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Abstract 
The high-order spherical harmonics (𝑃𝑃𝑁𝑁) method for 2-D Cartesian domains is extracted from the 3-D 
formulation. The number of equations and intensity coefficients reduces to (N+1)2/4 in the 2-D Cartesian 
formulation compared with N(N+1)/2 for the general 3-D 𝑃𝑃𝑁𝑁 formulation. The Marshak boundary conditions are 
extended to solve problems with nonblack and mixed diffuse-specular surfaces. Additional boundary conditions 
for specified radiative wall flux, for symmetry/specular reflection boundaries have also been developed. The 
mathematical details of the formulations and their implementation in the OpenFOAM finite volume based CFD 
software platform are presented. The accuracy and computational cost of the 2-D Cartesian 𝑃𝑃𝑁𝑁 are compared 
with that of the 3-D 𝑃𝑃𝑁𝑁 solver and a Photon Monte Carlo solver for a square enclosure, as well as a 45° wedge 
geometry with variable radiative properties. The new boundary conditions have been applied for both test 
cases, and the boundary condition for mixed diffuse-specular surfaces is further illustrated by numerical 
examples of a rectangular geometry enclosed by walls with different surface characteristics. 

Keywords 
Radiative transfer, RTE solver, High-order spherical harmonics, Specified heat flux at the wall, Specular 
reflection, Partially diffuse and partially specular 

1. Introduction 
This note is a supplement to the research papers [1], [2], [3], [4], [5] on the development of higher-order 
spherical harmonics (𝑃𝑃𝑁𝑁) methods for radiative heat transfer and their implementation into OpenFOAM [6]. A 2-
D Cartesian version of the higher-order 𝑃𝑃𝑁𝑁 methods and their Marshak boundary conditions are extracted from 
the 3-D 𝑃𝑃𝑁𝑁 formulation. The Marshak boundary conditions are extended to solve problems with nonblack and 
mixed diffuse-specular surfaces. In addition, two special boundary conditions, i.e., specified radiative flux at the 
wall and interfaces of symmetry/specular reflection boundaries, for both 3-D and 2-D 𝑃𝑃𝑁𝑁 formulations, are 
developed. 

2. Formulation of the two-dimensional Cartesian 𝑃𝑃𝑁𝑁 
2.1. Governing equations and boundary conditions 
The formulation of the 2-D Cartesian 𝑃𝑃𝑁𝑁 is derived from the 3-D formulation by observing the characteristics of 
spherical harmonics 𝑌𝑌𝑛𝑛𝑚𝑚. As shown in [2] for general three-dimensional geometries, the radiative intensity is 
expanded into a sum of spherical harmonics: 

(1) 𝐼𝐼(𝝉𝝉, 𝐬𝐬
^
) = � � 𝐼𝐼𝑛𝑛𝑚𝑚(𝝉𝝉)𝑌𝑌𝑛𝑛𝑚𝑚(𝐬𝐬

^
)

𝑛𝑛

𝑚𝑚=−𝑛𝑛

𝑁𝑁

𝑛𝑛=0

 

where 𝝉𝝉 = ∫ 𝛽𝛽𝑟𝑟d𝐫𝐫 is an optical coordinate, and 𝛽𝛽𝑟𝑟 is the extinction coefficient. The upper limit 𝑁𝑁 is the order of 
the approximation, and the spherical harmonics 𝑌𝑌𝑛𝑛𝑚𝑚 are functions of polar angle 𝜃𝜃 and azimuthal angle 𝜓𝜓, 

(2) 𝑌𝑌𝑛𝑛𝑚𝑚 = �
cos(𝑚𝑚𝜓𝜓)𝑃𝑃𝑛𝑛𝑚𝑚(cos𝜃𝜃) for𝑚𝑚 ≥ 0

sin(|𝑚𝑚|𝜓𝜓)𝑃𝑃𝑛𝑛𝑚𝑚(cos𝜃𝜃) for𝑚𝑚 < 0 

where 𝑃𝑃𝑛𝑛𝑚𝑚 are associated Legendre polynomials [3], given by 

(3) 𝑃𝑃𝑛𝑛𝑚𝑚(𝜇𝜇) = (−1)𝑚𝑚 (1−𝜇𝜇2)|𝑚𝑚|/2

2𝑛𝑛𝑛𝑛!
𝑑𝑑𝑛𝑛+|𝑚𝑚|

𝑑𝑑𝜇𝜇𝑛𝑛+|𝑚𝑚| (𝜇𝜇2 − 1)𝑛𝑛 
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By eliminating spherical harmonics with odd 𝑛𝑛, a general three-dimensional formulation in 𝑁𝑁(𝑁𝑁 + 1)/2 elliptical 
PDEs can be derived [2]. 

𝑁𝑁(𝑁𝑁 + 1)/2 boundary conditions are required and determined from the general Marshak boundary 
condition [7]: 

(4) � 𝐼𝐼𝑌𝑌
¯
2𝑖𝑖−1
𝑚𝑚 𝑑𝑑𝑑𝑑

𝐧𝐧
^

·𝐬𝐬
^
>0

= � 𝐼𝐼𝑤𝑤𝑌𝑌
¯
2𝑖𝑖−1
𝑚𝑚 𝑑𝑑𝑑𝑑, 𝑖𝑖

𝐧𝐧
^

·𝐬𝐬
^
>0

= 1,2, … , 1
2

(𝑁𝑁 + 1), allrelevant𝑚𝑚 

 

Substitution of Eq. (1) in terms of local coordinates into Eq. (4) leads to 

(5) (1 + 𝛿𝛿𝑚𝑚,0)𝜋𝜋� 𝑝𝑝𝑛𝑛,2𝑖𝑖−1
𝑚𝑚 𝐼𝐼

¯
𝑛𝑛
𝑚𝑚

𝑁𝑁

𝑛𝑛=0

= � � 𝐼𝐼𝑤𝑤𝑌𝑌
¯
2𝑖𝑖−1
𝑚𝑚 𝑑𝑑𝜇𝜇

¯
𝑑𝑑𝜓𝜓

¯1

0

2𝜋𝜋

0

 

if 𝐼𝐼𝑤𝑤 is diffuse, this simplifies to 

(6) � 𝑝𝑝𝑛𝑛,2𝑖𝑖−1
𝑚𝑚 𝐼𝐼

¯
𝑛𝑛
𝑚𝑚

𝑁𝑁

𝑛𝑛=0

= 𝛿𝛿𝑚𝑚,0𝑝𝑝0,2𝑖𝑖−1
0 𝐼𝐼𝑤𝑤 

The detailed derivation of the 𝑁𝑁(𝑁𝑁 + 1)/2 boundary conditions for the 3-D 𝑃𝑃𝑁𝑁 formulation can be found 
in [2], [3]. For two-dimensional Cartesian geometry in the 𝑥𝑥–𝑦𝑦 plane with polar angle 𝜃𝜃 measured from the 𝑧𝑧-
axis, one obtains 𝐼𝐼(𝜃𝜃,𝜓𝜓) = 𝐼𝐼(𝜋𝜋 − 𝜃𝜃,𝜓𝜓) or 𝐼𝐼(𝜇𝜇,𝜓𝜓) = 𝐼𝐼(−𝜇𝜇,𝜓𝜓) for 𝜇𝜇 = cos𝜃𝜃, as seen from Eqs. (2), (3), the 
associated Legendre polynomials 𝑃𝑃𝑛𝑛𝑚𝑚(𝜇𝜇) are odd functions when (𝑚𝑚 + 𝑛𝑛) are odd, thus 𝐼𝐼𝑛𝑛𝑚𝑚 with (𝑚𝑚 + 𝑛𝑛) being 
odd must vanish. Since the governing equations are formulated with even 𝑛𝑛 only, all terms in the governing 
equation with odd 𝑚𝑚 vanish. Based on this, and eliminating all derivatives into the 𝑧𝑧-direction, the 
remaining (𝑁𝑁 + 1)2/4 governing equations for order N are 

For each 𝑌𝑌𝑛𝑛𝑚𝑚:𝑛𝑛 = 0,2, … ,𝑁𝑁 − 1,𝑚𝑚 = 0,2, …𝑛𝑛: 

(7a) � ��ℒ𝑥𝑥𝑥𝑥 − ℒ𝑦𝑦𝑦𝑦��(1 + 𝛿𝛿𝑚𝑚2)𝑎𝑎𝑘𝑘𝑛𝑛𝑚𝑚𝐼𝐼𝑛𝑛+4−2𝑘𝑘𝑚𝑚−2 + 𝑒𝑒𝑘𝑘𝑛𝑛𝑚𝑚𝐼𝐼𝑛𝑛+4−2𝑘𝑘𝑚𝑚+2 �+ �ℒ𝑥𝑥𝑦𝑦 + ℒ𝑦𝑦𝑥𝑥� �−(1− 𝛿𝛿𝑚𝑚2)𝑎𝑎𝑘𝑘𝑛𝑛𝑚𝑚𝐼𝐼𝑛𝑛+4−2𝑘𝑘
−(𝑚𝑚−2) +

3

𝑘𝑘=1

𝑒𝑒𝑘𝑘𝑛𝑛𝑚𝑚𝐼𝐼𝑛𝑛+4−2𝑘𝑘
−(𝑚𝑚+2)� + �ℒ𝑥𝑥𝑥𝑥 + ℒ𝑦𝑦𝑦𝑦�𝑐𝑐𝑘𝑘𝑛𝑛𝑚𝑚𝐼𝐼𝑛𝑛+4−2𝑘𝑘𝑚𝑚 � − (1 −𝜔𝜔𝛿𝛿0𝑛𝑛)𝐼𝐼𝑛𝑛𝑚𝑚 = −(1−𝜔𝜔)𝐼𝐼𝑏𝑏𝛿𝛿0𝑛𝑛 

 

and for each 𝑌𝑌𝑛𝑛−𝑚𝑚:𝑛𝑛 = 2, … ,𝑁𝑁 − 1,𝑚𝑚 = 2, …𝑛𝑛: 

(7b) � ��ℒ𝑥𝑥𝑦𝑦 + ℒ𝑦𝑦𝑥𝑥��(1 + 𝛿𝛿𝑚𝑚2)𝑎𝑎𝑘𝑘𝑛𝑛𝑚𝑚𝐼𝐼𝑛𝑛+4−2𝑘𝑘𝑚𝑚−2 − 𝑒𝑒𝑘𝑘𝑛𝑛𝑚𝑚𝐼𝐼𝑛𝑛+4−2𝑘𝑘𝑚𝑚+2 �+ �ℒ𝑥𝑥𝑥𝑥 − ℒ𝑦𝑦𝑦𝑦� �(1 − 𝛿𝛿𝑚𝑚2)𝑎𝑎𝑘𝑘𝑛𝑛𝑚𝑚𝐼𝐼𝑛𝑛+4−2𝑘𝑘
−(𝑚𝑚−2) +

3

𝑘𝑘=1

𝑒𝑒𝑘𝑘𝑛𝑛𝑚𝑚𝐼𝐼𝑛𝑛+4−2𝑘𝑘
−(𝑚𝑚+2)� + �ℒ𝑥𝑥𝑥𝑥 + ℒ𝑦𝑦𝑦𝑦�𝑐𝑐𝑘𝑘𝑛𝑛𝑚𝑚𝐼𝐼𝑛𝑛+4−2𝑘𝑘−𝑚𝑚 � − 𝐼𝐼𝑛𝑛−𝑚𝑚 = 0 

where 𝜔𝜔 is the scattering albedo and is restricted to isotropic scattering here, 𝑎𝑎𝑘𝑘𝑛𝑛𝑚𝑚, 𝑐𝑐𝑘𝑘𝑛𝑛𝑚𝑚 and 𝑒𝑒𝑘𝑘𝑛𝑛𝑚𝑚 are constant 
coefficients given in [3], [8], and 𝛿𝛿𝑖𝑖𝑖𝑖  is the Kronecker delta function. The ℒ operators are denoting the 
derivatives. For example, 

(8) ℒ𝑥𝑥𝑦𝑦 = 1
𝛽𝛽𝑟𝑟

𝜕𝜕
𝜕𝜕𝑥𝑥
� 1
𝛽𝛽𝑟𝑟

𝜕𝜕
𝜕𝜕𝑦𝑦
� 

The boundary conditions derived from the general Marshak׳s condition are usually expressed in local 
coordinates in terms of the surface normal and tangential vectors. The local coordinates can be set up as in Fig. 

https://www.sciencedirect.com/science/article/pii/S0022407315002976?via%3Dihub#bib2
https://www.sciencedirect.com/science/article/pii/S0022407315002976?via%3Dihub#bib7
https://www.sciencedirect.com/science/article/pii/S0022407315002976?via%3Dihub#eq0005
https://www.sciencedirect.com/science/article/pii/S0022407315002976?via%3Dihub#eq0020
https://www.sciencedirect.com/science/article/pii/S0022407315002976?via%3Dihub#bib2
https://www.sciencedirect.com/science/article/pii/S0022407315002976?via%3Dihub#bib3
https://www.sciencedirect.com/science/article/pii/S0022407315002976?via%3Dihub#eq0010
https://www.sciencedirect.com/science/article/pii/S0022407315002976?via%3Dihub#eq0015
https://www.sciencedirect.com/science/article/pii/S0022407315002976?via%3Dihub#bib3
https://www.sciencedirect.com/science/article/pii/S0022407315002976?via%3Dihub#bib8
https://www.sciencedirect.com/science/article/pii/S0022407315002976?via%3Dihub#f0005


1, so that 𝐼𝐼
¯
𝑛𝑛
𝑚𝑚 is independent of 𝑦𝑦

¯
 (pointing into the global 𝑧𝑧-direction). Meanwhile, the 𝑥𝑥

¯
 direction can be found 

from Euler angles defined in [9], and Fig. 1 shows both the arrangements of the global and local coordinates for 
a general 2-D Cartesian geometry in the 𝑥𝑥–𝑦𝑦 plane. 

 
Fig. 1. Schematic of the global coordinate system and the local coordinate system in 𝑥𝑥–𝑦𝑦 plane. 
 

The Euler angles are calculated from [9] 

(9a) 𝛼𝛼 = tan−1 �𝑛𝑛𝑦𝑦
𝑛𝑛𝑥𝑥
� = 𝛿𝛿 + 𝜋𝜋

2
 

(9b) 𝛽𝛽 = 𝜋𝜋
2

 

resulting in 

(10a) 𝐧𝐧
^

= cos𝛼𝛼𝚤𝚤
^

+ sin𝛼𝛼𝑗𝑗
^

= −sin𝛿𝛿𝚤𝚤
^

+ cos𝛿𝛿𝑗𝑗
^
 

(10b) 𝐭𝐭
^

𝑥𝑥
¯ = sin𝛼𝛼𝚤𝚤

^
− cos𝛼𝛼𝑗𝑗

^
= cos𝛿𝛿𝚤𝚤

^
+ sin𝛿𝛿𝑗𝑗

^
 

Because of the two-dimensionality, we have 𝐼𝐼(𝜃𝜃
¯
,𝜓𝜓

¯
) = 𝐼𝐼(𝜃𝜃

¯
,−𝜓𝜓

¯
) with the local azimuthal angle 𝜓𝜓

¯
 defined in 

the 𝑥𝑥
¯
− 𝑦𝑦

¯
 plane and measured from the local 𝑥𝑥

¯
− axis, which leads to the elimination of 𝐼𝐼

¯
𝑛𝑛
𝑚𝑚 with negative 𝑚𝑚. 

Together with the elimination of the 𝐼𝐼𝑛𝑛𝑚𝑚 with odd 𝑚𝑚 in global coordinates, the (𝑁𝑁 + 1)2/4 boundary conditions 
for 2-D problems become 

For each Y¯2i−10, i=1,2,…,(N+1)/2: 

(11a) 𝐼𝐼𝑤𝑤𝑝𝑝0,2𝑖𝑖−1
0 = � � 𝑝𝑝2𝑙𝑙,2𝑖𝑖−10 𝛥𝛥

¯

0,2𝑚𝑚′
2𝑙𝑙 𝐼𝐼2𝑙𝑙2𝑚𝑚

′
𝑙𝑙

𝑚𝑚′=−𝑙𝑙

(𝑁𝑁−1)/2

𝑙𝑙=0

+ 𝜕𝜕
𝜕𝜕𝜏𝜏

𝑥𝑥
¯
� � 𝑣𝑣𝑙𝑙,𝑖𝑖0 𝛥𝛥

¯

1,2𝑚𝑚′
2𝑙𝑙 𝐼𝐼2𝑙𝑙2𝑚𝑚

′ −
𝑙𝑙

𝑚𝑚′=−𝑙𝑙

(𝑁𝑁−1)/2

𝑙𝑙=1

𝜕𝜕
𝜕𝜕𝜏𝜏

𝑧𝑧
¯
� � 𝑤𝑤𝑙𝑙,𝑖𝑖0 𝛥𝛥

¯

0,2𝑚𝑚′
2𝑙𝑙 𝐼𝐼2𝑙𝑙2𝑚𝑚

′
𝑙𝑙

𝑚𝑚′=−𝑙𝑙

(𝑁𝑁−1)/2

𝑙𝑙=0

 

and for each 𝑌𝑌
¯
2𝑖𝑖−1
𝑚𝑚 , 𝑖𝑖 = 1,2, … , (𝑁𝑁 − 1)/2, 𝑚𝑚 = 1,2, … ,2𝑖𝑖 − 1; 𝑖𝑖 = (𝑁𝑁 + 1)/2, 𝑚𝑚 = 2,4, … ,2𝑖𝑖 − 2: 

https://www.sciencedirect.com/science/article/pii/S0022407315002976?via%3Dihub#f0005
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(11b) 0 = � � 𝑝𝑝2𝑙𝑙,2𝑖𝑖−1𝑚𝑚 𝛥𝛥
¯

±𝑚𝑚,2𝑚𝑚′
2𝑙𝑙 𝐼𝐼2𝑙𝑙2𝑚𝑚

′ − 𝜕𝜕
𝜕𝜕𝜏𝜏

𝑥𝑥
¯

𝑙𝑙

𝑚𝑚′=−𝑙𝑙

(𝑁𝑁−1)/2

𝑙𝑙=0

� � [(1 +
𝑙𝑙

𝑚𝑚′=−𝑙𝑙

(𝑁𝑁−1)/2

𝑙𝑙=0

𝛿𝛿𝑚𝑚,1)𝑢𝑢𝑙𝑙,𝑖𝑖𝑚𝑚𝛥𝛥
¯

𝑚𝑚−1,2𝑚𝑚′
2𝑙𝑙 − 𝑣𝑣𝑙𝑙,𝑖𝑖𝑚𝑚𝛥𝛥

¯

𝑚𝑚+1,2𝑚𝑚′
2𝑙𝑙 ]𝐼𝐼2𝑙𝑙2𝑚𝑚

′ − 𝜕𝜕
𝜕𝜕𝜏𝜏

𝑧𝑧
¯
� � 𝑤𝑤𝑙𝑙,𝑖𝑖𝑚𝑚𝛥𝛥

¯

±𝑚𝑚,2𝑚𝑚′
2𝑙𝑙 𝐼𝐼2𝑙𝑙2𝑚𝑚

′
𝑙𝑙

𝑚𝑚′=−𝑙𝑙

(𝑁𝑁−1)/2

𝑙𝑙=0

 

where the constant coefficients 𝑢𝑢𝑙𝑙,𝑖𝑖𝑚𝑚, 𝑣𝑣𝑙𝑙,𝑖𝑖𝑚𝑚, 𝑤𝑤𝑙𝑙,𝑖𝑖𝑚𝑚, and 𝑝𝑝2𝑙𝑙,𝑛𝑛𝑚𝑚  can be found in [3], and 𝛥𝛥
¯

𝑚𝑚,𝑚𝑚′
𝑛𝑛 �𝜋𝜋

2
,−𝜋𝜋

2
,−𝛼𝛼� is the 

rotation matrix [3]. 𝐼𝐼𝑤𝑤 is the radiative intensity at the boundary wall, which is determined from 

(12) 𝐼𝐼𝑤𝑤 = 𝜖𝜖𝐼𝐼𝑏𝑏𝑤𝑤 + (1 − 𝜖𝜖)𝐻𝐻
𝜋𝜋

 

where 𝜖𝜖 is the surface emittance, and 𝐻𝐻 is the hemispherical irradiation. For black walls, 𝜖𝜖 = 1, this leads 
to 𝐼𝐼𝑤𝑤 = 𝐼𝐼𝑏𝑏𝑤𝑤. For clarity, here the definition of 𝐼𝐼𝑤𝑤, Eq. (12), is limited to diffusely reflecting walls. More 
explanation and further development for walls with more complicated properties will be presented in the 
special boundary condition section. 

2.2. Implementation 
The coupled (𝑁𝑁 + 1)2/4 simultaneous PDEs and their boundary conditions are solved iteratively by the finite 
volume based software OpenFOAM. In each PDE with 𝑛𝑛 and 𝑚𝑚 corresponding to 𝑌𝑌𝑛𝑛±𝑚𝑚, the 𝐼𝐼𝑛𝑛±𝑚𝑚 and their 
derivatives are arranged to employ the finite volume Laplacian operator of OpenFOAM, i.e., 

(13) �ℒ𝑥𝑥𝑥𝑥 + ℒ𝑦𝑦𝑦𝑦�𝑐𝑐2𝑛𝑛𝑚𝑚𝐼𝐼𝑛𝑛±𝑚𝑚 − (1 −𝜔𝜔𝛿𝛿0𝑛𝑛)𝐼𝐼𝑛𝑛±𝑚𝑚 = 𝑐𝑐2𝑛𝑛𝑚𝑚𝛻𝛻𝜏𝜏2𝐼𝐼𝑛𝑛±𝑚𝑚 − (1 −𝜔𝜔𝛿𝛿0𝑛𝑛)𝐼𝐼𝑛𝑛±𝑚𝑚 

All terms other than 𝐼𝐼𝑛𝑛±𝑚𝑚 are updated before each 𝐼𝐼𝑛𝑛±𝑚𝑚 iteration (before solving the 
corresponding 𝑌𝑌𝑛𝑛±𝑚𝑚 governing equation). The preconditioned conjugate gradient (PCG) [10] algorithm is used to 
solve each PDE sequentially until 𝐼𝐼00 has converged to prescribed criteria. For a 2-D problem on the 𝑥𝑥–𝑦𝑦 plane, 
the iteration sequence can be optimized by iterating the 𝐼𝐼𝑛𝑛0 terms first. 

In order to implement the boundary conditions (11a), (11b), the system of (𝑁𝑁 + 1)2/4 boundary conditions is 
transformed to a matrix form, which then can generate one Robin-type boundary condition for each of the 
corresponding governing equations. The boundary conditions are rearranged into matrices and vectors in the 

same way as described in [4], where 𝐩𝐩, 𝐐𝐐, 𝐐𝐐
𝑥𝑥
¯  and 𝐐𝐐

𝑧𝑧
¯  are coefficient matrices and 𝐈𝐈 = �𝐼𝐼1, 𝐼𝐼2, 𝐼𝐼3, … , 𝐼𝐼𝑖𝑖, … �𝑇𝑇 =

[𝐼𝐼00, 𝐼𝐼2−2, 𝐼𝐼20, 𝐼𝐼22, 𝐼𝐼4−4, … ]𝑇𝑇 is the vector of unknowns (intensity coefficients 𝐼𝐼𝑛𝑛𝑚𝑚): 

(14) 𝐐𝐐 · 𝐈𝐈 + 𝐐𝐐
𝑥𝑥
¯ · 𝜕𝜕𝐈𝐈

𝜕𝜕𝜏𝜏
𝑥𝑥
¯

+ 𝐐𝐐
𝑧𝑧
¯ · 𝜕𝜕𝐈𝐈

𝜕𝜕𝜏𝜏
𝑧𝑧
¯

= 𝐼𝐼𝑏𝑏𝑤𝑤𝐩𝐩 

Eq. (14) can be converted to 𝑁𝑁2 = (𝑁𝑁 + 1)2/4 Robin-type boundary conditions, 

(15) 𝐼𝐼𝑖𝑖 + 𝑍𝑍𝑖𝑖,𝑖𝑖
𝜕𝜕𝐼𝐼𝑗𝑗
𝜕𝜕𝜏𝜏

𝑧𝑧
¯

= 𝛿𝛿𝑖𝑖,1𝐼𝐼𝑏𝑏𝑤𝑤 −� �𝑋𝑋𝑖𝑖,𝑘𝑘
𝜕𝜕𝐼𝐼𝑘𝑘
𝜕𝜕𝜏𝜏

𝑥𝑥
¯

+ (1 − 𝛿𝛿𝑖𝑖,𝑘𝑘)𝑍𝑍𝑖𝑖,𝑘𝑘
𝜕𝜕𝐼𝐼𝑘𝑘
𝜕𝜕𝜏𝜏

𝑧𝑧
¯
�

𝑁𝑁2

𝑘𝑘=1

 

where 𝐗𝐗, 𝐙𝐙 are defined as 

(16) 𝐗𝐗 = 𝐐𝐐−𝟏𝟏 · 𝐐𝐐
𝐱𝐱
¯ ,𝐙𝐙 = 𝐐𝐐−𝟏𝟏 · 𝐐𝐐

𝐳𝐳
¯  
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and are evaluated through LU decomposition [11] of 𝐐𝐐. A similar stabilizer as in [4] for the 3-D formulation is 
also defined for the 2-D 𝑃𝑃𝑁𝑁 for optically thin simulations. 

3. Special boundary conditions for 𝑃𝑃𝑁𝑁 
3.1. Nonblack surfaces and mixed diffuse-specular reflecting surfaces 
In this section, the general boundary condition for mixed diffuse-specular surfaces is derived, which then is 
readily reduced to simpler approximations, such as a diffuse or a specular surface. 

For a partially diffuse and partially specular surface, the emissivity can be expressed as 

(17) 𝜖𝜖 = 1 − 𝜌𝜌𝑠𝑠 − 𝜌𝜌𝑑𝑑 

where 𝜌𝜌𝑠𝑠 and 𝜌𝜌𝑑𝑑 are the specular and diffuse components of the reflectance, respectively. The outgoing 
intensity 𝐼𝐼𝑤𝑤 for partially diffuse and partially specular surfaces consists of two components: one part is due to 
the intensity from diffuse emission 𝐼𝐼𝑏𝑏𝑤𝑤 as well as the diffuse fraction of reflected energy 𝐻𝐻/𝜋𝜋, while the other is 
the specular fraction of reflected energy 𝐼𝐼𝑠𝑠: 

(18) 𝐼𝐼𝑤𝑤 = 𝜖𝜖𝐼𝐼𝑏𝑏𝑤𝑤 + 𝜌𝜌𝑑𝑑 𝐻𝐻
𝜋𝜋

+ 𝜌𝜌𝑠𝑠𝐼𝐼𝑠𝑠 

The hemispherical irradiation 𝐻𝐻 in the 𝑃𝑃𝑁𝑁 context is evaluated by multiplying Eq. (1) by 𝑌𝑌
¯
1
0 (or cos 𝜃𝜃

¯
) and 

integrating over the hemisphere, or 

(19) 𝐻𝐻 = � 𝐼𝐼
¯
𝑌𝑌
¯
1
0𝑑𝑑𝑑𝑑

𝐧𝐧
^

·𝐬𝐬
^
<0

= � � � � 𝐼𝐼
¯
𝑛𝑛
𝑚𝑚𝑌𝑌

¯
𝑛𝑛
𝑚𝑚𝑌𝑌

¯
1
0𝑑𝑑𝜇𝜇

¯
𝑑𝑑𝜓𝜓

¯
= 2𝜋𝜋

0

−1

2𝜋𝜋

0

𝑛𝑛

𝑚𝑚=−𝑛𝑛

𝑁𝑁

𝑛𝑛=0

� (−1)𝑛𝑛𝑝𝑝𝑛𝑛,1
0 𝐼𝐼

¯
𝑛𝑛
0

𝑁𝑁

𝑛𝑛=0

 

Substituting Eqs. (18), (19) into the general Marshak boundary condition (5), we have 

(20) (1 + 𝛿𝛿𝑚𝑚,0)𝜋𝜋� 𝑝𝑝𝑛𝑛,2𝑖𝑖−1
𝑚𝑚 𝐼𝐼

¯
𝑛𝑛
𝑚𝑚 = 2𝜋𝜋𝛿𝛿𝑚𝑚,0𝑝𝑝0,2𝑖𝑖−1

0 [𝜖𝜖𝐼𝐼𝑏𝑏𝑤𝑤 + 2𝜌𝜌𝑑𝑑
𝑁𝑁

𝑛𝑛=0

� (−1)𝑛𝑛𝑝𝑝𝑛𝑛,1
0 𝐼𝐼

¯
𝑛𝑛
0] +

𝑁𝑁

𝑛𝑛=0

𝜌𝜌𝑠𝑠 � � 𝐼𝐼𝑠𝑠𝑌𝑌
¯
2𝑖𝑖−1
𝑚𝑚 𝑑𝑑𝜇𝜇

¯
𝑑𝑑𝜓𝜓

¯1

0

2𝜋𝜋

0

 

𝐼𝐼𝑠𝑠 can be found by the law of specular reflection, which is 

(21) 𝐼𝐼𝑠𝑠(𝜃𝜃
¯
,𝜓𝜓

¯
) = 𝐼𝐼(𝜋𝜋 − 𝜃𝜃

¯
,𝜓𝜓

¯
) = � � 𝐼𝐼

¯
𝑛𝑛
𝑚𝑚𝑌𝑌

¯
𝑛𝑛
𝑚𝑚(𝜋𝜋 − 𝜃𝜃

¯
,𝜓𝜓

¯
) =

𝑛𝑛

𝑚𝑚=−𝑛𝑛

𝑁𝑁

𝑛𝑛=0

� � 𝐼𝐼
¯
𝑛𝑛
𝑚𝑚𝑌𝑌

¯
𝑛𝑛
𝑚𝑚(−𝜇𝜇

¯
,𝜓𝜓

¯
)

𝑛𝑛

𝑚𝑚=−𝑛𝑛

𝑁𝑁

𝑛𝑛=0

 

The associated Legendre polynomials, given by Eq. (3), are even functions when (𝑚𝑚 + 𝑛𝑛) are even and odd 
functions when (𝑚𝑚 + 𝑛𝑛) are odd, which leads to 

(22) 𝐼𝐼𝑠𝑠 = � � (−1)(𝑚𝑚+𝑛𝑛)𝐼𝐼
¯
𝑛𝑛
𝑚𝑚𝑌𝑌

¯
𝑛𝑛
𝑚𝑚(𝜇𝜇

¯
,𝜓𝜓

¯
)

𝑛𝑛

𝑚𝑚=−𝑛𝑛

𝑁𝑁

𝑛𝑛=0

 

Therefore, Eq. (20) becomes 
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(23) � ��1−(−1)𝑚𝑚+𝑛𝑛𝜌𝜌𝑠𝑠]𝑝𝑝𝑛𝑛,2𝑖𝑖−1
𝑚𝑚

︸
(a)specularreflection

− 2(−1)𝑛𝑛𝛿𝛿𝑚𝑚,0𝜌𝜌𝑑𝑑𝑝𝑝0,2𝑖𝑖−1
0 𝑝𝑝𝑛𝑛,1

0

︸
(b)diffusereflection

�

𝑁𝑁

𝑛𝑛=0

𝐼𝐼
¯
𝑛𝑛
𝑚𝑚 = 𝛿𝛿𝑚𝑚,0𝑝𝑝0,2𝑖𝑖−1

0 𝜖𝜖𝐼𝐼𝑏𝑏𝑤𝑤
︸

(c)emission

𝑖𝑖 =

1,2, … , 1
2

(𝑁𝑁 + 1), all relevant 𝑚𝑚 

Following [3], all 𝑚𝑚 are employed for 𝑖𝑖 = 1,2,3, … , (𝑁𝑁 − 1)/2 and only even m are employed for 𝑖𝑖 = (𝑁𝑁 + 1)/2. 
When 𝜖𝜖 = 1, 𝜌𝜌𝑠𝑠 = 0 and 𝜌𝜌𝑑𝑑 = 0, Eq. (23) is simply the original Marshak boundary condition for black 
walls [1], [2] as expected; when 𝜌𝜌𝑠𝑠 = 1 or 𝜌𝜌𝑑𝑑 = 1, Eq. (23) gives the boundary conditions for the purely specular 
or purely diffuse surfaces, respectively; when 𝑁𝑁 = 1, there is no distinction between diffuse and specular 
surface reflectivities for P1 approximation, which is consistent with the conclusion obtained in [12]. 

Before Eq. (23) can be applied to the elliptical formulation described in this paper, the 𝐼𝐼
¯
𝑛𝑛
𝑚𝑚 with odd n need to be 

eliminated and the local 𝐼𝐼
¯
𝑛𝑛
𝑚𝑚 need to be rotated back to global 𝐼𝐼𝑛𝑛𝑚𝑚. Expanding part (b) of Eq. (23), we get 

(24) −2𝑝𝑝0,2𝑖𝑖−1
0 𝜌𝜌𝑑𝑑� (−1)𝑛𝑛𝑝𝑝𝑛𝑛,1

0 𝐼𝐼
¯
𝑛𝑛
0 = −2𝑝𝑝0,2𝑖𝑖−1

0 𝜌𝜌𝑑𝑑 ��𝑝𝑝0,1
0 𝐼𝐼00 + 𝑝𝑝2,1

0 𝐼𝐼
¯
2
0 + 𝑝𝑝4,1

0 𝐼𝐼
¯
4
0 + 𝑝𝑝6,1

0 𝐼𝐼
¯
6
0 + ⋯�− 𝑝𝑝1,1

0 𝐼𝐼
¯
1
0�

𝑁𝑁

𝑛𝑛=0

 

Since 𝑝𝑝𝑛𝑛,𝑖𝑖
𝑚𝑚 ≡ 0 when 𝑛𝑛 + 𝑗𝑗 is even and 𝑛𝑛 ≠ 𝑗𝑗 [3], 𝑝𝑝𝑛𝑛,1

0 = 0 when 𝑛𝑛 is odd and 𝑛𝑛 ≠ 1. When 𝑛𝑛 = 1, 𝐼𝐼
¯
1
0 is calculated 

as [3] 

(25) 𝐼𝐼
¯
1
0 = − 𝜕𝜕𝐼𝐼

¯
0

𝜕𝜕𝜏𝜏
𝑧𝑧
¯
− 2

5
𝜕𝜕𝐼𝐼

¯
2
0

𝜕𝜕𝜏𝜏
𝑧𝑧
¯

+ 3
5
𝜕𝜕𝐼𝐼

¯
2
1

𝜕𝜕𝜏𝜏
𝑥𝑥
¯

+ 3
5
𝜕𝜕𝐼𝐼

¯
2
−1

𝜕𝜕𝜏𝜏
𝑦𝑦
¯

 

in terms of local 𝐼𝐼
¯
𝑛𝑛
𝑚𝑚. The local intensity coefficients 𝐼𝐼

¯
𝑛𝑛
𝑚𝑚 in Eq. (25) are then rotated back to global 𝐼𝐼𝑛𝑛𝑚𝑚 through the 

rotation function, 

(26) 𝐼𝐼
¯
𝑛𝑛
𝑚𝑚 = � 𝛥𝛥

¯

𝑚𝑚𝑚𝑚′
𝑛𝑛 𝐼𝐼𝑛𝑛𝑚𝑚

′
𝑛𝑛

𝑚𝑚′=−𝑛𝑛

 

which are 

(27a) 𝐼𝐼
¯
2
0 = 𝛥𝛥

¯
0,−2
2 𝐼𝐼2−2 + 𝛥𝛥

¯
0,−1
2 𝐼𝐼2−1 + 𝛥𝛥

¯
0,0
2 𝐼𝐼20 + 𝛥𝛥

¯
0,1
2 𝐼𝐼21 + 𝛥𝛥

¯
0,2
2 𝐼𝐼22 

(27b) 𝐼𝐼
¯
2
1 = 𝛥𝛥

¯
1,−2
2 𝐼𝐼2−2 + 𝛥𝛥

¯
1,−1
2 𝐼𝐼2−1 + 𝛥𝛥

¯
1,0
2 𝐼𝐼20 + 𝛥𝛥

¯
1,1
2 𝐼𝐼21 + 𝛥𝛥

¯
1,2
2 𝐼𝐼22 

(27c) 𝐼𝐼
¯
2
−1 = 𝛥𝛥

¯
−1,−2
2 𝐼𝐼2−2 + 𝛥𝛥

¯
−1,−1
2 𝐼𝐼2−1 + 𝛥𝛥

¯
−1,0
2 𝐼𝐼20 + 𝛥𝛥

¯
−1,1
2 𝐼𝐼21 + 𝛥𝛥

¯
−1,2
2 𝐼𝐼22 

For Cartesian coordinates, the rotation matrices 𝛥𝛥
¯

𝑚𝑚,𝑚𝑚′
𝑛𝑛  are fixed values for a given boundary location and thus 

are not affected by the differentiation in Eq. (25). Similarly, the other 𝐼𝐼
¯
𝑛𝑛
0 with even 𝑛𝑛 in Eq. (24) are also rotated 

back to global 𝐼𝐼𝑛𝑛𝑚𝑚 through Eq. (26). Physically, 𝐼𝐼
¯
1
0 gives the normal heat flux at the wall, 

(28) 𝐪𝐪 · 𝐧𝐧
^

= 𝑞𝑞𝑤𝑤 = 4𝜋𝜋
3
𝐼𝐼
¯
1
0 
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It is seen that part (b) of Eq. (23) only requires the 𝐼𝐼
¯
𝑛𝑛
0 for local spherical harmonics 𝑌𝑌

¯
𝑛𝑛
0 and the heat flux at the 

wall, 𝑞𝑞𝑤𝑤, while the specular reflection, part (a) of Eq. (23), requires of all the 𝐼𝐼
¯
𝑛𝑛
𝑚𝑚. 

The specular reflection, part (a) of Eq. (24), adds no extra terms but changes the coefficients of 𝐼𝐼
¯
𝑛𝑛
𝑚𝑚. Comparing 

Eq. (24) with Eq. (6), we find it convenient to define 

(29) 𝑝𝑝
^
𝑛𝑛,2𝑖𝑖−1
𝑚𝑚 = [1 − (−1)𝑚𝑚+𝑛𝑛𝜌𝜌𝑠𝑠]𝑝𝑝𝑛𝑛,2𝑖𝑖−1

𝑚𝑚 − 2𝛿𝛿𝑚𝑚,0𝜌𝜌𝑑𝑑𝑝𝑝0,2𝑖𝑖−1
0 𝑝𝑝𝑛𝑛,1

0  

and the coefficients 𝑢𝑢
^
𝑙𝑙,𝑖𝑖
𝑚𝑚, 𝑣𝑣

^
𝑙𝑙,𝑖𝑖
𝑚𝑚 and 𝑤𝑤

^
𝑙𝑙,𝑖𝑖
𝑚𝑚 as 

(30a) 𝑢𝑢
^
𝑙𝑙,𝑖𝑖
𝑚𝑚 = [1 + (−1)(𝑚𝑚+𝑙𝑙)𝜌𝜌𝑠𝑠]𝑢𝑢𝑙𝑙,𝑖𝑖𝑚𝑚 

(30b) 𝑣𝑣
^
𝑙𝑙,𝑖𝑖
𝑚𝑚 = [1 + (−1)(𝑚𝑚+𝑙𝑙)𝜌𝜌𝑠𝑠]𝑣𝑣𝑙𝑙,𝑖𝑖𝑚𝑚 + 2

5
𝛿𝛿𝑚𝑚,0𝛿𝛿𝑙𝑙,1𝜌𝜌𝑑𝑑𝑝𝑝0,2𝑖𝑖−1

0  

(30c) 𝑤𝑤
^
𝑙𝑙,𝑖𝑖
𝑚𝑚 = [1 + (−1)(𝑚𝑚+𝑙𝑙)𝜌𝜌𝑠𝑠]𝑤𝑤𝑙𝑙,𝑖𝑖𝑚𝑚 + 2

3
𝛿𝛿𝑚𝑚,0(𝛿𝛿𝑙𝑙,0 + 2

5
𝛿𝛿𝑙𝑙,1)𝜌𝜌𝑑𝑑𝑝𝑝0,2𝑖𝑖−1

0  

With these abbreviations and following the derivation in [2], [1], i.e., to express the 𝐼𝐼
¯
𝑛𝑛
𝑚𝑚 with odd 𝑛𝑛 in terms of 

the derivatives of 𝐼𝐼
¯
𝑛𝑛
𝑚𝑚 with even 𝑛𝑛, and then rotating 𝐼𝐼

¯
𝑛𝑛
𝑚𝑚 back to global coordinates, Eq. (23) is converted 

into 𝑁𝑁(𝑁𝑁 + 1)/2 boundary conditions for mixed diffuse-specular surfaces: 

For each 𝑌𝑌
¯
2𝑖𝑖−1
𝑚𝑚 , 𝑖𝑖 = 1,2, … , (𝑁𝑁 + 1)/2, 

𝑚𝑚 = 0: 

(31a) 0 = � � 𝑝𝑝
^
2𝑙𝑙,2𝑖𝑖−1
𝑚𝑚 𝛥𝛥

¯

±𝑚𝑚,𝑚𝑚′
2𝑙𝑙 𝐼𝐼2𝑙𝑙𝑚𝑚

′ − 𝜕𝜕
𝜕𝜕𝜏𝜏

𝑥𝑥
¯

2𝑙𝑙

𝑚𝑚′=−2𝑙𝑙

𝑁𝑁−1
2

𝑙𝑙=0

� � [(1 ± 𝛿𝛿𝑚𝑚,1)𝑢𝑢
^
𝑙𝑙,𝑖𝑖
𝑚𝑚𝛥𝛥

¯

±(𝑚𝑚−1),𝑚𝑚′
2𝑙𝑙 −

2𝑙𝑙

𝑚𝑚′=−2𝑙𝑙

𝑁𝑁−1
2

𝑙𝑙=𝑙𝑙′

𝑣𝑣
^
𝑙𝑙,𝑖𝑖
𝑚𝑚𝛥𝛥

¯

±(𝑚𝑚+1),𝑚𝑚′
2𝑙𝑙 ]𝐼𝐼2𝑙𝑙𝑚𝑚′ ± 𝜕𝜕

𝜕𝜕𝜏𝜏
𝑦𝑦
¯
� � [(1 ∓ 𝛿𝛿𝑚𝑚,1)𝑢𝑢

^
𝑙𝑙,𝑖𝑖
𝑚𝑚𝛥𝛥

¯

∓(𝑚𝑚−1),𝑚𝑚′
2𝑙𝑙 + 𝑣𝑣

^
𝑙𝑙,𝑖𝑖
𝑚𝑚𝛥𝛥

¯

∓(𝑚𝑚+1),𝑚𝑚′
2𝑙𝑙 ]𝐼𝐼2𝑙𝑙𝑚𝑚

′ −
2𝑙𝑙

𝑚𝑚′=−2𝑙𝑙

𝑁𝑁−1
2

𝑙𝑙=1−𝑙𝑙′

𝜕𝜕
𝜕𝜕𝜏𝜏

𝑧𝑧
¯
� � 𝑤𝑤

^
𝑙𝑙,𝑖𝑖
𝑚𝑚𝛥𝛥

¯

±𝑚𝑚,𝑚𝑚′
2𝑙𝑙 𝐼𝐼2𝑙𝑙𝑚𝑚

′
2𝑙𝑙

𝑚𝑚′=−2𝑙𝑙

𝑁𝑁−1
2

𝑙𝑙=0

 

where we define 𝑙𝑙′ as 

(32) 𝑙𝑙′ = �
0 for𝑌𝑌

¯
2𝑖𝑖−1
𝑚𝑚

1 for𝑌𝑌
¯
2𝑖𝑖−1
−𝑚𝑚

 

and again, for 𝑖𝑖 = (𝑁𝑁 + 1)/2 only even 𝑚𝑚 are employed [3]. The form of Eq. (31a), (31b) is identical to the 

boundary conditions for black walls developed in [4]. The newly defined coefficients 𝑝𝑝
^
𝑛𝑛,2𝑖𝑖−1
𝑚𝑚 ,𝑢𝑢

^
𝑙𝑙,𝑖𝑖
𝑚𝑚, 𝑣𝑣

^
𝑙𝑙,𝑖𝑖
𝑚𝑚 and 𝑤𝑤

^
𝑙𝑙,𝑖𝑖
𝑚𝑚 are 

readily integrated into the matrix formulation [4] by adding the coefficients to the corresponding rows of the 
original matrices 𝐐𝐐, 𝐐𝐐

𝐱𝐱
¯ , 𝐐𝐐

𝐲𝐲
¯  and 𝐐𝐐

𝐳𝐳
¯ . 
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Following the 2-D formulation in this paper, Eqs. (31a), (31b) can also be applied to 2-D problems by eliminating 

the 𝐼𝐼𝑛𝑛𝑚𝑚 with odd 𝑚𝑚 in global coordinates and the 𝐼𝐼
¯
𝑛𝑛
𝑚𝑚 with negative 𝑚𝑚 in the local coordinates. This leads to 

(33a) 𝐼𝐼
¯
2
0 = 𝛥𝛥

¯
0,−2
2 𝐼𝐼2−2 + 𝛥𝛥

¯
0,0
2 𝐼𝐼20 + 𝛥𝛥

¯
0,2
2 𝐼𝐼22 

(33b) 𝐼𝐼
¯
2
1 = 𝛥𝛥

¯
1,−2
2 𝐼𝐼2−2 + 𝛥𝛥

¯
1,0
2 𝐼𝐼20 + 𝛥𝛥

¯
1,2
2 𝐼𝐼22 

Then Eqs. (31a), (31b) reduce to 

For each 𝑌𝑌
¯
2𝑖𝑖−1
𝑚𝑚 , 𝑖𝑖 = 1,2, … , (𝑁𝑁 + 1)/2: 

𝑚𝑚 ≠ 0: 

(34a) 0 = � � 𝑝𝑝
^
2𝑙𝑙,2𝑖𝑖−1
𝑚𝑚 𝛥𝛥

¯

±𝑚𝑚,2𝑚𝑚′
2𝑙𝑙 𝐼𝐼2𝑙𝑙2𝑚𝑚

′ − 𝜕𝜕
𝜕𝜕𝜏𝜏

𝑥𝑥
¯

𝑙𝑙

𝑚𝑚′=−𝑙𝑙

𝑁𝑁−1
2

𝑙𝑙=0

� � [(1 ± 𝛿𝛿𝑚𝑚,1)𝑢𝑢
^
𝑙𝑙,𝑖𝑖
𝑚𝑚𝛥𝛥

¯

±(𝑚𝑚−1),𝑚𝑚′
2𝑙𝑙 −

𝑙𝑙

𝑚𝑚′=−𝑙𝑙

𝑁𝑁−1
2

𝑙𝑙=0

𝑣𝑣
^
𝑙𝑙,𝑖𝑖
𝑚𝑚𝛥𝛥

¯

±(𝑚𝑚+1),2𝑚𝑚′
2𝑙𝑙 ] 𝐼𝐼2𝑙𝑙2𝑚𝑚

′ − 𝜕𝜕
𝜕𝜕𝜏𝜏

𝑧𝑧
¯
� � 𝑤𝑤

^
𝑙𝑙,𝑖𝑖
𝑚𝑚𝛥𝛥

¯

±𝑚𝑚,2𝑚𝑚′
2𝑙𝑙 𝐼𝐼2𝑙𝑙2𝑚𝑚

′
𝑙𝑙

𝑚𝑚′=−𝑙𝑙

𝑁𝑁−1
2

𝑙𝑙=0

 

the form of Eqs. (34a), (34b) is identical to the boundary conditions (11a), (11b) for black walls except for the 
new definitions of coefficients. 

3.2. Specified radiative flux at the wall 
The Marshak boundary conditions in the 3-D formulation [4] were transformed to Robin type boundary 
conditions as 

(35) 𝐼𝐼𝑖𝑖 + 𝑍𝑍𝑖𝑖,𝑖𝑖
𝜕𝜕𝐼𝐼𝑗𝑗
𝜕𝜕𝜏𝜏

𝑧𝑧
¯

= 𝛿𝛿𝑖𝑖,1𝐼𝐼𝑤𝑤 −� �𝑋𝑋𝑖𝑖,𝑘𝑘
𝜕𝜕𝐼𝐼𝑘𝑘
𝜕𝜕𝜏𝜏

𝑥𝑥
¯

+ 𝑌𝑌𝑖𝑖,𝑘𝑘
𝜕𝜕𝐼𝐼𝑘𝑘
𝜕𝜕𝜏𝜏

𝑦𝑦
¯

+ (1 − 𝛿𝛿𝑖𝑖,𝑘𝑘)𝑍𝑍𝑖𝑖,𝑘𝑘
𝜕𝜕𝐼𝐼𝑘𝑘
𝜕𝜕𝜏𝜏

𝑧𝑧
¯
�

𝑁𝑁2

𝑘𝑘=1

 

Note that only the boundary condition for 𝑗𝑗 = 1 (with 𝐼𝐼1 = 𝐼𝐼00) includes the radiative intensity 𝐼𝐼𝑤𝑤 from the wall. 
Based on the relation between the radiative flux and local intensity coefficients [3], the specified radiative wall 

flux condition is implemented by replacing the equation for I1 with Eq. (28), where the 𝐼𝐼
¯
1
0 is given by Eq. (25). For 

a given 𝑞𝑞𝑤𝑤, this leads to a boundary condition of the second type, 

(36) 𝜕𝜕𝐼𝐼
¯
0

𝜕𝜕𝜏𝜏
𝑧𝑧
¯

= −2
5
𝜕𝜕𝐼𝐼

¯
2
0

𝜕𝜕𝜏𝜏
𝑧𝑧
¯

+ 3
5
𝜕𝜕𝐼𝐼

¯
2
1

𝜕𝜕𝜏𝜏
𝑥𝑥
¯

+ 3
5
𝜕𝜕𝐼𝐼

¯
2
−1

𝜕𝜕𝜏𝜏
𝑦𝑦
¯
− 3

4𝜋𝜋
𝑞𝑞𝑤𝑤 

if 𝑞𝑞𝑤𝑤 = 0 (insulated boundary), 

(37) 𝜕𝜕𝐼𝐼
¯
0

𝜕𝜕𝜏𝜏
𝑧𝑧
¯

= −2
5
𝜕𝜕𝐼𝐼

¯
2
0

𝜕𝜕𝜏𝜏
𝑧𝑧
¯

+ 3
5
𝜕𝜕𝐼𝐼

¯
2
1

𝜕𝜕𝜏𝜏
𝑥𝑥
¯

+ 3
5
𝜕𝜕𝐼𝐼

¯
2
−1

𝜕𝜕𝜏𝜏
𝑦𝑦
¯

 

Again, the local intensity coefficients 𝐼𝐼
¯
𝑛𝑛
𝑚𝑚 in Eq. (37) are rotated back to global 𝐼𝐼𝑛𝑛𝑚𝑚 through the rotation 

function (26), which expands to Eq. (27a), (27b), (27c) for the 3-D formulation and Eqs. (33a), (33b) for the 2-D 
formulation. 
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3.3. Symmetry/specular reflection boundary condition 
At a symmetry/specular reflection boundary, the local polar angle 𝜃𝜃

¯
 is measured from the local 𝑧𝑧

¯
− axis, and 

therefore 

(38) 𝐼𝐼
¯
�𝜃𝜃

¯
,𝜓𝜓

¯
� = 𝐼𝐼

¯
�𝜋𝜋 − 𝜃𝜃

¯
,𝜓𝜓

¯
� 

Eq. (3) shows the odd-power dependence on cos𝜃𝜃
¯
 when n+m is odd, thus all 𝐼𝐼

¯
𝑛𝑛
𝑚𝑚 = 0 when 𝑛𝑛 + 𝑚𝑚 is odd, which 

provides the required 𝑁𝑁(𝑁𝑁 + 1)/2 boundary conditions. However, since only 𝐼𝐼𝑛𝑛𝑚𝑚 with even 𝑛𝑛 are solved 

for, 𝐼𝐼
¯
𝑛𝑛
𝑚𝑚 with odd 𝑛𝑛 must be expressed in terms of 𝐼𝐼

¯
𝑛𝑛+1
𝑚𝑚  and 𝐼𝐼

¯
𝑛𝑛−1
𝑚𝑚 . 

Applying the relationship between 𝐼𝐼
¯
𝑛𝑛
𝑚𝑚, 𝐼𝐼

¯
𝑛𝑛+1
𝑚𝑚  and 𝐼𝐼

¯
𝑛𝑛−1
𝑚𝑚  [2], while connecting the global 𝐼𝐼𝑛𝑛𝑚𝑚 with the 

local 𝐼𝐼
¯
𝑛𝑛
𝑚𝑚 through the rotation function Eq. (26), the 𝑁𝑁(𝑁𝑁 + 1)/2 boundary conditions are found as: 

For all even 𝑛𝑛 = 0,2, … ,𝑁𝑁 − 1, 

when 𝑚𝑚 is even: 

(39a) 𝜕𝜕𝐼𝐼
¯
𝑛𝑛
𝑚𝑚

𝜕𝜕𝜏𝜏
𝑧𝑧
¯

= 𝜕𝜕
𝜕𝜕𝜏𝜏

𝑧𝑧
¯
� 𝛥𝛥

¯

𝑚𝑚,𝑚𝑚′
𝑛𝑛 𝐼𝐼𝑛𝑛𝑚𝑚

′ = 0
𝑛𝑛

𝑚𝑚′=−𝑛𝑛

 

when m is odd: 

(39b) 𝐼𝐼
¯
𝑛𝑛
𝑚𝑚 = � 𝛥𝛥

¯

𝑚𝑚,𝑚𝑚′
𝑛𝑛 𝐼𝐼𝑛𝑛𝑚𝑚

′ = 0
𝑛𝑛

𝑚𝑚′=−𝑛𝑛

 

For the case of 𝐼𝐼
¯
0
0 = 𝐼𝐼00, Eq. (39a) is a boundary condition of the second type, which can be applied directly. For 

the remainder of the boundary conditions, the variables 𝐼𝐼𝑛𝑛𝑚𝑚 and their surface normal derivatives, 𝜕𝜕𝐼𝐼𝑛𝑛𝑚𝑚/𝜕𝜕𝜏𝜏
𝑧𝑧
¯ , are 

coupled through the summation terms in Eqs. (39a), (39b). These boundary conditions are difficult to apply 
directly for the segregated iterations of the governing equations of 𝑃𝑃𝑁𝑁. In OpenFOAM (and other finite volume 
based CFD programs with unstructured grids), the surface normal derivatives are discretized as 

(40) 𝜕𝜕𝐈𝐈
𝜕𝜕𝜏𝜏

¯
𝑧𝑧

= 𝐈𝐈𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝐧𝐧
′ −𝐈𝐈𝑤𝑤𝑤𝑤𝑐𝑐𝑐𝑐
𝛽𝛽𝑟𝑟,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐|𝐧𝐧|

 

is the vector 𝐝𝐝 is the distance vector from the face center to the neighboring cell center; 𝐈𝐈𝑐𝑐𝑐𝑐𝑙𝑙𝑙𝑙,𝐧𝐧′  is found by using 
the old value of 𝛻𝛻𝐈𝐈𝑐𝑐𝑐𝑐𝑙𝑙𝑙𝑙 from the previous iteration at the cell (deferred correction) as 

(42) 𝐈𝐈𝑐𝑐𝑐𝑐𝑙𝑙𝑙𝑙,𝐧𝐧′ = 𝐈𝐈𝑐𝑐𝑐𝑐𝑙𝑙𝑙𝑙 + (𝛻𝛻𝐈𝐈𝑐𝑐𝑐𝑐𝑙𝑙𝑙𝑙)𝑜𝑜𝑙𝑙𝑑𝑑 · 𝐤𝐤 

For orthogonal meshes (where the surface normals pass through the cell centers of the neighboring cell, or 𝐝𝐝 =
𝐧𝐧), Eq. (40) becomes 

(44) 𝜕𝜕𝐈𝐈
𝜕𝜕𝜏𝜏

¯
𝑧𝑧

= 𝐈𝐈𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐−𝐈𝐈𝑤𝑤𝑤𝑤𝑐𝑐𝑐𝑐
𝛽𝛽𝑟𝑟,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐|𝐝𝐝|

 

Taking P3 as an example, the corresponding five boundary conditions resulting from Eqs. (39a), (39b) become 
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Here we denote the coefficient matrix on the left-hand side as 𝐀𝐀, and the matrix on the right-hand side as 𝐁𝐁. 
Note that the rows of 𝐀𝐀 and 𝐁𝐁 can be in any order, while the order of the columns should be correctly related to 
the 𝐼𝐼𝑛𝑛𝑚𝑚. After each iteration, the 𝐼𝐼𝑛𝑛𝑚𝑚 at boundary walls can be calculated from 

(46) 𝐈𝐈𝑤𝑤𝑤𝑤𝑙𝑙𝑙𝑙 = 𝐀𝐀−1𝐁𝐁𝐈𝐈𝑐𝑐𝑐𝑐𝑙𝑙𝑙𝑙,𝐧𝐧′  

or 

(47) 𝐈𝐈𝑤𝑤𝑤𝑤𝑙𝑙𝑙𝑙 = 𝐀𝐀−1𝐁𝐁𝐈𝐈𝑐𝑐𝑐𝑐𝑙𝑙𝑙𝑙 

in the case of orthogonal meshes. The 2-D formulation can be simplified from the 3-D formulation by eliminating 

the 𝐼𝐼𝑛𝑛𝑚𝑚 with odd 𝑚𝑚 in global coordinates and the 𝐼𝐼
¯
𝑛𝑛
𝑚𝑚 with negative 𝑚𝑚 in local coordinates, which has been 

illustrated by Eqs. (27a), (27b), (27c), (33a), (33b). It is worth mentioning that the above derivation is not based 
on Marshak boundary condition, while it gives the same boundary conditions as Eq. (31a), (31b) for purely 
specular surfaces (𝜌𝜌𝑠𝑠 = 1). 

4. Results and discussion 
The 2-D Cartesian formulation of high-order spherical harmonic methods and the special boundary conditions 
are tested for three example cases with strongly varying temperatures and absorption coefficients. Although 
isotropic scattering adds no additional complexity or effort to 𝑃𝑃𝑁𝑁 (as opposed to DOM), all the examples are 
limited to nonscattering media in this study simply to reduce parameters needed for presentation. 

4.1. Square enclosure with variable radiative properties 
The first example is two-dimensional radiative transfer in a square enclosure of a gray medium with variable 
radiative properties, which has been reported in [4]. The 2-D Cartesian 𝑃𝑃𝑁𝑁 solver up to order 7 as well as the 3-
D 𝑃𝑃𝑁𝑁 solver are tested and compared against PMC results. A 51×51×1 cube is employed, and the properties of 
the medium vary according to 

(48a) 𝐼𝐼𝑏𝑏 = 1 + 5𝑟𝑟2(2 − 𝑟𝑟2) 

(48b) 𝜅𝜅 = 𝐶𝐶𝑘𝑘[1 + 3.75(2 − 𝑟𝑟2)2] 

(48c) 𝑟𝑟2 = 𝑥𝑥2 + 𝑦𝑦2,−1 ≤ 𝑥𝑥 ≤ 1,−1 ≤ 𝑦𝑦 ≤ 1 

(48d) 𝜏𝜏𝐷𝐷 = 18√2𝐶𝐶𝑘𝑘 

The symmetry/specular reflection boundary conditions are implemented for the walls at the suppressed 
dimension (𝑧𝑧-direction for this case), and the other walls are black and cold. The results of incident 
radiation G and radiative heat source −𝛻𝛻 · 𝐪𝐪 are shown in Fig. 2, comparing results from 2-D P1 to P7 with those 
of a 3-D solver and a Monte Carlo simulation. 
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Fig. 2. Incident radiation and radiative heat source from a 2-D Cartesian 𝑃𝑃𝑁𝑁 solver, a 3-D 𝑃𝑃𝑁𝑁 solver and a PMC solver for a 
square enclosure. (a) Ck=1 (optically thick) and (b) Ck=0.1 (optically intermediate). 
 

The results show that the 2-D Cartesian 𝑃𝑃𝑁𝑁 solvers are indistinguishable from the 3-D results using fewer PDEs 
and unknowns. Also, results from the 3-D 𝑃𝑃𝑁𝑁 solver with the new symmetry/specular reflection boundary 
conditions are identical to the results given by [4]. In the OpenFOAM finite volume implementation presented 
in [4], the 2-D square case is solved by treating walls of a 3-D cube at 𝑧𝑧 = 𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐. as symmetry planes, which sets 
the normal gradients at the wall to zero for all scalars. While such implementation satisfies 
Eq. (39a), (39b) because the 𝐼𝐼𝑛𝑛𝑚𝑚 of odd 𝑚𝑚 for a 2-D case in the 𝑥𝑥–𝑦𝑦 plane are zero everywhere, this is not true 
for general cases, where the symmetry/specular reflection boundary conditions need to be employed. 

Fig. 3 shows the radiative flux 𝑞𝑞𝑤𝑤 along one of the cold black walls. To test the specified-𝑞𝑞𝑤𝑤 boundary condition, 
one wall in each direction (𝑥𝑥 and 𝑦𝑦) is flagged as a specified-𝑞𝑞𝑤𝑤 boundary condition by inputting 𝑞𝑞𝑤𝑤 according to 
the profile shown in Fig. 3 (first obtained by setting all walls to cold and black), while the opposite walls are kept 
as black and cold. Both 2-D Cartesian 𝑃𝑃𝑁𝑁 and 3-D 𝑃𝑃𝑁𝑁 with specified-𝑞𝑞𝑤𝑤 boundary conditions were tested and 
results were almost identical to the results shown in Fig. 2. Fig. 4 shows the contour plot of −∇ · 𝐪𝐪 from the 2-D 
Cartesian P7 solver with the specified-𝑞𝑞𝑤𝑤 boundary condition for the optically thick (Ck=1.0) case. The differences 
between the cases with and without the specified-𝑞𝑞𝑤𝑤 boundary condition are within 0.1%. 

 
Fig. 3. Radiative flux 𝑞𝑞𝑤𝑤 along the wall for Ck=0.1 and Ck=1. 
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Fig. 4. The radiative heat source −∇ · 𝐪𝐪 from 2-D Cartesian P7 solver with specified-𝑞𝑞𝑤𝑤 boundary condition for the Ck=1.0 
example. The upper wall (𝑦𝑦 = 1) and right wall (𝑥𝑥 = 1) employ specified-𝑞𝑞𝑤𝑤 boundary condition, while the other two are 
kept as black and cold wall. 
 

This square enclosure example verifies the consistency and accuracy of the 2-D Cartesian 𝑃𝑃𝑁𝑁 solver, the 
symmetry/specular reflection boundary condition and the specified radiative flux at the wall boundary 
condition. 

4.2. Cylindrical enclosure and a 45° wedge enclosure 
In the next example, the 2-D Cartesian 𝑃𝑃𝑁𝑁 solver is further applied to a cylinder and a 45° wedge with the 
symmetry/specular reflection boundary condition. Many combustion problems in a cylindrical domain, such as 
in a Diesel engine (with multiple injectors along a circle), are periodically axisymmetric, in which the pattern of 
the azimuthal-angle-dependent flow field is repeated for every certain number of degrees. In these cases 
generally a wedge mesh instead of a full cylinder is chosen to expedite the simulation. To test the performance 
of the 2-D Cartesian high-order 𝑃𝑃𝑁𝑁 methods (with 𝑟𝑟 and 𝜙𝜙 expressed in terms of 𝑥𝑥 and 𝑦𝑦) and the 
symmetry/specular reflection boundary condition for such meshes, simulations are carried out on a 45° wedge 
and a full cylinder (Fig. 5) with specified absorption coefficients 𝜅𝜅 and blackbody intensity 𝐼𝐼𝑏𝑏: 

(49a) 𝐼𝐼𝑏𝑏 = 1 + 20
𝑅𝑅4
𝑟𝑟2(𝑅𝑅2 − 𝑟𝑟2) 

(49b) 𝜅𝜅 = �1 + 15
𝑅𝑅4

(𝑅𝑅2 − 𝑟𝑟2)2� �1 + 0.5 𝑟𝑟
𝑅𝑅

cos8𝜙𝜙� 

(49c) 0 ≤ 𝑟𝑟 ≤ 𝑅𝑅 = 0.5 
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Fig. 5. The mesh of the 45° wedge (a) and the cylinder (b) in the analysis, the contour plot shows the 𝜅𝜅 distribution 
according to Eq. (49a), (49b), (49c). 
 

The wedge has 45 cells along the radius and 21 cells in the circumferential direction with the tip cut off to avoid 
stability issues; the cylinder contains 20 cells along the radius with a square (41×41) at the center. The peripheral 
walls of the cylinder as well as the outer peripheral walls of the wedge are set to black and cold, while the flat 
walls of the wedge, the inner peripheral walls (cut-off tip) and the top and bottom of the cylinder are set to 
symmetry/specular reflection boundary condition. 

The comparison of incident radiation, G, and radiative heat source, −∇ · 𝐪𝐪, from P1 to P7 are shown in Fig. 6 for 
both meshes along the radius (at 0°). The 𝑃𝑃𝑁𝑁 results from the 45° wedge mesh (lines with hollow symbols) 
overlap the results from the full cylinder (lines with solid symbol) at this position. Fig. 7 shows the contour plot 
of −∇ · 𝐪𝐪 for P7 from the 45° wedge. It is observed that the P7 solutions from the 45° wedge match those from 
the cylinder (the differences are within 2% and mainly due to the grids), and similar comparisons were made for 
other orders of 𝑃𝑃𝑁𝑁 methods and the results are consistent. The results of P7 are very close to that of the PMC 
except at the cylinder/wedge center and at 𝑟𝑟 = 0.35 as shown in Fig. 6b. The larger uncertainties of PMC close 
to the cylinder center are due to the sudden changes of the sizes of the cells at the cylinder center, and the 
discrepancy of P7 at 𝑟𝑟 = 0.35 maybe due to its remaining approximations, or due to inaccuracies in the PMC 
method (a zeroth order method, assuming properties to be constant across cells). 

 
Fig. 6. Incident radiation G and radiative heat source −∇ · 𝐪𝐪 along the centerline of a 45° wedge enclosure and that of a 
cylinder. (a) Incident radiation G and (b) radiative heat source −∇ · 𝐪𝐪. 

 
Fig. 7. The contour plot of radiative heat source −∇ · 𝐪𝐪 from 2-D Cartesian P7 solver for the 45° wedge. 
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4.3. Rectangular enclosure with mixed diffuse-specular gray walls 
Polished metals and glassy materials, which display strong specular reflection peaks, can effectively be 
approximated by a combination of diffuse reflection and specular reflection. Sample simulations to test the 
accuracy of the high-order 𝑃𝑃𝑁𝑁 method for mixed diffuse-specular walls have been performed on a 2-D 
rectangular geometry enclosed by walls with different surface characteristics. The geometry and radiative 
properties are shown in Fig. 8, and the properties of the left and right walls make up four test cases, i.e., (1) 
purely specular reflection (𝜌𝜌𝑠𝑠 = 1), (2) purely diffuse reflection (𝜌𝜌𝑑𝑑 = 1), (3) mixed diffuse-specular reflection 
without emission (𝜖𝜖 = 0, 𝜌𝜌𝑠𝑠 = 0.7, 𝜌𝜌𝑑𝑑 = 0.3) and (4) mixed diffuse-specular reflection with emission (𝜖𝜖 =
0.5, 𝜌𝜌𝑠𝑠 = 0.2, 𝜌𝜌𝑑𝑑 = 0.3). 

 
Fig. 8. Schematic of rectangular enclosure for tests of specular, diffuse and mixed diffuse-specular surfaces. 
 

The radiative heat source, 𝛻𝛻 · 𝐪𝐪 along 𝑥𝑥 = 1 m, and the heat flux at the wall, 𝑞𝑞𝑤𝑤, calculated with different orders 
of 𝑃𝑃𝑁𝑁 as well as PMC are shown in Fig. 9, Fig. 10, Fig. 11 for Cases 2–4. Good agreement is observed between the 
results from high-order 𝑃𝑃𝑁𝑁 and those from PMC for all three cases, where results for heat flux at the corners 
show the biggest discrepancies. 

 
Fig. 9. Radiative heat source ∇·q along x=1 m and the heat flux 𝑞𝑞𝑤𝑤 at top and bottom walls for Case 2. (a) x=1 m, 
(b) y=8 m and (c) y=0 m. 
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Fig. 10. Radiative heat source 𝛻𝛻 · 𝐪𝐪 along 𝑥𝑥 = 1 m and the heat flux 𝑞𝑞𝑤𝑤 at top and bottom walls for Case 3. (a) 𝑥𝑥 = 1 m, 
(b) 𝑦𝑦 = 8 m and (c) 𝑦𝑦 = 0 m. 

 
Fig. 11. Radiative heat source 𝛻𝛻 · 𝑞𝑞 along 𝑥𝑥 = 1 m and the heat flux 𝑞𝑞𝑤𝑤 at top and bottom walls for Case 4. (a) 𝑥𝑥 = 1 m, 
(b) 𝑦𝑦 = 8 m and (c) 𝑦𝑦 = 0 m. 
 

Fig. 12 shows a comparison of the P7 results for four surface characteristics. The differences between the results 
from Case 1 and Case 2 show that the wall properties can significantly affect the radiative heat source 
distributions and the heat flux profiles at the wall especially for larger aspect ratios. The differences between the 
results from purely diffuse walls and purely specular walls are expected to increase with higher aspect ratio of 
the geometry. Also, it is expected that the radiative heat source in the medium and the heat flux at walls for 
Case 3 lie between that of Case 1 and Case 2. These examples show that higher-order 𝑃𝑃𝑁𝑁 methods are capable 
of solving problems with special surface properties, and the errors are acceptable when comparing to PMC 
results. 

 
Fig. 12. Comparison of radiative heat source 𝛻𝛻 · 𝐪𝐪 and the heat flux at the wall 𝑞𝑞𝑤𝑤 from P7 solver for four surface properties. 
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4.4. Computation time comparison 
A CPU time comparison for different orders of 𝑃𝑃𝑁𝑁 for the above cases is given in Table 1. All calculations were 
carried out on a single Intel (R) Xeon (R) CPU X7460 running at 2.66 GHz. For the 2-D Cartesian 
formulation, P3, P5 and P7 consist of 4, 9 and 16 strongly coupled PDEs with numerous cross-derivatives, 
respectively, while CPU time increases over P1 are of the order of 60, 120 and 250, respectively. This nonlinear 
increase is due to the fact that the OpenFOAM implementation has not been optimized to solve simultaneous 
PDEs. The computation time for the 2-D Cartesian 𝑃𝑃𝑁𝑁 solver is about 24%, 29% and 31% less than the time 
needed for 3-D P3, P5 and P7, respectively. For the 45° wedge case, CPU time was found to be around 16% of that 
for the full cylinder, while the cell numbers of the 45° wedge are 19% of that of the cylinder. For the rectangular 
enclosure, the time costs for the four sets of different surface properties are almost the same. It is worth noting 
that the time cost is strongly related to the structure of the mesh and radiative properties through the number 
of iterations required. For CFD coupled computations, the mesh should be optimized for both the CFD 
calculations and the radiative transfer evaluation by the 𝑃𝑃𝑁𝑁 method. 

Table 1. Comparison of 𝑃𝑃𝑁𝑁 computation cost for different test cases. 

Solver Test case Number of cells P1(s) P3(s) P5(s) P7(s) 
3-D Square (Ck=1) 2601 0.02 0.75 4.71 7.00 
2-D Square (Ck=1) 2601 0.02 0.57 3.35 4.83 
3-D Square (Ck=0.1) 2601 0.02 0.87 5.05 9.33 
2-D Square (Ck=0.1) 2601 0.02 0.66 3.61 6.45 
2-D 45° wedge 945 0.01 0.56 1.35 2.57 
2-D Cylinder 4961 0.06 3.59 8.72 16.61 
2-D Rectangle 1600 0.02 0.35 2.05 4.37 

5. Summary and conclusion 
A 2-D Cartesian version of the spherical harmonics 𝑃𝑃𝑁𝑁 model (up to P7) was extracted from the general 3-
D 𝑃𝑃𝑁𝑁 formulation and implemented in OpenFOAM. The number of PDEs and intensity coefficients for the 2-D 
Cartesian 𝑃𝑃𝑁𝑁 was reduced from 𝑁𝑁(𝑁𝑁 + 1)/2 to (𝑁𝑁 + 1)2/4. In addition, the Marshak boundary conditions for 
nonblack surfaces and mixed diffuse-specular surfaces were derived and boundary conditions for specified wall 
fluxes, for symmetry/specular reflection boundaries, were developed. A square enclosure, a 45° wedge, a full 
cylinder and a rectangular enclosure were tested for the 2-D Cartesian 𝑃𝑃𝑁𝑁 formulation and the new boundary 
conditions. The correctness and accuracy of the new formulation and special boundary conditions were verified 
by comparing computations to intensity coefficients from the 3-D 𝑃𝑃𝑁𝑁 formulation and with PMC results. The 
comparison shows that the 2-D formulation provides an accurate and faster approach for 2-D problems; the 
specified wall flux and the symmetry/specular reflection boundary conditions are capable to handle 
specified 𝑞𝑞𝑤𝑤 and suppressed dimensions; the boundary condition for mixed diffuse-specular surfaces is able to 
treat different surface properties. The 2-D Cartesian 𝑃𝑃𝑁𝑁 and special boundary conditions are ready to be applied 
to more complicated applications such as simulations of real flames and reflections of real surfaces. 
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