pp. 879-921
[35]V. Vatter Permutation classes M. Bóna (Ed.), Handbook of Enumerative Combinatorics, CRC Press, Boca

Raton, Florida (2015), pp. 754-833
[36] H.S. Wilf What is an answer? Amer. Math. Monthly, 89 (5) (1982), pp. 289-292
[37] D. Zeilberger Enumerative and algebraic combinatorics T. Gowers (Ed.), Princeton Companion to

Mathematics, Princeton University Press, Princeton, New Jersey (2008), pp. 550-561

1Pantone and Vatter were partially supported by the National Science Foundation under Grant Number DMS-

1301692.
2In fact, the original inspiration for the kernel method came from Knuth's solution [23, Solution 2.2.1.4] to this

very problem (though he did not use this language or the same functional equation).
3One must also add an additional equation X⋅(u1−u2)−1 to force the distinctness of u1 and u2.
4Indeed, these classes fall under the purview not only of the rank encoding, but also of the finitely labeled

generating trees of Vatter [32] and the insertion encoding of Albert, Linton, and Ruškuc [3].

https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#bbr0210
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#bbr0220
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#bbr0230
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#bbr0240
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#bbr0250
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#bbr0260
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#bbr0270
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#bbr0280
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#bbr0290
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#bbr0300
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#bbr0310
http://oeis.org/
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#bbr0320
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#bbr0330
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#bbr0340
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#bbr0350
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#bbr0360
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#bbr0370
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#bfn0010
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#gsp0010
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#gsp0010
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#bfn0020
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#br0230
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#bfn0030
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#bfn0040
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#br0320
https://www.sciencedirect.com/science/article/pii/S0097316518300219?via%3Dihub#br0030

	Generating Permutations with Restricted Containers
	Recommended Citation

	Abstract
	Keywords
	1. Introduction
	1.1. History and context
	1.2. Concepts and definitions
	1.3. The main property
	Theorem 1.1
	Proof

	1.4. Operation of the machine
	Proposition 1.2
	Proof

	1.5. Structure of the paper

	2. Catalan and Schröder classes
	2.1. Catalan classes
	2.2. The Schröder classes
	Proposition 2.1
	Proof

	3. Fibonacci machines
	3.1. The ,ℱ-⊕. -machine
	Theorem 3.1
	Proof

	3.2. The ,ℱ-⊖. -machine
	Theorem 3.2
	Proof

	4. Machines for restricted classes
	4.1. Finite classes
	Theorem 4.1

	4.2. Polynomial classes
	Proposition 4.2
	Theorem 4.3
	Proof

	4.3. Bounded classes
	Theorem 4.4
	Theorem 4.5
	Theorem 4.6
	Proof

	5. Potentially non-D-finite classes
	5.1. 𝐀𝐯(𝟒𝟏𝟐𝟑,𝟒𝟐𝟑𝟏,𝟒𝟑𝟏𝟐)
	Proposition 5.1

	Proposition 5.2
	Proof

	Conjecture 5.3
	5.2. Three 𝟐×𝟒 classes
	Conjecture 5.4

	6. Concluding remarks
	Acknowledgements
	References

