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Highlights 
• A novel epoxy interlocking approach is proposed to enhance FRP-to-concrete bond. 
• Partial interaction of epoxy interlocking was calibrated by test results. 
• An analytical method was proposed to quantify partial interaction for epoxy ribs. 
• A parametric study was conducted analytically on the effects of epoxy interlocking. 
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Abstract 
This paper presents a novel approach which can enhance the interfacial bond behavior between fiber reinforced 
polymer (FRP) composite material and concrete. Epoxy ribs are formed by grooving on the concrete surface 
before epoxy is applied. The dowel action from the epoxy ribs leads to an “epoxy interlocking” effect. The 
mechanism of the proposed epoxy interlocking approach was analyzed in this paper from both adhesion and 
interlocking aspects. Furthermore, the partial interaction of the epoxy interlocking was quantified and calibrated 
by experimental results. The epoxy interlocking in the tested specimens led to an 88.8% increase in bond 
strength on average. An analytical approach was proposed to quantify the average partial interaction for the 
individual epoxy ribs. The load-slip relationship for individual epoxy ribs was found to be related to concrete 
compression behavior. A parametric study was conducted analytically on the effects of groove depth and 
spacing, concrete strength and epoxy rib location. The reasonable results in the parametric study further verify 
the efficiency of the epoxy interlocking to enhance the bond performance between FRP and concrete. 
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FRP, Concrete, Epoxy interlocking, Interfacial bond,  

Nomenclature 
bc width of concrete block 
bf width of applied FRP 
D distance from loaded end 
de depth of the grooves 
Ec Elastic modulus of concrete 
Ef modulus of elasticity of FRP 
F pull load 
Fa force from adhesion 
fco compressive strength of concrete 
FF load of epoxy interlocking specimens 
Fm force from mechanical interlocking, or dowel force 
Fmax maximum force value of force-slip relationship 
FU load of wax filled specimens 
Le effective bond length 
Lf total bond length of FRP 
Lr spacing of the epoxy ribs 
S relative slip between FRP and concrete 
s(x) slip distribution along x coordinate 
su maximum slip at loaded end (when failure) 
tf FRP thickness 
x0 location (in x coordinate) of maximum bond stress (Fig. 2c) 
α a bond parameter needs to be determined in Eq. (2) 
αF obtained α value for epoxy interlocking specimens 
αU obtained α value for wax filled specimens 
β a bond parameter needs to be determined in Eq. (2) 
βF obtained β value for epoxy interlocking specimens 
βU obtained β value for wax filled specimens 
ɛ strain 
ɛco strain when concrete stress = fco 
σ stress 
τa bond stress between FRP and concrete 
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1. Introduction 
Externally bonded (EB) fiber reinforced polymer (FRP) composite material is popular for the rehabilitation 
of concrete structures, largely due to its high mechanical performances and advantages in construction 
convenience [1], [2], [3], [4], [5], [6]. The FRP-to-concrete interfacial bond is the weakest link in this retrofitting 
system. It is known that there are three mechanisms, i.e., adhesion, interlocking/dowel action, and friction, to 
transfer the interfacial bond stresses in a composite structure combining two mechanically connected bodies. 
Researchers have suggested various methodologies based on these three mechanisms to enhance the FRP-to-
concrete bond performance. 

Adhesion is normally provided by epoxy resin as an adhesive applied between FRP and concrete. Hosseini and 
Mostofinejad [7], [8] increased the total adhesive area between FRP and concrete by grooving on the concrete 
surface before applying epoxy. However, the reliability of the adhesive works is often doubted by engineers and 
researchers because of the debonding issue [9]. To solve this problem, the bond behavior should be enhanced 
from the other two aspects: interlocking (or dowel action) and friction. FRP anchors [10], [11], [12], [13] and 
mechanically fastening with anchor bolts [14], [15], [16] are the most common devices used in the applications 
of interlocking. Zhang et al. [17] added shear keys with FRP plates to increase the interlocking effect. The 
anchors, however, cut fibers which lead to longitudinally splitting and/or need a related deep burrowing leading 
to some damage to concrete. Recently, a hybrid bonding system using 
mechanical fasteners [18], [19], [20], [21], [22] was proposed to generate perpendicular pressure to provide high 
friction between FRP and concrete, as well as interlocking by nails. Such system can improve the FRP-concrete 
bond significantly. However, the installation of the mechanical fasteners increases the complication of 
the installation process apart from the damage effect to concrete. 

Because of the limitations mentioned above, this study aims to find a novel and reasonable method by 
a theoretical study to effectively increase the FRP-to-concrete bond behavior. A new concept of epoxy 
interlocking, which is an interlocking enhancement method neither cutting FRP nor severely damaging concrete, 
is proposed and verified by tests with analytical derivations. A parametric study was conducted analytically on 
the effects of groove depth and spacing, concrete strength and epoxy rib location. 

2. Epoxy interlocking 
Cutting FRP laminates can be avoided if the dowel action is created only in the concrete layer. There are three 
conditions for a dowel to work effectively: (1) the dowel should be tightly fixed on the FRP; (2) the dowel should 
insert into concrete for a certain depth; and (3) the strength of the dowel material should be much higher than 
concrete. In this study, a simple and effective concept is proposed that the adhesion level can be adjusted and 
improved to have “ribs”, which is similar to the deformed steel reinforcing bars. The schematic diagram is shown 
in Fig. 1. The “epoxy ribs” can be formed by grooving the concrete before applying epoxy resin. Both 
the adhesion layer and the interlocking ribs are made of epoxy resin, and the proposed approach can be 
considered as “epoxy interlocking”. In order to avoid the shear failure of the ribs and concrete damage, it is not 
necessary to have a large grooving depth. Since epoxy normally has a higher strength than concrete, it is 
believed that the epoxy filling in the grooves has a very limited or no damage effect on the concrete material. 
On the other hand, a recent work by the authors [23] shows that the existing cracks have a limited influence on 
the bond-slip relationship, and the shallow grooves cut on the tensile side of the reinforced concrete beam does 
not have significant effects on the stiffness and capacity of the FRP strengthened RC beam. 
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Fig. 1. Epoxy rib. 
 

3. Bonding mechanisms 
In this proposed method, only adhesion and interlocking (or dowel action) are involved in the bonding 
mechanisms, as illustrated in Fig. 2. The external force applied to the FRP is balanced by the sum of every 
mechanism’s effect [9]. Therefore, the total pull load F of EB-FRP joints considering epoxy interlocking is 

(1) 𝐹𝐹 = 𝐹𝐹𝑎𝑎 + 𝐹𝐹𝑚𝑚 

where Fa and Fm are the forces from adhesion and mechanical interlocking, respectively. 

 
Fig. 2. Interfacial bonds. 
 

3.1. Adhesion 
Adhesive bond behavior between FRP and concrete has been extensively investigated over the last two decades. 
FRP tends to move, or slip, relative to the concrete substrate when subjected to a pull load F, as shown in Fig. 
2a. The adhesive resistance of the interface is mobilized by the FRP slipping, with a typical bond stress τa vs. 
slip s relationship (Fig. 3a) [24]. When the loaded end slip increases from zero to the maximum slip, su, as shown 
by the slip distribution s(x) in Fig. 2b, the adhesive bond stress develops gradually from state A to C, as shown 
in Fig. 2c, where a full bond stress block is developed with τa equal to 0 at the loaded end. Further pulling after 
state C will simply move the bond stress block to the free end as shown by state D. The area on the right side of 
stress block D has been fully debonded [24]. Therefore, the total adhesive bond, Fa, reaches its peak at state C 
and remains constant thereafter. The length of the bond stress block corresponding to state C in Fig. 2c, Le, is the 
effective length of adhesive bond. Increasing the total bond length (Lf) beyond Le cannot increase Fa. Le is usually 
in the magnitude of 100 mm, depending on the properties of the joint such as FRP stiffness and concrete 
strength [25], [26], [27], [28]. Therefore, the capacity of the adhesive bond is very limited. 
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Fig. 3. Partial interaction relationships. 
 

3.2. Dowel action 
The dowel force of the epoxy ribs is significantly different from those with FRP anchors and mechanical 
fastening. For FRP anchors and mechanical fastening, the dowel action occurs in both anchor-to-FRP interface 
and anchor-to-concrete interface, as shown in Fig. 4. Because of the relatively deep anchor, the interlocking 
effect in concrete (dowel force 2 in Fig. 4) is much higher than that in the FRP laminate (dowel force 1 in Fig. 4). 
Therefore, the failure mode of the FRP anchor/mechanical fastening system is normally either the shear 
failure of the anchors or the cutting failure of FRP laminates, which is also called sustained bearing failure [14]. 
Hence, the dowel action of FRP anchors and mechanical fastening largely depends on the anchor-to-FRP force 
which can lead to a large platform in a local load-slip relationship [19], [29], as illustrated by the dotted line 
in Fig. 3b. 

 
Fig. 4. Dowel force of FRP anchor and mechanically fastening. 
 

For the epoxy interlocking case, however, only the interlocking effect in concrete, which is the dowel force 
shown in Fig. 1, exists. Under a pull load, FRP tends to move relatively to the concrete substrate with dragging 
the epoxy ribs. The concrete at the side of pull force has the dowel force to resist such pushing pressure. 
Eventually, the concrete would crush and be pulled off with the epoxy layer. Therefore, the partial load-slip 
relationship of epoxy interlocking should have a much shorter platform as illustrated in Fig. 3b (solid line), and 
may be related to concrete compressive behavior [30]. The development of mechanical bond is similar to the 
adhesion bond with a movement from the loaded end to the free end (Fig. 2d). The partial interaction of the 
epoxy interlocking (Fig. 3b) can be quantified and calibrated by experiments as described in the following 
sections. 

4. Calibration by experiments 
To verify the proposed concept and to calibrate the effect of epoxy interlocking, an experimental program was 
conducted. Three EB-FRP joints with epoxy interlocking (Fig. 5a) were prepared by grooving before applying FRP. 
On the other hand, three additional EB-FRP joints with wax filled grooving (Fig. 5b) were undertaken for the sake 
of comparison. Such type of comparison was adopted in order to investigate the interlocking effect 
independently. The specimen details are illustrated in Table 1 and Fig. 6. The 28-day compression strength of 
the concrete substrates was 34.5 MPa obtained by compression tests on cylinder specimens sized 150 mm 
(diameter) × 300 mm (height). The nominal thickness, ultimate strength, ultimate strain and tensile modulus of 
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carbon FRP (CFRP) plates were 1.5 mm, 2790 MPa, 1.8%, and 155 GPa, respectively, which were provided by the 
manufacturer. 

 
Fig. 5. Grooving on concrete. 
 

Table 1. Specimen detail and test results of EB-FRP joints. 
Specimen 
ID 

Epoxy 
interlocking/grooving 

   Peak load 
(kN) 

α (mm) β (mm) 
 

Width (mm) Spacing 
(mm) 

Depth de (mm) Filling 
material 

   

U-1 3 50 4.9 Wax 29.74 0.1115 43.11 
U-2 

  
5.0 

 
31.50 

  

U-3 
  

5.0 
 

37.69 
  

F-1 3 50 4.8 Epoxy 65.02 0.1949 39.47 
F-2 

  
4.9 

 
64.87 

  

F-3 
  

5.0 
 

57.02 
  

 
Fig. 6. Sketch of the specimen and test setup. 
 

Grooves with 3 mm in width and 5 mm in depth of all the concrete substrate were cut by a concrete saw after 
roughening the concrete surface by mechanical grinding. Three of the specimens (U-1, U-2 and U-3) were filled 
by soft wax to avoid the penetration of applied epoxy. The wax filling was also carried out at the edges of 
grooves in the epoxy interlocking specimens (F-1, F-2 and F-3) where were not be covered by CFRP. Hence, the 
epoxy ribs had the same width with FRP. 

The single shear pull-out test with a loading rate of 0.0127 mm/s was adopted to evaluate the bond behaviors of 
the EB-FRP joints in this work (Fig. 7). Seven conventional electric strain gauges were mounted on the FRP 
surface for each specimen to measure the FRP strain, as shown in Fig. 6. One linear variable differential 
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transformer (LVDT) was mounted on the concrete substrate to measure the relative displacement between 
concrete and FRP at the loaded end. 

 
Fig. 7. Specimen under testing. 
 

All specimens were loaded until a sudden failure with pulling off a thin layer of concrete skin from the concrete 
substrate. Fig. 8 shows the typical failure modes of the two types of EB-FRP joints. It can be observed from Fig. 
8 that the thickness of damaged concrete of epoxy interlocking specimens was significantly greater than that of 
the wax filled ones. More concrete was crushed close to the epoxy ribs. The tested load-displacement curves at 
the loaded end are plotted in Fig. 9. More detail information of the experimental program can be found in [31]. 

 
Fig. 8. Typical failure modes [31]. 
 

 
Fig. 9. Load-displacement curves [31]. 
 

5. Discussion and validation 
5.1. Effect of epoxy interlocking 
For wax filled specimens (i.e., U-1, U-2 and U-3), the global load-displacement behaviors show the similar 
responses with a 33.0 kN of average bond strength. Its bond strength is similar to that of the EB-FRP joints 
without grooving [31], [32]. For the epoxy interlocking specimens (i.e., F-1, F-2 and F-3), the average bond 
strength is 62.3 kN which shows a stable level and is 88.8% higher than that of the wax filled ones. The load-
displacement curves of epoxy interlocking specimens, however, show a large scatter in Fig. 9. The large scatter 
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exists mainly due to the non-uniformity of concrete material and the effect of epoxy interlocking. It is known 
that concrete is a non-uniform composite material. Wall effect [33], [34] of concrete causes smaller aggregates 
to concentrate near the surface of the concrete specimen, which leads to higher non-uniformity of concrete 
near the epoxy ribs. Meanwhile, not all epoxy ribs contribute the same amount of resistance when 
the debonding crack propagates from the loaded end to the free end. Therefore, the load-displacement curves 
show large differences in the three specimens. While the bond strengths are similar because there are totally six 
ribs in each specimen and in consequence, the overall interlocking effect should not have a large variation. 

5.2. Mechanical evaluation of epoxy interlocking 
An analytical approach is proposed in this study to evaluate and quantify the effect of individual epoxy 
interlocking. A widely adopted bond-slip model and its analytical solution for load-displacement relationship are 
used and shown in Eqs. (2), (3), respectively [23], [24], [26], [35], [36], [37], [38], [39]. 

(2) 𝜏𝜏(𝑠𝑠) = 𝐸𝐸𝑓𝑓𝑡𝑡𝑓𝑓𝛼𝛼
𝛽𝛽2

𝑒𝑒−
𝑠𝑠
𝛼𝛼 �1 − 𝑒𝑒−

𝑠𝑠
𝛼𝛼� 

(3) 𝐹𝐹 = 𝐸𝐸𝑓𝑓𝑡𝑡𝑓𝑓𝑏𝑏𝑓𝑓
𝛼𝛼
𝛽𝛽
�1 − 𝑒𝑒−

𝑠𝑠0
𝛼𝛼 � 

where Ef, tf, and bf are the modulus of elasticity, thickness and width of the FRP plate, respectively; s0 is the slip 
at the loaded end. There are two unknown parameters, α and β, in the bond-slip relationship, which govern the 
shape of the bond-slip curve. The unknown coefficients α and β can be obtained by a numerical nonlinear 
regression analysis using Eq. (3) to fit the experimental load-displacement curves of specimens. 

The best fitted load-displacement curves regressed by Eq. (3) plotted in Fig. 9 are used to study the average 
effect due to the non-uniformity of surface concrete as mentioned above. The bond-slip relationships from both 
direct measurement (calculated from strain gauge data) and indirect analytical solutions (regression from load-
displacement curves using Eqs. (2), (3)) are illustrated in Fig. 10. 

 
Fig. 10. Bond-slip relationship [31] (D is the distance from the loaded end, D = 75 mm refers to the epoxy rib locations). 
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Based on Eq. (1) and Fig. 2, the load due to mechanical interlocking can be studied independently by 

(4a) 𝐹𝐹𝑚𝑚 = 𝐹𝐹−𝐹𝐹𝑎𝑎 = 𝐹𝐹𝐹𝐹 − 𝐹𝐹𝑈𝑈 

where FF and FU are the load values of specimens with and without epoxy interlocking, respectively. Substituting 
Eq. (3) into Eq. (4a) yields 

(4b) 𝐹𝐹𝑚𝑚 = 𝐸𝐸𝑓𝑓𝑡𝑡𝑓𝑓𝑏𝑏𝑓𝑓 �
𝛼𝛼𝐹𝐹
𝛽𝛽𝐹𝐹
�1 − 𝑒𝑒−

𝑠𝑠
𝛼𝛼𝐹𝐹� − 𝛼𝛼𝑈𝑈

𝛽𝛽𝑈𝑈
�1− 𝑒𝑒−

𝑠𝑠
𝛼𝛼𝑈𝑈�� 

in which αF, βF, αU and βU are obtained α and β values for epoxy interlocking specimens and wax filled 
specimens, respectively, which are listed in Table 1. The results of Fm by test data and Eq. (4b) are plotted in Fig. 
11. Both the error evaluation index R2 and integral absolute error (IAE) [40], [41], [42] show good agreement 
in Fig. 11. 

 
Fig. 11. Mechanical interlocking force. 
 

When the bond slip model of Eq. (2) is adopted, the slip distribution should follow Eq. (5) [24], [38]: 

(5) 𝑠𝑠(𝑥𝑥) = 𝛼𝛼ln �1 + 𝑒𝑒
𝑥𝑥−𝑥𝑥0
𝛽𝛽 � 

where x0 is the location of maximum bond stress (Fig. 2c) that moves from infinity to zero when loading. 

Let the closest rib to the loaded end to be No. 1 rib, and the farthest one to be No. 6 rib. Accordingly, for a given 
loaded end slip, e.g., slip distribution si(x) in Fig. 2b, the slip values for each epoxy rib are fixed as si1 to si6. When 
the partial interaction relationship of every epoxy rib follows the load-slip relationship as: 

(6) 𝐹𝐹 = 𝑓𝑓(𝑠𝑠) 

For si(x) of slip distribution in Fig. 2b, the corresponding total dowel force Fmi is 

(7a) 𝐹𝐹𝑚𝑚𝑚𝑚 = ∑ 𝑓𝑓(𝑠𝑠𝑚𝑚𝑖𝑖)6
𝑖𝑖=1  

Furthermore, as Eq. (5) is a continuous mathematic function, there must exist another slip distribution sj(x) 
with sj2 = si1, sj3 = si2, sj4 = si3, etc. The corresponding total dowel force Fmj can be calculated as 

(7b) 𝐹𝐹𝑚𝑚𝑚𝑚 = � 𝑓𝑓�𝑠𝑠𝑚𝑚𝑖𝑖� = 𝑓𝑓�𝑠𝑠𝑚𝑚1�
6

𝑖𝑖=1
+ � 𝑓𝑓(𝑠𝑠𝑚𝑚𝑖𝑖) = 𝑓𝑓�𝑠𝑠𝑚𝑚1� + 𝐹𝐹𝑚𝑚𝑚𝑚 − 𝑓𝑓(𝑠𝑠𝑚𝑚6)

5

𝑖𝑖=1
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In Eq. (7b), f(si6) is infinitesimal of high order because the slip at the last rib is very close to zero unless at the 
stage of specimen failure. Therefore, Eq. (7b) can be changed to be(8)fsj1≅Fmj-Fmiwhere Fmi and Fmj values can 
be found in Fig. 11 (or Eq. (4b)). In this way, Eq. (6) can be plotted point by point in Fig. 12a. 

 
Fig. 12. Partial interaction relationship of epoxy rib interlocking. 
 

The load-slip relationship in Fig. 12a shows a good agreement with the guessed relationship in Fig. 3b by 
reasonable analysis. To further study Fig. 12a, if the ordinate change to stress by dividing the cross-sectional 
area of one epoxy rib (= bfde where de are groove depth), and let the abscissa change to strain by dividing the 
groove spacing, the curve becomes very similar to the concrete compressive stress-strain relationship. This 
interesting phenomenon is quite reasonable because the dowel force comes from the resistance of concrete 
subjected to compression. The peak stress in Fig. 12b is a little higher than concrete compressive 
strength obtained by cylinder testing because the concrete, which is close to the epoxy rib in the specimen, is 
confined by the surrounding concrete. 

6. Parametric study 
Based on the analytical model presented above, if the partial interaction relationship (or local load-slip 
relationship) of the epoxy ribs is known, the global performance (e.g., load-displacement curves for FRP-
concrete pull-out test) can be subsequently derived. The effects of groove depth, groove spacing, concrete 
strength and epoxy rib locations are further discussed in this section through a parametric study by analytical 
modeling. A typical FRP-to-concrete joint specimen was used in the parametric study 
with bf = 50 mm, bc = 150 mm, Ef = 155 GPa, tf = 1.5 mm, and Lf = 350 mm. Other parameters (i.e., concrete 
strength and groove details) are controlled or changed, which will be further discussed. In the parametric study, 
it is assumed that the specimen fails with concrete crushing/peeling off, without damage of epoxy ribs. The 
width of the epoxy ribs is 3 mm which is equal to the thickness of concrete saw blade, is kept constant. 
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As discussed above, the local load-slip relationship of epoxy ribs is highly related to the concrete compressive 
stress-strain relationship. A classic model for concrete stress (σ)-strain (ɛ) relationship proposed by 
Popovics [43] is adopted in this study to predict the partial load-slip relationship of individual epoxy ribs. The 
governing function of concrete stress-strain model is 

(9) 𝜎𝜎
𝑓𝑓𝑐𝑐𝑐𝑐

= 𝑥𝑥·𝑎𝑎
𝑎𝑎−1+𝑥𝑥𝑎𝑎

 

where x is the normalized strain which is given by x = ε/εco; a is determined by 

(10a) 𝑎𝑎 = 𝐸𝐸𝑐𝑐
𝐸𝐸𝑐𝑐−𝑓𝑓𝑐𝑐𝑐𝑐/𝜀𝜀𝑐𝑐𝑐𝑐

 

where Ec and ɛco are the concrete elastic modulus and strain value when σ = fco, respectively. Ec and ɛco depend 
on the concrete compressive strength, fco, and can be calculated by using Eq. (10b) [44] and Eq. (10c) [45], 
respectively. 

(10b) 𝐸𝐸𝑐𝑐 = 4730�𝑓𝑓𝑐𝑐𝑐𝑐 

(10c) 𝜀𝜀𝑐𝑐𝑐𝑐 = (0.71𝑓𝑓𝑐𝑐𝑐𝑐 + 168) × 10−5 

After calculating the compressive stress-strain relationship of concrete, the partial load (Fr)-slip (sr) relationship 
for individual epoxy ribs can be converted by Fr = σ·bf·de and sr = ɛ·Lr, where Lr is the spacing of the epoxy ribs or 
grooves, as discussed in the previous section. 

The relationship between the applied load and the slip at the loaded end for the FRP-to-concrete pull-out tests is 
analytically derived by the steps shown in the flowchart (Fig. 13). It is noted that for specimens with epoxy 
interlocking, the nearest epoxy rib to the loaded end is located with a distance of Lr from the loaded end. 

 
Fig. 13. Flowchart for load-displacement derivation. 
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6.1. Effect of groove depth 
Specimens with fco = 35 MPa and Lr = 50 mm (i.e., six ribs located at distances of 50 mm, 100 mm, 150 mm, 
200 mm, 250 mm, and 300 mm, respectively, from the loaded end) are studied in this work. Normally, an RC 
beam required strengthening has the concrete cover of around 20 mm or even less. Deeply grooving may cut 
the internal steel and significantly damage the concrete. Hence, three different groove depths of 3 mm, 5 mm 
and 7 mm are used to study the groove depth effect. According to the analytical derivation discussed above the 
calculated partial load-slip relationships and the load-displacement curves at the loaded ends are plotted in Fig. 
14a and b, respectively. 

 
Fig. 14. Effect of groove depth. 
 

It is obvious that the partial load-slip relationship for individual epoxy ribs enhances significantly with the 
increasing groove depth, because greater cross-sections of concrete are involved to contribute the resistance for 
the epoxy ribs. The deeper epoxy ribs lead to higher loads at the loaded end which can be seen in Fig. 14b. In the 
load-displacement curves, the force drops at the end are due to the rapid decreasing of the contributions by 
epoxy ribs. Before debonding failure of the specimen, the shear stress concentrates at the free end of FRP and 
the epoxy ribs carry only a small amount of force with large local slips, as shown in Fig. 14a. Therefore, at the 
end of load-displacement curve before failure, the force reduces to a value close to that of the normal bonding 
(without epoxy interlocking) specimen. 

6.2. Effect of groove spacing 
Similarly, let fco = 35 MPa and de = 5 mm, three different conditions for groove spacing (i.e., 10 ribs @ 30 mm, 6 
ribs @ 50 mm, and 3 ribs @ 100 mm) are used in the parametric study. The calculated partial load-slip 
relationships and load-displacement curves at the loaded ends are plotted in Fig. 15. With the same force 
applied at an epoxy rib, the rib in the specimen with greater groove spacing has the greater deformation, as 
shown in Fig. 15a. The reason is that the larger length of concrete with the same stress-strain relationship 
results in a higher deformation with a fixed strain. 

 
Fig. 15. Effect of groove spacing. 
 

In the load-displacement curves at the loaded ends (Fig. 15b), the curve for the specimen with a smaller groove 
spacing, or with more epoxy ribs, drops more significantly at the end before debonding failure. This 
phenomenon is reasonable because the decreasing of the contributions by epoxy ribs at the end stage are 
different for various groove spacings. For the specimens with shorter groove spacing, or more epoxy ribs, 
the residual force for a large slip at one epoxy rib is much lower than that of specimens with greater groove 
spacing, as illustrated in Fig. 15a. 

https://0-www-sciencedirect-com.libus.csd.mu.edu/science/article/pii/S0950061818325923#f0070
https://0-www-sciencedirect-com.libus.csd.mu.edu/science/article/pii/S0950061818325923#f0070
https://0-www-sciencedirect-com.libus.csd.mu.edu/topics/engineering/groove-depth
https://0-www-sciencedirect-com.libus.csd.mu.edu/science/article/pii/S0950061818325923#f0070
https://0-www-sciencedirect-com.libus.csd.mu.edu/topics/engineering/debonding
https://0-www-sciencedirect-com.libus.csd.mu.edu/science/article/pii/S0950061818325923#f0070
https://0-www-sciencedirect-com.libus.csd.mu.edu/science/article/pii/S0950061818325923#f0075
https://0-www-sciencedirect-com.libus.csd.mu.edu/topics/engineering/deformation
https://0-www-sciencedirect-com.libus.csd.mu.edu/science/article/pii/S0950061818325923#f0075
https://0-www-sciencedirect-com.libus.csd.mu.edu/science/article/pii/S0950061818325923#f0075
https://0-www-sciencedirect-com.libus.csd.mu.edu/topics/engineering/residual-force
https://0-www-sciencedirect-com.libus.csd.mu.edu/science/article/pii/S0950061818325923#f0075


6.3. Effect of concrete strength 
In order to study the effect of concrete strength independently, the groove depth and spacing are fixed to be 
5 mm and 50 mm (6 ribs @ 50 mm), respectively. Four compressive strengths of concrete are used with 35 MPa, 
50 MPa, 65 MPa, and 80 MPa, respectively. The partial load-slip relationships for individual epoxy ribs and load-
displacement curves at the loaded ends for the specimens with different concrete strengths are plotted in Fig. 
16. It is obvious in Fig. 16a that different concrete strengths lead to different partial load-slip relationships due 
to the different stress-strain relationships of concrete. 

 
Fig. 16. Effect of concrete strength. 
 

In terms of the load-displacement relationship at the loaded end, a very reasonable phenomenon – “force 
fluctuations” is shown in the specimens with higher concrete grades. Such fluctuations of force appear due to 
the mechanical interlocking, especially for the higher concrete strength with more significant interlocking 
effects. The interfacial shear stresses develop gradually from the loaded end to the free end, and the ribs also 
start and finish its load resistance one by one from the loaded end to the free end, as illustrated in Fig. 2d. 
Hence, there are six force fluctuations in Fig. 16b for the specimens with 6 ribs @ 50 mm. 

6.4. Effect of epoxy ribs locations 
It is of interest to find the effect of the epoxy rib locations on the global response. 
Let fco = 35 MPa, de = 5 mm, Lr = 30 mm. Five different cases are calculated: 

a) Concrete normally bonded by FRP without any epoxy interlocking; 
b) Concrete bonded by FRP with 10 epoxy ribs @ 30 mm; 
c) Concrete bonded by FRP with 3 epoxy ribs @ 30 mm; the first rib is located at 30 mm from the loaded 

end; 
d) Concrete bonded by FRP with 3 epoxy ribs @ 30 mm; the first rib is located at 120 mm from the loaded 

end; 
e) Concrete bonded by FRP with 3 epoxy ribs @ 30 mm; the first rib is located at 240 mm from the loaded 

end. 

 

The calculated load-displacement curves, as well as the schematic images, of the five cases above are illustrated 
in Fig. 17. The load-displacement curves of cases (c), (d) and (e) are located between the cases (a) and (b). In 
terms of the cases (c), (d) and (e), if the ribs are close to the loaded end, the interlocking effect works initially 
and later trends to the normal bonded case (case (a)), as shown in Fig. 17. However, if the ribs are located close 
to the free end, the interlocking effect does not work initially, but works at the end stage before failure. 
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Fig. 17. Effect of locations of epoxy ribs. 
 

7. Conclusions 
The concept of a novel approach called epoxy interlocking was proposed in this paper. The adhesive layer can be 
conducted with many ribs by grooving on the concrete surface before applying epoxy. This concept was proved 
and the average partial interaction relationship was calibrated by an experimental program. The bond strength 
of tested epoxy interlocking specimens had a percentage of 88.8% increase compared to the wax filled 
specimens, due to the epoxy interlocking effect. The partial interaction relationship for individual epoxy rib, 
which was derived from an analytical approach, showed to be highly related to the concrete compression 
behavior. Based on the proposed methodology and the analytical model in this paper, a parametric study was 
conducted on the effects of groove depth and spacing, concrete strength and epoxy rib location. The reasonable 
results in the parametric study further verify the efficiency of the proposed bond scheme to enhance the bond 
behavior between FRP and concrete. 
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