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Abstract: 
This paper reports a novel recurrence theory that enables us to calculate the exact joint probability density 
function (pdf) of the random gain and the random avalanche buildup time in avalanche photodiodes (APDs) 
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including the effect of dead space. Such calculations reveal a strong statistical correlation between the gain and 
the buildup time for all widths of the multiplication region. To facilitate the calculation of the photocurrent 
statistics in the presence of this correlation, the impulse-response function of the APD is approximately modeled 
by a function of time whose prespecified shape is appropriately parameterized by two random variables: the 
gain and the buildup time. The evaluation of the variance of the photocurrent under this model leads to the 
definition of the shot-noise-equivalent bandwidth of the APD, which captures the statistical correlation between 
the gain and the buildup time. It is shown that the shot-noise-equivalent bandwidth in GaAs APDs is greater, by 
approximately 30%, than the traditional buildup-time-limited 3-dB bandwidth, which is calculated from the 
mean of the impulse-response function. A thorough analysis of the performance of APD-based integrate-and-
dump digital receivers reveals that the strong correlation between the gain and the buildup time accentuates 
intersymbol interference (ISI) noise, and thus, adversely affects receiver sensitivity at high transmission rates 
beyond previously known limits. 

Keywords 
Performance gain, Bandwidth, Photoconductivity, Intersymbol interference, Probability density function, 
Avalanche photodiodes, Statistics, Shape, Random variables, Gallium arsenide 

SECTION I. Introduction 
Avalanche photodiodes (APDs) are widely used photodetectors in many high-speed optical receivers, including 
those deployed in 10-Gb/s/channel lightwave systems. The popularity of APDs is due to their ability to provide 
high internal optoelectronic gains. In high-speed systems, the gain that an APD provides translates into 
improved receiver sensitivity, as the gain combats the Johnson noise in the preamplifier stage of an optical 
receiver. This benefit, however, comes at the often tolerable expense of an increase in shot noise by a factor 
called the APD's excess noise factor 𝐹𝐹, which is a measure of the gain uncertainty [1]–[2][3][4]. In addition, the 
APD's avalanche buildup time, which is the duration of the APD's single-photo-excited impulse-response 
function, limits the APD's bandwidth and causes intersymbol interference (ISI) in digital communication. The 
buildup time has heretofore been the factor that limits the use of APDs in 40-Gb/s systems to this date. 

Advances in APD technology, such as the development of APDs that may feature evanescent light coupling into 
very thin multiplication regions (where both carrier transit time and avalanche buildup time are significantly 
reduced without much sacrifice in coupling efficiency), may be a promising path for bringing APDs to the 40-
Gb/s arena [5]–[6][7][8][9][10][11][12][13][14]. On the other hand, to know the exact device requirements for 
specified system performance requires (yet to be developed) exact theoretical models for assessing the receiver 
performance at high speeds, where factors such as ISI and the stochastic nature of the APD's impulse-response 
function play critical roles. In this paper, we exactly compute the joint statistics of the random gain and random 
buildup time in APDs for the first time and incorporate these statistics in the analysis of APD-based receivers at 
high transmission speeds. This theory is expected to impact the way we translate system requirements (e.g., 
those for next-generation lightwave systems) to device requirements. Moreover, this paper may also impact the 
design and performance of emerging strategies (such as equalization and forward-error correction) used to 
mitigate ISI and polarization mode dispersion in high-speed lightwave systems. 

The APD's impulse-response function is a stochastic process, with a random duration (RD) (viz., avalanche 
buildup time) and a random area representing the multiplication factor, or gain. Moreover, the random gain and 
random buildup time are statistically correlated. One manifestation of this correlation is the APD's gain-
bandwidth product (GBP), traditionally calculated as the product between the mean gain and the 3-dB 
bandwidth (calculated from the Fourier transform of the average impulse-response function). However, the GBP 
conveys the correlation in the gain and the buildup time in a very limited way—being the product of mean 



quantities. In particular, it does not capture the inherent correlation in the fluctuations in the gain and the 
buildup time. For example, even if an APD is operated to yield a certain fixed mean gain, specific realizations of 
the avalanche process that exhibit high gains are accompanied with long buildup times (those realizations result 
in greater ISI and adversely affect receiver sensitivity), and vice versa. Consequently, at transmission rates near 
the APD's bandwidth, where buildup-time uncertainty is expected to affect ISI, it is plausible to suspect that the 
statistical correlation between the random gain and the random buildup time may play an intricate role in 
receiver performance. 

To understand the complex interplay between the buildup time and the gain, one must appeal to the statistical 
analysis of the APD's impulse-response function. For example, to calculate the variance of the photocurrent, 
knowledge of the second moment of the impulse-response function is required at each time. Further, in order to 
calculate the variance of the integrated photocurrent, as required when assessing the bit error rate (BER) of an 
integrate-and-dump receiver, the autocorrelation function of the impulse response is also necessary [15], [16]. 
Although recurrence relations for these quantities are available, their solutions require intensive computing, 
especially for the autocorrelation function [16]. Moreover, calculation of higher order statistics (e.g., the 
probability distribution of the photocurrent, which is required in the calculation of the probability distribution of 
the output of an integrate-and-dump receiver) is practically impossible with existing models. 

In this paper, we also provide a novel approximate method for calculating the statistics of the impulse-response 
function using our exact knowledge of the joint statistics of the random gain and buildup time. The rationale is 
to first approximate the random impulse-response function by a function of time whose prespecified shape is 
parameterized by the random gain and the random buildup time. A simple example of such a function is a 
rectangular RD (RD-R) function whose duration is the buildup time and whose area is proportional to the gain 
(more complex functions may also be considered). The exact calculation of the joint probability distribution 
function (PDF) of the gain and buildup time is accomplished by developing a novel recursive theory that 
generalizes the existing recursive techniques for computing the marginal PDFs of the gain [17], [18] and the 
buildup time [19]. The computations are carried out for homojunction APDs under the simplifying assumptions 
of a constant electric field (in the multiplication region) and a constant drift velocity for carriers. We emphasize 
that the theory developed here incorporates the dead-space effect, which is inherent in the process of cascaded 
impact ionizations. Dead space is the minimum distance a newly generated carrier must travel before it 
becomes capable of effecting an impact ionization. It is well known that this effect becomes increasingly more 
important in thin multiplication layers, where the fast buildup time is accompanied by reduced excess noise 
factor. 

We also utilize this avalanche multiplication theory to analyze the receiver performance in an on–off keying 
(OOK) optical receiver. We particularly investigate the effect of the statistical correlation in the gain and the 
buildup time on the receiver performance in high-speed transmission settings. 

SECTION II. Joint Probability Distribution of Gain and Buildup Time 
Consider an APD with a multiplication region extending from 𝑥𝑥 = 0 to 𝑥𝑥 = 𝑤𝑤. Assume that an electron is 
injected into the multiplication region from the left at 𝑥𝑥 = 0, thereby starting the avalanche process. Upon 
entering the multiplication region, the injected electron travels to the right a random distance 𝑋𝑋e,0, after which 
it impact ionizes, resulting in two offspring electrons and a hole. The probability density function (pdf) of the 
free path 𝑋𝑋e,0of the injected electron is denoted by ℎe,0(𝜉𝜉). For example, according to the dead-space 

multiplication theory (DSMT) [20], ℎe,0(𝜉𝜉) = 𝛼𝛼(𝜉𝜉)exp [−∫ 𝛼𝛼(𝑦𝑦)𝑑𝑑𝑑𝑑]𝑢𝑢(𝜉𝜉 − 𝑑𝑑e,0)𝜉𝜉
𝑑𝑑e,0

, where 𝛼𝛼(𝜉𝜉)is the position-

dependent (field-dependent) nonlocalized ionization coefficient, 𝑑𝑑e,0 is the dead space associated with the 
injected electron, and u(x) is the unit step function [i.e., 𝑢𝑢(𝑥𝑥) = 1 if 𝑥𝑥 ≥ 0, and zero otherwise]. After each 



impact ionization, a newly created electron (or adversely, hole) born at position 𝑥𝑥 travels a free distance 𝑋𝑋e,𝑥𝑥 to 
the right (or adversely, a distance 𝑋𝑋h,𝑥𝑥 to the left) before it impacts ionizes. Let ℎe(𝜉𝜉|𝑥𝑥) and ℎh(𝜉𝜉|𝑥𝑥) denote the 

pdfs of 𝑋𝑋e,𝑥𝑥and 𝑋𝑋h,𝑥𝑥, respectively [in the DSMT model [20], ℎe(𝜉𝜉|𝑥𝑥) = 𝛼𝛼(𝑥𝑥 + 𝜉𝜉) exp �−∫ 𝛼𝛼(𝑥𝑥 +𝜉𝜉
𝑑𝑑e(𝑥𝑥)

𝑦𝑦)𝑑𝑑𝑑𝑑� 𝑢𝑢�𝜉𝜉 − 𝑑𝑑e(𝑥𝑥)� and ℎh(𝜉𝜉|𝑥𝑥) = 𝛽𝛽(𝑥𝑥 − 𝜉𝜉) exp �−∫ 𝛼𝛼(𝑥𝑥 − 𝑦𝑦)𝑑𝑑𝑑𝑑𝜉𝜉
𝑑𝑑h(𝑥𝑥) � 𝑢𝑢�𝜉𝜉 − 𝑑𝑑h(𝑥𝑥)�, 

where 𝑑𝑑e(𝑥𝑥) and 𝑑𝑑h(𝑥𝑥) are, respectively, the position-dependent (field-dependent) dead spaces associated with 
the electron and holes that are created at 𝑥𝑥]. 

For a linear-mode operation of the APD (i.e., when the APD is operated below breakdown, that is, the 
probability of avalanche breakdown is zero, or equivalently, the mean gain is finite), the cascade of impact 
ionizations terminate at some finite random time 𝑇𝑇, called the avalanche buildup time, yielding a net random 
gain 𝐺𝐺. Note that if we consider the electrical current, or the APD's impulse-response function due to the 
injected electron, resulting from the carriers generated by the cascade of impact ionizations, then 𝑇𝑇 is precisely 
the RD of the impulse-response function. Our goal is to determine 𝑓𝑓𝐺𝐺,𝑇𝑇(𝑚𝑚, 𝑡𝑡) = 𝖯𝖯{𝐺𝐺 = 𝑚𝑚,𝑇𝑇 ≤ 𝑡𝑡}, the joint PDF 
of the random variables 𝐺𝐺and 𝑇𝑇, where m is the number of electron-hole pairs involved in the avalanche 
buildup, and t is the time by which the avalanche buildup is completed. 

We first define certain intermediate quantities that are essential in the formulation of the recursive (renewal) 
equations that would ultimately yield 𝑓𝑓𝐺𝐺,𝑇𝑇(𝑚𝑚, 𝑡𝑡). For each 𝑥𝑥 ∈ [0,𝑤𝑤], let 𝑍𝑍(𝑥𝑥)be the total number of carriers 
(electrons and holes, collectively) generated by a parent electron positioned at 𝑥𝑥, and let 𝑇𝑇e(𝑥𝑥) be the random 
time until all these carriers exit the multiplication region. Similarly, we define 𝑌𝑌(𝑥𝑥)as the total number of 
carriers generated as a result of a parent hole positioned at 𝑥𝑥 and let 𝑇𝑇h(𝑥𝑥) denote the time until all these 
carriers exit the multiplication region. Note that 𝐺𝐺 = 0.5(𝑍𝑍(0) + 1) and 𝑇𝑇e(0) = 𝑇𝑇. Let us now define the joint 
PDF of 𝑍𝑍(𝑥𝑥)and 𝑇𝑇e(𝑥𝑥) by 𝑓𝑓e(𝑚𝑚, 𝑡𝑡; 𝑥𝑥) = 𝖯𝖯{𝑍𝑍(𝑥𝑥) = 𝑚𝑚,𝑇𝑇e(𝑥𝑥) ≤ 𝑡𝑡}. Similarly, define 𝑓𝑓h(𝑚𝑚, 𝑡𝑡; 𝑥𝑥) =
𝖯𝖯{𝑌𝑌(𝑥𝑥) = 𝑚𝑚,𝑇𝑇h(𝑥𝑥) ≤ 𝑡𝑡}. Note that, as a special case, 𝑓𝑓𝐺𝐺,𝑇𝑇(𝑚𝑚, 𝑡𝑡) = 𝑓𝑓e(2𝑚𝑚− 1, 𝑡𝑡; 0). We now invoke a renewal 
argument that will allow us to recursively characterize 𝑓𝑓e(𝑚𝑚, 𝑡𝑡; 𝑥𝑥)and 𝑓𝑓h(𝑚𝑚, 𝑡𝑡; 𝑥𝑥) 

A. Recursive Equations 
In avalanching, once a parent carrier impact ionizes, the regenerated parent carrier and the offspring carriers 
independently repeat a similar process as their parent. Suppose that the parent electron at 𝑥𝑥 first impacts the 
ionization after traveling a distance 𝑋𝑋e = 𝜉𝜉 ∈ [0,𝑤𝑤 − 𝑥𝑥] from 𝑥𝑥. In such an event, there would be two newly 
created carriers (an electron and a hole). Now, the key observation is that, conditional on the occurrence of this 
initial ionization, the event that 𝑇𝑇e(𝑥𝑥)is less than or equal to 𝑡𝑡 and 𝑍𝑍(𝑥𝑥) = 𝑚𝑚 is precisely the event that the 
responses due to the newly created carriers all terminate in the remaining time (i.e., 𝑡𝑡 less the electron 

transport time from 𝑥𝑥 to 𝑥𝑥 + 𝜉𝜉, or simply 𝑡𝑡 − 𝜉𝜉
𝑣𝑣e

) and that the three carriers collectively generate 𝑚𝑚 total 

offsprings within the remaining time of 𝑡𝑡 − 𝜉𝜉
𝑣𝑣e

. By invoking the well-known convolution principle for the 

probability mass function of sums of independent random variables, we obtain the convolution in (1) and (2). 
Here, 𝑣𝑣e is the electron saturation velocity in the multiplication region. By means of this renewal argument and 
by using standard properties of conditional expectations and sums of independent random variables, we can see 
that by conditioning on the occurrence of the initial ionization at 𝜉𝜉, the conditional PDF 𝑓𝑓e(𝑚𝑚, 𝑡𝑡; 𝑥𝑥|𝜉𝜉)can be 
written as 

𝑓𝑓e(𝑚𝑚, 𝑡𝑡; 𝑥𝑥|𝜉𝜉) = 𝑓𝑓e �𝑚𝑚, 𝑡𝑡 − 𝜉𝜉
𝑣𝑣e

; 𝑥𝑥 + 𝜉𝜉� ∗ 𝑓𝑓e �𝑚𝑚, 𝑡𝑡 − 𝜉𝜉
𝑣𝑣e

; +𝜉𝜉�

∗ 𝑓𝑓h �𝑚𝑚, 𝑡𝑡 − 𝜉𝜉
𝑣𝑣e

; 𝑥𝑥 + 𝜉𝜉�
 (1) 

https://ieeexplore.ieee.org/document/#deqn1
https://ieeexplore.ieee.org/document/#deqn2


where ∗ denotes discrete convolution (in the variable m). Similarly, the conditional PDF 𝑓𝑓h(𝑚𝑚, 𝑡𝑡; 𝑥𝑥|𝜉𝜉)can be 
written as 

𝑓𝑓h(𝑚𝑚, 𝑡𝑡; 𝑥𝑥|𝜉𝜉) = 𝑓𝑓h �𝑚𝑚, 𝑡𝑡 − 𝜉𝜉
𝑣𝑣h

; 𝑥𝑥 − 𝜉𝜉� ∗ 𝑓𝑓h �𝑚𝑚, 𝑡𝑡 − 𝜉𝜉
𝑣𝑣h

; 𝑥𝑥 − 𝜉𝜉�

∗ 𝑓𝑓e �𝑚𝑚, 𝑡𝑡 − 𝜉𝜉
𝑣𝑣h

; 𝑥𝑥 − 𝜉𝜉�
 (2) 

where 𝑣𝑣h is the hole saturation velocity in the multiplication layer. 

The condition on the location 𝜉𝜉 of the first impact ionization can now be removed by averaging over all possible 
locations 𝜉𝜉 in the interval [0,𝑤𝑤 − 𝑥𝑥]. However, it is possible that the parent electron (or hole) born at 𝑥𝑥 does not 
impact ionize at all, corresponding to the event {𝑋𝑋e > 𝑤𝑤 − 𝑥𝑥} (or {𝑋𝑋h > 𝑥𝑥}). In particular, if 𝑋𝑋e > 𝑤𝑤 − 𝑥𝑥 
(or 𝑋𝑋h > 𝑥𝑥), then 𝑇𝑇e(𝑥𝑥) = 𝑤𝑤−𝑥𝑥

𝑣𝑣e
 [or 𝑇𝑇h(𝑥𝑥) = 𝑥𝑥

𝑣𝑣h
] and 𝑍𝑍(𝑥𝑥) = 1 [or 𝑌𝑌(𝑥𝑥) = 1]. 

With the above considerations and after performing an average over all possible locations of the first ionization, 
we obtain the following coupled recursive equations that together characterize 𝑓𝑓e(𝑚𝑚, 𝑡𝑡; 𝑥𝑥)and 𝑓𝑓h(𝑚𝑚, 𝑡𝑡; 𝑥𝑥): 

𝑓𝑓e(𝑚𝑚, 𝑡𝑡; 𝑥𝑥)
= 𝑔𝑔e(𝑥𝑥, 𝑡𝑡)𝛿𝛿𝑚𝑚−1

+ � {𝑓𝑓e(𝑚𝑚, 𝑡𝑡 −
𝜉𝜉
𝑣𝑣e

; 𝑥𝑥 + 𝜉𝜉)
𝑤𝑤−𝑥𝑥

0

∗ 𝑓𝑓e �𝑚𝑚, 𝑡𝑡 −
𝜉𝜉
𝑣𝑣e

; 𝑥𝑥 + 𝜉𝜉�

∗ 𝑓𝑓h(𝑚𝑚, 𝑡𝑡 −
𝜉𝜉
𝑣𝑣e

; 𝑥𝑥 + 𝜉𝜉)}ℎe(𝜉𝜉|𝑥𝑥)𝑑𝑑𝑑𝑑

𝑓𝑓h(𝑚𝑚, 𝑡𝑡; 𝑥𝑥)
= 𝑔𝑔h(𝑥𝑥, 𝑡𝑡)𝛿𝛿𝑚𝑚−1

+�{𝑓𝑓h(𝑚𝑚, 𝑡𝑡 −
𝜉𝜉
𝑣𝑣h

; 𝑥𝑥 − 𝜉𝜉)
𝑥𝑥

0

∗ 𝑓𝑓h �𝑚𝑚, 𝑡𝑡 −
𝜉𝜉
𝑣𝑣h

; 𝑥𝑥 − 𝜉𝜉�

∗ 𝑓𝑓e(𝑚𝑚, 𝑡𝑡 −
𝜉𝜉
𝑣𝑣h

; 𝑥𝑥 − 𝜉𝜉)}ℎh(𝜉𝜉|𝑥𝑥)𝑑𝑑𝑑𝑑

 

where 𝛿𝛿(𝑘𝑘)is equal to one if 𝑘𝑘 = 0, and zero otherwise 

𝑔𝑔e(𝑥𝑥, 𝑡𝑡) = (1 − ∫ ℎe(𝜉𝜉|𝑥𝑥)𝑑𝑑𝑑𝑑) 𝑢𝑢𝑤𝑤
𝑥𝑥 �𝑡𝑡 − 𝑤𝑤−𝑥𝑥

𝑣𝑣e
� (5) 

and 

𝑔𝑔h(𝑥𝑥, 𝑡𝑡) = (1 −� ℎh(𝜉𝜉|𝑥𝑥)𝑑𝑑𝑑𝑑)𝑢𝑢 �𝑡𝑡 − 𝑥𝑥
𝑣𝑣h
�

𝑥𝑥

0
. (6) 

The convolutions in the above equations can be converted into products by taking the 𝑧𝑧 transform (0 ≤ |𝑧𝑧| ≤
1) of 𝑓𝑓e(𝑚𝑚, 𝑡𝑡; 𝑥𝑥)and 𝑓𝑓h(𝑚𝑚, 𝑡𝑡; 𝑥𝑥) with respect to the variable 𝑚𝑚. The transformed quantities, denoted 
by 𝐹𝐹e(𝑧𝑧, 𝑡𝑡; 𝑥𝑥) and 𝐹𝐹h(𝑧𝑧, 𝑡𝑡; 𝑥𝑥), respectively, will satisfy 



𝐹𝐹e(𝑧𝑧, 𝑡𝑡; 𝑥𝑥) = 𝑔𝑔e(𝑥𝑥, 𝑡𝑡)𝑧𝑧 + � 𝐹𝐹e2 �𝑧𝑧, 𝑡𝑡 − 𝜉𝜉
𝑣𝑣e

; 𝑥𝑥 + 𝜉𝜉�
𝑤𝑤−𝑥𝑥

0

× 𝐹𝐹h �𝑧𝑧, 𝑡𝑡 − 𝜉𝜉
𝑣𝑣e

; 𝑥𝑥 + 𝜉𝜉� ℎe(𝜉𝜉|𝑥𝑥)𝑑𝑑𝑑𝑑
 (7) 

and 

𝐹𝐹h(𝑧𝑧, 𝑡𝑡; 𝑥𝑥) = 𝑔𝑔h(𝑥𝑥, 𝑡𝑡)𝑧𝑧 + � 𝐹𝐹h2 �𝑧𝑧, 𝑡𝑡 − 𝜉𝜉
𝑣𝑣h

; 𝑥𝑥 − 𝜉𝜉�
𝑥𝑥

0

× 𝐹𝐹e �𝑧𝑧, 𝑡𝑡 − 𝜉𝜉
𝑣𝑣h

; 𝑥𝑥 − 𝜉𝜉�ℎh(𝜉𝜉|𝑥𝑥)𝑑𝑑𝑑𝑑.
.(8) 

In actuality, the energy states of the carriers after ionizations are not identical. The carriers with excess energy 
above the ionization threshold do not necessarily end up with zero energy after ionization. Therefore, they may 
travel a relatively shorter dead-space length even in a constant field. Das and Deen [21] accommodated this 
effect in their work by assuming that the excess energy after ionization is equally distributed. Alternatively, the 
effect of uncertainty in energy states of the carriers can be considered, for example, through adopting a 
stochastic model for the carrier's dead space, as done in [22]. For simplicity and brevity, in this paper, we 
assume zero energy state of the carriers after each ionization as well as a deterministic dead space.We next 
introduce a numerical recipe for computing 𝐹𝐹e, 𝐹𝐹h, 𝑓𝑓e, and 𝑓𝑓h. 

B. Numerical Solutions 
Calculation of 𝐹𝐹e and 𝐹𝐹h: For any fixed 𝑧𝑧, we can solve (7) and (8) numerically using the simple iterative method 
described below. We first select a maximum limit 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 for the range of the buildup time to be considered. We 
then select a mesh size for the time 𝑡𝑡 and the space 𝑥𝑥 allowing the discretization of the function 𝐹𝐹e and 𝐹𝐹h, and 
hence, converting the integrals into summations. The flowchart is presented in Fig. 1. We set the zeroth 
iteration of the functions 𝐹𝐹e(𝑧𝑧, 𝑡𝑡; 𝑥𝑥)and 𝐹𝐹h(𝑧𝑧, 𝑡𝑡; 𝑥𝑥), denoted by 𝐹𝐹e

(0)(𝑧𝑧, 𝑡𝑡; 𝑥𝑥)and 𝐹𝐹h
(0)(𝑧𝑧, 𝑡𝑡; 𝑥𝑥), respectively, to 

be 𝑔𝑔e(𝑥𝑥, 𝑡𝑡)𝑧𝑧 and 𝑔𝑔h(𝑥𝑥, 𝑡𝑡)𝑧𝑧, for 0 ≤ 𝑥𝑥 ≤ 𝑤𝑤 and 0 ≤ 𝑡𝑡 ≤ 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚. Next, the first iterates 𝐹𝐹e
(1)(𝑧𝑧, 𝑡𝑡; 𝑥𝑥) 

and 𝐹𝐹h
(1)(𝑧𝑧, 𝑡𝑡; 𝑥𝑥) are computed by substituting the zeroth iterates into the right-hand side of (7) and (8). 

Subsequent iterates are generated in the same way. This procedure is continued until the iterates converge 
uniformly in 𝑡𝑡 and 𝑥𝑥. More precisely, we stop the iteration process when the maximum relative change from 
the (𝑛𝑛 − 1)th to the 𝑛𝑛th iterate in the functions 𝐹𝐹e

(𝑛𝑛)(𝑍𝑍, 𝑡𝑡; 𝑥𝑥) and 𝐹𝐹h
(𝑛𝑛)(𝑍𝑍, 𝑡𝑡; 𝑥𝑥) is below a predefined tolerance 

level. At such point, the procedure for computing 𝐹𝐹e and 𝐹𝐹h is complete and we set them to the respective 
values at the last round of iterations. 
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Fig. 1. Flowchart describing the iterative procedure (Picard iterations) used to solve the renewal equations. 
 

Calculation of 𝑓𝑓𝐺𝐺,𝑇𝑇: Let 𝐹𝐹𝐺𝐺,𝑇𝑇(𝑧𝑧, 𝑡𝑡) be the 𝑧𝑧 transform of 𝑓𝑓𝐺𝐺,𝑇𝑇(𝑚𝑚, 𝑡𝑡) with respect to 𝑚𝑚. Then, since 𝑓𝑓𝐺𝐺,𝑇𝑇(𝑚𝑚, 𝑡𝑡) =
𝑓𝑓e(2𝑚𝑚− 1, 𝑡𝑡; 0), we obtain 

𝐹𝐹𝐺𝐺,𝑇𝑇(𝑧𝑧, 𝑡𝑡) = √𝑧𝑧𝐹𝐹1�√𝑧𝑧, 𝑡𝑡; 0� 

which we need to convert back to the 𝑚𝑚 domain. Since 𝐺𝐺 is an integer-valued random variable, we can apply the 
efficient technique proposed by Gubner and Hayat [23] to recover the 𝑓𝑓𝐺𝐺,𝑇𝑇(𝑚𝑚, 𝑡𝑡) from 𝐹𝐹𝐺𝐺,𝑇𝑇(𝑧𝑧, 𝑡𝑡), 
with 𝑧𝑧 restricted to the unit circle. 

In this paper, the electric field required for achieving a certain average gain is obtained by using the direct 
approach reported in [17], with the ionization coefficients, dead spaces, and ionization-threshold energies taken 
from [24]. Subsequently, these electric fields and their corresponding ionization coefficients and dead spaces are 
utilized in the proposed renewal equations to obtain the solution of the joint PDF. 

Fig. 2 shows an example of the joint PDF 𝑓𝑓𝐺𝐺,𝑇𝑇(𝑚𝑚, 𝑡𝑡)calculated for a homojunction GaAs APD with a 160-nm 
multiplication layer exhibiting an average gain of 10.46 (from the direct approach). The electron and hole 
saturation velocities are assumed to be 0.67 × 107cm/s (from [25]) and the nonlocalized ionization coefficients 
for electrons and holes and their respective ionization-threshold energies are taken from [24]. The joint pdf, 
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shown in Fig. 3, is obtained by taking the derivative of 𝑓𝑓𝐺𝐺,𝑇𝑇(𝑚𝑚, 𝑡𝑡) with respect to 𝑡𝑡. Recall that if we restrict the 
random gain realization to unity (the cross section corresponding to 𝑚𝑚 = 1 in Fig. 2), then the PDF of 𝑇𝑇 becomes 
a step function with a jump at the electron transit time 𝑤𝑤

𝑣𝑣e
. Consequently, the joint pdf of 𝑇𝑇 is expected to exhibit 

a Dirac impulse at the electron transit time. These two features are observed in Figs. 2 and 3, respectively. Fig. 
3 also shows that as the realized value 𝑚𝑚 of the random gain increases, the pdf of the 𝑇𝑇 (i.e., cross section of the 
joint pdf along the 𝑡𝑡-axis) shifts toward a higher buildup-time mean and a larger spread about the mean. These 
are clear indications of the statistical correlation between the gain and the buildup time as well as the increase 
in the buildup-time uncertainty at higher realizations of the gain. 

 
Fig. 2. Joint PDF of the random gain G and the random buildup time T for a GaAs APD with a 160-nm multiplication layer. 
The applied electric field in the multiplication region is taken as 5.47 × 103kV/cm, yielding a theoretical average gain 
of ⟨𝐺𝐺⟩ = 10.46. 
 

 
Fig. 3. Joint pdf of the random gain 𝐺𝐺 and the random buildup time 𝑇𝑇 for the APD considered in Fig. 2. In order to better 
show the details of the pdf, large peaks have been truncated. 
 

In this example, the average gain calculated by the direct approach is 10.46. The marginal distribution of the 
gain (obtained by averaging the joint PDF over the buildup time) yields the mean of 10.48, which is in good 
agreement with the direct-approach result. Additionally, if the time t in (7) and (8) is set to 
infinity, (7) and (8) become the renewal equations governing the generating function of the random gain, and 
these renewal equations are equivalent to those reported in [17]. 

Similarly, the probability mass function of 𝐺𝐺 for various realizations 𝑡𝑡 of the random buildup time 𝑇𝑇 shifts toward 
a higher mean (accompanied by a larger spread) as 𝑡𝑡 increases. This also confirms the correlation between the 
gain and the buildup time. Fig. 4 (bottom graph) shows the correlation coefficient 𝜌𝜌 of 𝐺𝐺 and 𝑇𝑇 as a function of 
the width of the multiplication region while the mean gain is held fixed at ten. The correlation coefficient is 
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calculated by 𝜌𝜌 = 𝖤𝖤[𝐺𝐺𝐺𝐺]−𝖤𝖤[𝐺𝐺]𝖤𝖤[𝑇𝑇]
𝜎𝜎𝐺𝐺𝜎𝜎𝑇𝑇

, and the values of correlation coefficients are approximately 0.9 for the entire 

range of 𝑤𝑤. 

 
Fig. 4. Bottom: Correlation coefficient 𝜌𝜌 of the random gain 𝐺𝐺 and the random buildup time 𝑇𝑇 for a GaAs APD as a function 
of the multiplication-layer width 𝑤𝑤. Top: Ratio 𝑟𝑟 of shot-noise-equivalent bandwidth 𝐵𝐵sneq to the 3-dB bandwidth 𝐵𝐵3-dB. 
The mean gain is held constant at ⟨𝐺𝐺⟩ = 10. 
 

We next use the joint PDF of 𝐺𝐺 and 𝑇𝑇 to calculate the statistical properties of the impulse-response function and 
investigate the effect of the correlation between 𝐺𝐺 and 𝑇𝑇 on ISI and receiver performance in high-speed digital 
receivers. 

SECTION III. Parametric Modeling of the Impulse-Response Function and the 
Shot-Noise-Equivalent Bandwidth 
In this section, we introduce a novel stochastic model for the impulse-response function that facilitates the 
calculation of its statistics once the joint PDF of the gain and the buildup time has been determined. The 
rationale is to approximate the impulse-response function 𝐼𝐼p(𝑡𝑡) by a prespecified shape function of time that is 
parameterized by the random gain 𝐺𝐺 and the random buildup time 𝑇𝑇. In this fashion, the randomness of the 
impulse-response function, as a stochastic process, is lumped in the random parameters 𝐺𝐺 and 𝑇𝑇. This 
significantly simplifies the complexity of the impulse-response function while maintaining the key features that 
govern the excess-noise and speed properties of the APD, namely, randomness in the impulse-response 
function's area (representing gain uncertainty) and randomness in its duration (representing bandwidth 
uncertainty). An example of such a shape function is the rectangular RD (RD-rectangular or RD-R) with random 
height 𝑞𝑞𝑞𝑞

𝑇𝑇
and RD 𝑇𝑇, as shown in Fig. 5, where 𝑞𝑞 is the electronic charge. Note that the area under this function 

is 𝑞𝑞𝑞𝑞. Another example is the triangular RD (RD-triangular or RD-T) model, shown in the same figure, for which 
the RD is again 𝑇𝑇 but a peak occurs at the electron transit time 𝜏𝜏e across the multiplication region. The peak in 
the RD-T model is consistent with the behavior of the true impulse-response function, as all first-generation 
electrons continue to multiply until they simultaneously exit the multiplication region at precisely 𝜏𝜏e units of 
time past the time of the primary-electron injection. The height of the peak is 2𝑞𝑞𝑞𝑞

𝑇𝑇
 so that the area under the 

shape function is 𝑞𝑞𝑞𝑞. Other shape functions may also be considered. 
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Fig. 5. Models for impulse-response function: the RD-R model (solid curve) and the RD-T model (dotted curve). Note that 
the area under each of the models is 𝑞𝑞𝑞𝑞. A DD-E is also shown for which the decay rate is deterministic. 
 

To see the validity of the proposed RD-R and RD-T models, we calculated the mean impulse-response function, 
denoted by 𝑖𝑖p(𝑡𝑡) = 𝖤𝖤�𝐼𝐼p(𝑡𝑡)�, and compared it to the exact theoretical model for the mean impulse-response 
function [15]. For example, it can be easily shown that for the rectangular model 

𝖤𝖤�𝐼𝐼p(𝑡𝑡)� = �  
∞

𝑚𝑚=1

�  
∞

𝑡𝑡

𝑞𝑞𝑞𝑞𝜏𝜏−1
∂
∂𝜏𝜏 𝑓𝑓𝐺𝐺,𝑇𝑇(𝑚𝑚, 𝜏𝜏)d𝜏𝜏, 𝑡𝑡 ≥ 0 

which can be easily computed as the joint distribution 𝑓𝑓𝐺𝐺,𝑇𝑇 has already been computed. Figs. 6 and 7 depict the 
mean and the second moment of the random impulse-response function obtained using both the rectangular 
and triangular parametric models. Indeed, the area under 𝑖𝑖p(𝑡𝑡) is 10.48𝑞𝑞, which is in excellent agreement with 
the theoretical average gain of 10.46𝑞𝑞 that is calculated independently using that in [24]. The comparison with 
the theoretical prediction of the APD mean impulse-response function by Hayat and Saleh [15] is also shown on 
this figure (dashed curve). The RD-R model predicts GBPs of 274 and 194 GHz for the multiplication width 100 
and 200 nm, respectively, which are comparable to 292 GHz and 171 GHz, respectively, reported in [16]. Note 
that, due to the frequency-response characteristics of the rectangular and triangular waveforms, the rectangular 
model slightly underestimates the bandwidth while the triangular model overestimates it. Nevertheless, the 
approximation is very good in both cases. 

 
Fig. 6. Mean impulse-response function 𝑖𝑖p(𝑡𝑡) corresponding to the RD model with a rectangular shape (solid curve), the RD 
model with a triangular shape (dotted curve), and the exact model [15] (dashed curve). Note that the rectangular-shape RD 
model slightly underestimates the bandwidth while the triangular-shaped RD model overestimates it. 
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Fig. 7. Second moment of the impulse-response function ip(t) corresponding to the RD model with a rectangular shape 
(solid curve), the RD model with a triangular shape (dotted curve), and the exact model [15] (dashed curve). 
 

A. Bandwidth 
The calculation of the variance of the photocurrent generated by an APD (i.e., the variance of the filtered shot 
noise [26]) requires knowledge of the second moment of the APD's impulse-response function of time 𝑡𝑡. In 

particular, the variance of the photocurrent is given by [27] 𝑞𝑞 �𝜂𝜂𝜂𝜂
ℎ𝜈𝜈
� ∫  ∞

−∞ �𝐼𝐼p2(𝑡𝑡)�𝑑𝑑𝑑𝑑, where 𝑃𝑃 is the optical 

power, 𝜂𝜂 is the APD's quantum efficiency (the probability that a single photon incident on the device generates a 
photocarrier pair that contributes to the detector's current), ℎ is Plank's constant, and 𝜈𝜈 is the photon's 
frequency. However, calculation of the second-order statistics of the impulse-response function are generally 
computationally intensive, with no known closed-form expressions available [15], [28]. As a result, simplifying 
assumptions that ignore the randomness in the shape of the impulse-response function are often practiced in 
the calculation of the photocurrent variance. For example, one customary approach is to assume that the 
impulse-response function takes the simplified form of 𝐼𝐼𝑝𝑝,𝑐𝑐(𝑡𝑡) = 𝑞𝑞𝑞𝑞ℎ(𝑡𝑡) [i.e., the deterministic duration (DD) 
model], where ℎ(𝑡𝑡) is a unit-area deterministic function that is proportional to the mean impulse-response 
function [3]. We emphasize that implicit in such simplifications is the absence of the statistical correlation 
between the gain and buildup time. For example, the DD model 𝐼𝐼𝑝𝑝,𝑐𝑐(𝑡𝑡) = 𝑞𝑞𝑞𝑞ℎ(𝑡𝑡) implies that both high-gain 
and low-gain realizations of 𝐼𝐼𝑝𝑝,𝑐𝑐(𝑡𝑡) yield the same bandwidth, while in actuality, high-gain realizations are 
accompanied by long buildup times, and hence low bandwidth, and vice versa. Nevertheless, the type of 
simplifications described above admit the customary closed-form expression for the variance of the 

photocurrent given by 2𝐵𝐵c𝑞𝑞⟨
𝐺𝐺⟩2𝐹𝐹𝐹𝐹𝐹𝐹
ℎ𝜈𝜈

, where 𝐵𝐵c is the conventional bandwidth of the APD and 𝐹𝐹 is the APD's 

excess noise factor �𝐹𝐹 = �𝐺𝐺2�
⟨𝐺𝐺⟩2)�. For example, if the DD model 𝐼𝐼𝑝𝑝,𝑐𝑐(𝑡𝑡) = 𝑞𝑞𝑞𝑞ℎ(𝑡𝑡) is used, then 𝐵𝐵c = ∫  ∞

−∞ ℎ2(𝑡𝑡)𝑑𝑑𝑑𝑑

2�∫  ∞
−∞ ℎ(𝑡𝑡)𝑑𝑑𝑑𝑑�

2 

[3], which approximates the 3-dB bandwidth of the APD. The point being made here is that 𝐵𝐵c is calculated 
solely from the mean impulse-response function and it does not capture the statistical correlation between the 
gain and the buildup time. 

In contrast, if the exact expression for the photocurrent variance is used 𝑞𝑞 �𝜂𝜂𝜂𝜂
ℎ𝜈𝜈
� × ∫  ∞

−∞ �𝐼𝐼p2(𝑡𝑡)�𝑑𝑑𝑑𝑑, then we can 

continue to conveniently express the shot-noise variance in the customary form of 2𝑞𝑞𝐵𝐵sneq⟨𝐺𝐺⟩2𝐹𝐹𝐹𝐹𝐹𝐹/
ℎ𝜈𝜈 provided that we use the correct bandwidth 𝐵𝐵sneq, which we term the shot-noise-equivalent bandwidth. This 
leads to the definition of 𝐵𝐵sneq as 
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𝐵𝐵sneq =
� �𝐼𝐼p2(𝑡𝑡)�
∞
−∞

𝑑𝑑𝑑𝑑

2𝑞𝑞2⟨𝐺𝐺⟩2𝐹𝐹
. (9) 

We emphasize that, in contrast to 𝐵𝐵c, 𝐵𝐵sneq includes the effects of fluctuations in the shape (e.g., gain and 
duration) of the APD's random impulse-response function. Moreover, a closed-form estimate of the second 
moment of the APD's impulse-response function can be obtained approximately using the parametric stochastic 
models for the impulse-response function introduced in Section III. For example, with the RD-R model 

�𝐼𝐼p2(𝑡𝑡)� = ∑  ∞
𝑚𝑚=1 ∫  ∞

𝑡𝑡 𝑞𝑞2𝑚𝑚2𝜏𝜏−2 ∂
∂𝜏𝜏
𝑓𝑓𝐺𝐺,𝑇𝑇(𝑚𝑚, 𝜏𝜏)d𝜏𝜏, 𝑡𝑡 ≥ 0 (10) 

and the expression for 𝐵𝐵sneq can be simplified to 

𝐵𝐵sneq =
�𝐺𝐺
2

𝑇𝑇 �

2⟨𝐺𝐺⟩2𝐹𝐹
≡

�𝐺𝐺
2

𝑇𝑇 �

2⟨𝐺𝐺2⟩
 (11) 

which can be readily evaluated using our knowledge of the joint distribution 𝑓𝑓𝐺𝐺,𝑇𝑇 obtained in Section II. 

The point of the preceding analysis is that, to incorporate the effect of statistical correlation between the APD's 
gain and buildup time on the signal-to-noise ratio (SNR) of the photocurrent, we must use 𝐵𝐵sneq in place of B3-

dB in the customary SNR expression 𝜂𝜂𝜂𝜂
2ℎ𝜈𝜈𝜈𝜈𝐵𝐵3-dB

. 

We have evaluated the shot-noise-equivalent bandwidth 𝐵𝐵sneq for GaAs APDs, for various widths of the 
multiplication layer, and compared it with 𝐵𝐵c taken as the 3-dB bandwidth. Fig. 4 (upper curve) shows the 

ratio 𝑟𝑟 = 𝐵𝐵sneq
𝐵𝐵c

as a function of the width of the multiplication layer for a fixed mean gain of ⟨𝐺𝐺⟩ = 10. Notably, 

the shot-noise-equivalent bandwidth exceeds the 3-dB bandwidth by approximately 30%. Thus, our calculations 
show that the 3-dB bandwidth, which is customarily used in calculating the shot-noise variance, leads to tangible 
underestimation of the shot-noise variance. This is primarily a result of ignoring the statistical correlation 
between the buildup time and the gain, or equivalently, it results from ignoring the uncertainty in the shape of 
the impulse-response function. 

SECTION IV. Receiver-Performance Analysis 
In this section, we investigate the effect of the correlation between the buildup time and the gain on the 
performance of an APD-based receiver in a direct-detection OOK optical communication system. Since we are 
particularly interested in the performance at high transmission speeds, we will assume that the buildup time 
dominates the RC effects and governs the receiver bandwidth characteristics. We first consider the SNR for the 
output of an integrate-and-dump receiver in the presence of ISI, Johnson noise, and buildup-time and gain 
uncertainties of the APD. Subsequently, we will examine the receiver sensitivity at high transmission speeds. Our 
analysis will ignore optical pulse broadening and dispersion effects. 

A. Statistics of the Photocurrent and the Integrate-and-Dump Output 
Consider an arbitrary bit of duration 𝑇𝑇b from a stream of optical pulses, and let 𝐼𝐼(𝑡𝑡) denote the photocurrent in 
such a bit. The photocurrent 𝐼𝐼(𝑡𝑡) contains two components: 𝐼𝐼𝑐𝑐(𝑡𝑡), the component due to photons occurring in 
the present bit, and 𝐼𝐼ISI(𝑡𝑡), the ISI component, which is due to the photons that had arrived in previous bits. 
More precisely, if we represent the photon arrival times by the sequence {𝑡𝑡𝑖𝑖} and assume that the current bit 
extends from 0 to 𝑇𝑇b, then for 0 ≤ 𝑡𝑡 ≤ 𝑇𝑇b, the photocurrent can be written as 



𝐼𝐼(𝑡𝑡) = ∑  𝑡𝑡𝑖𝑖<0 𝐼𝐼𝑝𝑝𝑖𝑖(𝑡𝑡 − 𝑡𝑡𝑖𝑖) + ∑  0≤𝑡𝑡𝑖𝑖<𝑡𝑡 𝐼𝐼𝑝𝑝𝑖𝑖(𝑡𝑡 − 𝑡𝑡𝑖𝑖)

=△ 𝐼𝐼ISI(𝑡𝑡) + 𝐼𝐼c(𝑡𝑡)
 (12) 

where 𝐼𝐼𝑝𝑝𝑖𝑖(𝑡𝑡 − 𝑡𝑡𝑖𝑖) is the impulse-response function induced by a photon absorption at time 𝑡𝑡𝑖𝑖. Note 
that 𝐼𝐼c(𝑡𝑡) and 𝐼𝐼ISI(𝑡𝑡)are statistically independent since they correspond to disjoint and independent sets of 

photon absorptions. Suppose that photons are absorbed at a rate of 𝜙𝜙(𝜏𝜏) photons per second 𝜙𝜙(𝜏𝜏) = 𝜂𝜂𝜂𝜂(𝜏𝜏)
ℎ𝜈𝜈

, 
where 𝑃𝑃(𝜏𝜏) is the received optical power at time 𝜏𝜏]. By using standard filtered-shot-noise analysis [26], we can 
express the mean of I(t) in terms of a convolution as follows: 

⟨𝐼𝐼(𝑡𝑡)⟩ = � �𝐼𝐼p(𝑡𝑡 − 𝜏𝜏)�
0

−∞
𝜙𝜙(𝜏𝜏)𝑑𝑑𝑑𝑑 + � �𝐼𝐼p(𝑡𝑡 − 𝜏𝜏)�

𝑡𝑡

0
𝜙𝜙(𝜏𝜏)d𝜏𝜏

=△ ⟨𝐼𝐼ISI(𝑡𝑡)⟩ + ⟨𝐼𝐼c(𝑡𝑡)⟩.
.(13) 

To see the maximum ISI effect, we consider the case for which all the bits prior to the current bit are on, 
i.e., 𝜙𝜙(𝜏𝜏) ≡ 𝜙𝜙1, for all 𝜏𝜏, where 𝜙𝜙1 is the photon absorption rate in a pulse. It follows that 

⟨𝐼𝐼c(𝑡𝑡)⟩ = 𝜙𝜙1 ��𝐼𝐼p(𝑡𝑡 − 𝜏𝜏)�
𝑡𝑡

0

𝑑𝑑𝑑𝑑 = 𝜙𝜙1 ��𝐼𝐼p(𝜏𝜏)�
𝑡𝑡

0

𝑑𝑑𝑑𝑑

⟨𝐼𝐼ISI(𝑡𝑡)⟩ = 𝜙𝜙1 ��𝐼𝐼p(𝑡𝑡 − 𝜏𝜏)�
0

−∞

𝑑𝑑𝑑𝑑 = 𝜙𝜙1 ��𝐼𝐼p(𝜏𝜏)�
∞

𝑡𝑡

𝑑𝑑𝑑𝑑.

 

The photocurrent 𝐼𝐼(𝑡𝑡)is fed into a bit integrator that yields the integral of the photocurrent synchronously over 
each bit of duration 𝑇𝑇b. The integral is used to detect the information (0 or 1) modulated with the incident 
optical sequences. We denote the output of the integrate-and-dump unit by Γ = ∫  𝑇𝑇b

0 𝐼𝐼(𝑡𝑡)𝑑𝑑𝑑𝑑, which can be 
further decomposed [see (12) –(15)] into two parts: Γ = Γc + ΓISI. The first component is the net signal resulting 
from the photocurrent due to the absorbed photons in the present bit, and the second component corresponds 
to ISI resulting from the photocurrent due to the absorbed photons in the previous bits. The means of Γ, Γc, 
and ΓISI are, respectively 

⟨Γc⟩ = 𝜙𝜙1 �  

𝑇𝑇b

0

��𝐼𝐼p(𝑡𝑡 − 𝜏𝜏)�
𝑡𝑡

0

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

⟨ΓISI⟩ = 𝜙𝜙1 �  

𝑇𝑇b

0

��𝐼𝐼p(𝑡𝑡 − 𝜏𝜏)�
0

−∞

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 

and 

⟨Γ⟩ = 𝜙𝜙1 ∫  𝑇𝑇b
0 � �𝐼𝐼p(𝑡𝑡 − 𝜏𝜏)�

𝑡𝑡

−∞
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑. (18) 

The variance of Γ is given by 

𝜎𝜎Γ2 = 𝜙𝜙1 ∫  𝑇𝑇b
0 ∫  𝑇𝑇b

0 ∫  𝜇𝜇∧𝜈𝜈
−∞ 𝑅𝑅𝐼𝐼p(𝜇𝜇 − 𝜏𝜏, 𝜈𝜈 − 𝜏𝜏)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (19) 
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where 𝜇𝜇 ∧ 𝜈𝜈 is the minimum of 𝜇𝜇 and 𝜈𝜈, 𝑅𝑅𝐼𝐼p(𝜇𝜇, 𝜈𝜈) is the autocorrelation function of the impulse-response 𝐼𝐼p(𝑡𝑡), 

which is defined as 𝑅𝑅𝐼𝐼p(𝜇𝜇, 𝜈𝜈) = 𝖤𝖤�𝐼𝐼p(𝜇𝜇 − 𝜉𝜉)𝐼𝐼p(𝜈𝜈 − 𝜉𝜉)� [the derivation of (19) utilizes standard analysis of filtered 
shot-noise processes [26] and will not be presented here). 

We now define the maximal-ISI SNR for the integrate-and-dump output as ⟨Γc⟩2/𝜎𝜎Γ2. In the next section, we 
specialize the SNR to two models for the APD's impulse-response function: the RD-R model and the DD-
exponential (DD-E) model. This will permit us to perform a comparison that shows the effect of the uncertainty 
in the shape of the impulse-response function on the receiver SNR. 

B. SNR for a DD-E Model 
We now use a DD-E model to approximate the APD's impulse-response function: 𝐼𝐼DD(𝑡𝑡) = 𝑞𝑞𝑞𝑞𝑞𝑞e−𝑏𝑏𝑏𝑏𝑢𝑢(𝑡𝑡) (we 
ignore the electronic charge). Here, 𝑏𝑏 is the fixed exponential rate consistent with the 3-dB bandwidth B3-dB of 
the APD [15], [16], namely, 𝑏𝑏 = 2𝜋𝜋𝐵𝐵3-dB. Note that in this model the statistical correlation between the buildup 
time and the gain is ignored. Clearly, the mean of this impulse-response function is ⟨𝐼𝐼DD(𝑡𝑡)⟩ = ⟨𝐺𝐺⟩𝑏𝑏e−𝑏𝑏𝑏𝑏𝑢𝑢(𝑡𝑡), 
and the autocorrelation function can also be calculated, yielding 

𝑅𝑅𝐼𝐼DD(𝜇𝜇, 𝜈𝜈) = ⟨𝐺𝐺2⟩𝑏𝑏2e−𝑏𝑏(𝜇𝜇+𝜈𝜈)𝑢𝑢(𝜇𝜇)𝑢𝑢(𝜈𝜈). 

We now substitute ⟨𝐼𝐼DD(𝑡𝑡)⟩ and 𝑅𝑅𝐼𝐼DD(𝜇𝜇, 𝜈𝜈) into (16) and (19), respectively, and obtain 

⟨Γc⟩ = 𝜙𝜙1⟨𝐺𝐺⟩ �𝑇𝑇b −
1
𝑏𝑏

(1 − e−𝑏𝑏𝑇𝑇b)�

𝜎𝜎Γ2 = 𝜙𝜙1⟨𝐺𝐺2⟩ �𝑇𝑇b −
1
𝑏𝑏

(1 − e−𝑏𝑏𝑇𝑇b)� .
 

Note that only the marginal statistics for the random variable 𝐺𝐺 are used in above equations. Finally, we 
replace 𝑏𝑏 by 2𝜋𝜋𝐵𝐵3-dB and obtain 

SNRDD = 𝜙𝜙1𝑇𝑇b
𝐹𝐹

�2𝜋𝜋𝑇𝑇b𝐵𝐵3−dB−1+e
−2𝜋𝜋𝑇𝑇b𝐵𝐵3-dB

2𝜋𝜋𝑇𝑇b𝐵𝐵3-dB
� .(20) 

Note that the first fraction is the SNR of an instantaneous detector and the second fraction is a scaling factor 
accounting for ISI effects. 

C. SNR for the RD-R Model 
As introduced in Section III, the RD-R parametric model for the random impulse-response function is 

𝐼𝐼RD(𝑡𝑡) = �
𝐺𝐺
𝑇𝑇�

{𝑢𝑢(𝑡𝑡) − 𝑢𝑢(𝑡𝑡 − 𝑇𝑇)}. 

Since the first moment ⟨𝐼𝐼RD(𝑡𝑡)⟩ and the second moment �𝐼𝐼RD2 (𝑡𝑡)� of the impulse-response function (below 
avalanche breakdown) are known to decay exponentially at the same rate [15], 𝑏𝑏se is referred to the decay rate 
(we will see later that 𝑏𝑏se is related with 𝐵𝐵sneq). We approximate them by 

⟨𝐼𝐼RD(𝑡𝑡)⟩ ≈ 𝑎𝑎e−𝑏𝑏se𝑡𝑡and�𝐼𝐼RD2 (𝑡𝑡)� ≈ 𝑐𝑐e−𝑏𝑏se𝑡𝑡 .(21) 

If we substitute these approximations in (16), we obtain 
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⟨Γc⟩ = 𝜙𝜙 𝑎𝑎
𝑏𝑏se
�𝑇𝑇b −

1
𝑏𝑏se

(1 − e−𝑏𝑏se𝑇𝑇b)� .(22) 

Next, to calculate the second moment of the photocurrent in (19), we need to first determine the 
autocorrelation function 𝑅𝑅𝐼𝐼RD(𝜇𝜇, 𝜈𝜈) = 𝖤𝖤[𝐼𝐼RD(𝜇𝜇)𝐼𝐼RD(𝜈𝜈)], which can be approximated by (given in Appendix A) 

𝑅𝑅𝐼𝐼RD(𝜇𝜇, 𝜈𝜈) ≈ 𝑐𝑐e−𝑏𝑏se(𝜇𝜇∨𝜈𝜈).(23) 

If we now substitute the above autocorrelation function into (19), we obtain the expression for the variance of 
the receiver output 

𝜎𝜎Γ2 ≈ 𝜙𝜙1
2𝑐𝑐
𝑏𝑏se2
�𝑇𝑇b −

1
𝑏𝑏se

(1 − e−𝑏𝑏se𝑇𝑇b)� (24) 

and the SNR according to the RD-R model can be cast as 

SNRRD = ⟨Γc⟩2

𝜎𝜎Γ
2 =

𝜙𝜙 𝑎𝑎2

𝑏𝑏se2
�𝑇𝑇b−

1
𝑏𝑏se

�1−e−𝑏𝑏se𝑇𝑇b��
2𝑐𝑐
𝑏𝑏se2

. (25) 

Our next step is to explore the physical meaning of the parameters 𝑎𝑎, 𝑏𝑏se, and 𝑐𝑐 based on our rectangular 
model. To do so, we note that 

∫ ⟨𝐼𝐼RD(𝑡𝑡)⟩∞
0 𝑑𝑑𝑑𝑑 ≈ ∫  ∞

0 𝑎𝑎e−𝑏𝑏se𝑡𝑡𝑑𝑑𝑑𝑑 = 𝑎𝑎
𝑏𝑏se

and

�∫  ∞
0 𝐼𝐼RD(𝑡𝑡)𝑑𝑑𝑑𝑑� = �� 𝐺𝐺

𝑇𝑇

∞

0
{𝑢𝑢(𝑡𝑡) − 𝑢𝑢(𝑡𝑡 − 𝑇𝑇)}𝑑𝑑𝑑𝑑� = ⟨𝐺𝐺⟩ (26)(27) 

and use the fact that the left sides of the above two equations are equal to conclude that 𝑎𝑎
𝑏𝑏se

≈ ⟨𝐺𝐺⟩. Similarly 

∫ �𝐼𝐼RD2 (𝑡𝑡)�∞
0 𝑑𝑑𝑑𝑑 ≈ ∫  ∞

0 𝑐𝑐e−𝑏𝑏se𝑡𝑡𝑑𝑑𝑑𝑑 = 𝑐𝑐
𝑏𝑏se

and

�∫  ∞
0 𝐼𝐼RD2 (𝑡𝑡)𝑑𝑑𝑑𝑑� = �� 𝐺𝐺2

𝑇𝑇2

∞

0
{𝑢𝑢(𝑡𝑡) − 𝑢𝑢(𝑡𝑡 − 𝑇𝑇)𝑑𝑑𝑑𝑑}� = �𝐺𝐺

2

𝑇𝑇
� (28)(29) 

which results in 𝑐𝑐
𝑏𝑏se

≈ �𝐺𝐺
2

𝑇𝑇
�. 

We now proceed to characterize 𝑏𝑏se. Note that the approximation of ⟨𝐼𝐼RD(𝑡𝑡)⟩ ≈ 𝑎𝑎e−𝑏𝑏se𝑡𝑡  is based on the 
rectangular parameterized model, which takes into account the correlation of 𝐺𝐺 and 𝑇𝑇. Thus, the effective 

bandwidth rendered by its shape (which is 𝑏𝑏se
4

) should be identical to the shot-noise-equivalent 

bandwidth 𝐵𝐵sneq. We therefore have 𝑏𝑏se = 4𝐵𝐵sneq. By substituting the approximation 𝑎𝑎
𝑏𝑏se

≈ ⟨𝐺𝐺⟩ and 𝑏𝑏se =

4𝐵𝐵sneq in (25), we can recast the SNR as 

SNRRD = 𝜙𝜙1⟨𝐺𝐺⟩2

�𝐺𝐺
2
𝑇𝑇 �

�4𝑇𝑇b𝐵𝐵sneq−1+e−4𝑇𝑇b𝐵𝐵sneq�
2

. (30) 
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Note that the joint statistics of 𝐺𝐺 and 𝑇𝑇 are used in the above equation. Finally, recall that 𝐵𝐵sneq =

⟨𝐺𝐺2/𝑇𝑇⟩/2⟨𝐺𝐺⟩2𝐹𝐹 (see Section III-A) and define a correction factor 𝜅𝜅 = 4𝐵𝐵sneq
2𝜋𝜋𝐵𝐵3-dB

 to obtain 

SNRRD = 𝜙𝜙1𝑇𝑇b
𝐹𝐹

�2𝜋𝜋𝜋𝜋𝑇𝑇b𝐵𝐵3-dB−1+e−2𝜋𝜋𝜋𝜋𝑇𝑇b𝐵𝐵3-dB

2𝜋𝜋𝜋𝜋𝑇𝑇b𝐵𝐵3-dB
� .(31) 

In the above formula, the first fraction is the SNR for an instantaneous detector for which case the ISI is absent; 
the second fraction represents the correction factor due to ISI. Note that the statistical correlation between the 
buildup time and the gain is incorporated through the parameter 𝐵𝐵sneq. 

More general expressions for the SNR, taking into account the randomness of the sequence of 1's and 0's (as in 
an OOK setting), are derived in Appendix B. Results corresponding to these generalized expressions for the SNR 
will be in the next section. 

D. Results: ISI and Gain–Buildup-Time Correlation Effects on the SNR 
We now examine the ISI correction factor of the SNR expression given by (31) (the quantity in parenthesis) and 
observe that it monotonically varies from 1 to 0 as the product 𝑇𝑇b𝐵𝐵sneq, which is a measure of the transmission 
speed relative to the APD's buildup time, varies from ∞ to 0. Recall that it was shown in Section III-A that the 

ratio 𝑟𝑟 = 𝐵𝐵sneq
𝐵𝐵3-dB

 is approximately 1.3 (for the APD parameters considered), which implies that 𝜅𝜅 < 1. 

Consequently, by comparing the SNR expression given in (20)(which corresponds to the case when the 
correlation between the gain and the buildup time is ignored) and SNRRD, and by using the monotonicity of the 
ISI factor, we conclude that SNRDD < SNRRD. Namely, the correlation between the gain and buildup time 
adversely affects the SNR. In what follows, we will show that this effect becomes more significant at high 
transmission speeds. 

Fig. 8 depicts SNRDD and SNRRD as a function of the transmission rates. The signal-to-noise expressions are 
given in Appendix B [see (53), (54), (59), and (60)]. It is assumed that a GaAs APD is being used with 
multiplication-layer width of 𝑤𝑤 = 100nm and an average gain of ⟨𝐺𝐺⟩ = 10. Moreover, the average number of 
photons absorbed by the APD is assumed to be 1000 per “1” bit, and the Johnson-noise parameter is 𝜎𝜎J =
500 noise counts per bitnoise counts per bit. We observe that as the transmission rate increases, the effect of 
ISI becomes progressively more detrimental to the SNR. It is also shown that the relative separation 
between SNRRD and SNR increases with the transmission rate. 

 
Fig. 8. SNR of the output of the integrate-and-dump receiver as a function of the digital transmission speed for a GaAs APD 
with a 100-nm multiplication layer and a theoretical mean gain of 10. The solid curve corresponds to the case where the 
RD-R model is used for the APD's impulse-response function, while the dashed curve corresponds to the DD-E model. The 
average number of photons is fixed to 1000 photons/bit and the Johnson noise is selected so that 𝜎𝜎J = 500noise counts/bit. 
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SECTION V. BER and Receiver Sensitivity 
In this section, we investigate the effect of the statistical correlation between the gain and buildup time on the 
receiver performance. We use the same APD parameters as those used in the previous section. The APD's 3-dB 
bandwidth is found to be 𝐵𝐵3-dB = 29 GHz. We first consider the RD-R model. Let 𝜇𝜇0,RD, 𝜎𝜎0,RD

2 , 𝜇𝜇1,RD, 
and 𝜎𝜎1,RD

2  denote the mean and variance corresponding to the cases for which the current bit is 0 and 1, 
respectively. These parameters are (see Appendix B for derivation) 

𝜇𝜇0,RD =
1
2
𝑛𝑛0⟨𝐺𝐺⟩
𝜅𝜅𝜅𝜅 �1 − e−𝜅𝜅𝜅𝜅�

𝜎𝜎0,RD
2 =

1
4
𝑛𝑛02⟨𝐺𝐺⟩2

𝜅𝜅𝜆𝜆2
(1 − e−𝜅𝜅𝜅𝜅)4

(1 − e−2𝜅𝜅𝜅𝜅)

+
𝑛𝑛0⟨𝐺𝐺2⟩

2𝜅𝜅𝜅𝜅 �1 − e−𝜅𝜅𝜅𝜅 − 𝜅𝜅𝜅𝜅e−𝜅𝜅𝜅𝜅� + 𝜎𝜎J2

𝜇𝜇1,RD = 𝜇𝜇0,RD +
𝑛𝑛0⟨𝐺𝐺⟩
𝜅𝜅𝜅𝜅 �𝜅𝜅𝜅𝜅 − 1 + e−𝜅𝜅𝜅𝜅�

𝜎𝜎1,RD
2 = 𝜎𝜎0,RD

2 +
𝑛𝑛0⟨𝐺𝐺2⟩
𝜅𝜅𝜅𝜅 �𝜅𝜅𝜅𝜅 − 2 + 2e−𝜅𝜅𝜅𝜅 + 𝜅𝜅𝜅𝜅e−𝜅𝜅𝜅𝜅�

 

 

where 𝜆𝜆 = 2𝜋𝜋𝑇𝑇b𝐵𝐵3-dB and 𝜅𝜅 is the correction factor defined earlier. Note that 𝜇𝜇0,RD and 𝜎𝜎0,RD
2  (less 𝜎𝜎J2) are 

entirely due to ISI. 

In contrast to the above statistics, the corresponding quantities for the DD-E model for which the correlation 
between the gain and the buildup time is ignored can be found to be (we omit the derivation) 

𝜇𝜇0,DD =
1
2
𝑛𝑛0⟨𝐺𝐺⟩
𝜆𝜆 �1 − e−𝜆𝜆�

𝜎𝜎0,DD
2 =

1
4
𝑛𝑛02⟨𝐺𝐺⟩2

𝜆𝜆2
(1 − e−𝜆𝜆)4

(1 − e−2𝜆𝜆)

+
𝑛𝑛0⟨𝐺𝐺2⟩
𝜆𝜆

(1 − e−𝜆𝜆)2 + 𝜎𝜎J2

𝜇𝜇1,DD = 𝜇𝜇0,DD +
𝑛𝑛0⟨𝐺𝐺⟩
𝜆𝜆 �𝜆𝜆 − 1 + e−𝜆𝜆�

𝜎𝜎1,DD
2 = 𝜎𝜎0,DD

2 +
𝑛𝑛0⟨𝐺𝐺2⟩

2𝜆𝜆
(2𝜆𝜆 − (1 − e−𝜆𝜆)2).

 

 

As before, 𝜇𝜇0,DD and 𝜎𝜎0,DD
2  (less 𝜎𝜎J2) are contributions of ISI. 

To simplify the analysis, we will approximate the output of the receiver by a Gaussian random variable. The BER 
is then obtained according to 



BER ≈ 1
2
�erfc �𝜃𝜃−𝜇𝜇0,RD

√2𝜎𝜎0,RD
� + erfc �𝜇𝜇1,RD−𝜃𝜃

√2𝜎𝜎1,RD
�� (40) 

 

where 𝜃𝜃 is the optimal decision threshold. Fig. 9 depicts the BER as a function of the transmission rate calculated 
for both the DD-E and RD-R models. Here, 𝑛𝑛0 is assumed 1000 photons/bit and the Johnson noise is held 
constant at 𝜎𝜎J = 500noise counts/bit. The adverse effect of the correlation between the gain and the buildup 
time is evident in this plot, as seen by the elevated BER curve in the RD-R model case compared to that obtained 
for the DD-E model. This behavior is also consistent with the SNR plots shown in Fig. 8. 

 
Fig. 9. BER as a function of the transmission speed using the RD-R model (solid curve) and the DD-E model (dashed curve). 
The mean gain of the APD is assumed as 10 and the average number of photons per bit is fixed to 1000 photons/bit. The 
Johnson noise is selected so that 𝜎𝜎J = 500noise counts/bit. 

 

Finally, Fig. 10 shows the receiver sensitivity, defined as the minimum 𝑛𝑛0 needed to achieve a BER of 10−9. As 
shown in the figure, the entire transmission range can be split into two parts: a Johnson-noise-limited regime at 
low transmission speeds and an ISI-limited regime at high transmission speeds. The adverse effect of the 
correlation between the gain and the buildup time is observed in the ISI-limited regime through the higher 
sensitivity predicted by the RD-R model compared to that obtained for the DD-E model. For instance, we 
observe that, in comparison to the predictions of the RD-R model, the DD-E model results in underestimating 
the sensitivity by 3.4% at a transmission speed of 10 Gb/s, by 7.2% at 15 Gb/s, and by 26% at 20 Gb/s. Thus, the 
effect of neglecting the statistical correlation between build time and the gain in the receiver-performance 
analysis leads to an underassessment of ISI, which, in turn, leads to an overly optimistic assessment of the 
receiver performance. Moreover, this trend intensifies progressively as transmission rate increases. 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/50/33548/1593745/1593745-fig-9-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/50/33548/1593745/1593745-fig-9-source-large.gif
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Fig. 10. Receiver sensitivity as a function of the transmission speed using the RD-R model (solid curve) and the DD-E model 
(dashed curve). The parameters of the APD and Johnson noise are the same as in Fig. 9. 
 

SECTION VI. Conclusion 
The statistical correlation between the random gain and the random avalanche buildup time in APDs is 
determined for the first time, and the effect of the correlation on the receiver performance is established. We 

have shown that, as a result of this correlation, the photocurrent SNR is diminished by a factor 𝑟𝑟 = 𝐵𝐵sneq
𝐵𝐵3-dB

, 

where 𝐵𝐵3-dB is the APD's 3-dB bandwidth and 𝐵𝐵sneq is the shot-noise-equivalent bandwidth, which takes into 

account the statistical correlation between the gain and the buildup time and defined by 𝐵𝐵sneq =
�𝐺𝐺
2

𝑇𝑇 �

2⟨𝐺𝐺2⟩
. 

Thus, 𝐵𝐵sneq is precisely the bandwidth that needs to be used in calculating the shot-noise variance when 

photodetection is achieved by means of an APD. For example, our calculations show that 
𝐵𝐵sneq
𝐵𝐵3-dB

is approximately 

1.3 for a GaAs APD with a multiplication region in the range 30–250 nm. 

Additionally, we have derived compact expressions for the output of an integrate-and-dump receiver in an OOK 
direct-detection system that includes the effects of ISI and the statistical correlation between the gain and the 
buildup time. This expression is similar to its counterpart when the gain–buildup-time correlation is ignored, but 

it includes a correction factor, 𝜅𝜅 = 4𝐵𝐵sneq
2𝜋𝜋𝐵𝐵3-dB

, that explicitly quantifies the SNR degradation due to this correlation. 

Notably, our results predict that this correlation adversely affects ISI noise, and hence receiver sensitivity. 
Moreover, such an adverse effect becomes progressively more significant as the transmission rate increases. 

The analysis in this paper is carried out under the simplifying assumptions of a constant electric field in the APD's 
multiplication region and a constant drift velocity for carriers. The analysis, however, includes the effects of 
dead space and utilizes nonlocalized ionization coefficients. Generalization to nonuniform fields, variable carrier 
drift speed, and heterostructure APDs can be carried out in a straightforward fashion using the techniques 
recently reported in [20] and [29]. 

Appendix Autocorrelation Function of the Rd Parametric Model 
For the RD-R model, the autocorrelation function can be expressed as 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/50/33548/1593745/1593745-fig-10-source-large.gif
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𝑅𝑅𝐼𝐼RD(𝜇𝜇, 𝜈𝜈)

= �
𝐺𝐺
𝑇𝑇

{𝑢𝑢(𝜇𝜇) − 𝑢𝑢(𝜇𝜇 − 𝑇𝑇)}
𝐺𝐺
𝑇𝑇

{𝑢𝑢(𝜈𝜈)− 𝑢𝑢(𝜈𝜈 − 𝑇𝑇)}�

= �  
∞

𝑚𝑚=1

�
𝑚𝑚2

𝜏𝜏2

∞

0

{𝑢𝑢(𝜇𝜇) − 𝑢𝑢(𝜇𝜇 − 𝜏𝜏)}

× {𝑢𝑢(𝜈𝜈) − 𝑢𝑢(𝜈𝜈 − 𝜏𝜏)}
∂
∂𝜏𝜏 𝑓𝑓𝐺𝐺,𝑇𝑇(𝑚𝑚, 𝜏𝜏)𝑑𝑑𝑑𝑑.

 

 

Note that the integrand is zero unless 𝜏𝜏 ≥ 𝜇𝜇 ∨ 𝜈𝜈 (the notation 𝜇𝜇 ∨ 𝜈𝜈 denotes the maximum of 𝜇𝜇 and 𝜈𝜈). 
Therefore, the above integral can be rewritten compactly as 

𝑅𝑅𝐼𝐼RD(𝜇𝜇, 𝜈𝜈) = ∑  ∞
𝑚𝑚=1 � 𝑚𝑚2

𝜏𝜏2

∞

𝜇𝜇∨𝜈𝜈

∂
∂𝜏𝜏
𝑓𝑓𝐺𝐺,𝑇𝑇(𝑚𝑚, 𝜏𝜏)𝑑𝑑𝑑𝑑.(41) 

In particular, the mean of 𝐼𝐼RD2 (𝑡𝑡) is given by 

�𝐼𝐼RD2 (𝑡𝑡)� = 𝑅𝑅𝐼𝐼RD(𝑡𝑡, 𝑡𝑡).(42) 

We now recall the approximation �𝐼𝐼RD2 (𝑡𝑡)� ≈ 𝑐𝑐e−𝑏𝑏se𝑡𝑡and compare (41) and (42), and we conclude 
that 𝑅𝑅𝐼𝐼RD(𝜇𝜇, 𝜈𝜈) can be approximated by 

𝑅𝑅𝐼𝐼RD(𝜇𝜇, 𝜈𝜈) ≈ 𝑐𝑐e−𝑏𝑏se(𝜇𝜇∨𝜈𝜈).(43) 

Statistics of Receiver Output in the Presence of Isi 
We assume that 0 and 1 occur with equal probability in the transmitted binary sequence 𝐼𝐼b(𝑛𝑛), and for 
convenience, we extend 𝐼𝐼b(𝑛𝑛)to 𝐼𝐼b(𝑡𝑡) (where 𝑡𝑡 is a continuous variable) by 

𝐼𝐼b(𝑡𝑡) = 𝐼𝐼b(𝑛𝑛),if𝑛𝑛𝑇𝑇b ≤ 𝑡𝑡 < (𝑛𝑛 + 1)𝑇𝑇b 

and the (absorbed) optical signal at the receiver can be represented by 𝜙𝜙(𝑡𝑡) = 𝜙𝜙1𝐼𝐼b(𝑡𝑡). Note that the 
covariance function and the mean of 𝐼𝐼b(𝑡𝑡) are 

𝜎𝜎𝐼𝐼b
2 (𝜉𝜉1, 𝜉𝜉2) = �

1
4 ,  if 𝑛𝑛𝑇𝑇b ≤ 𝜉𝜉1, 𝜉𝜉2 < (𝑛𝑛 + 1)𝑇𝑇b,

  for 𝑛𝑛 = −1,−2,−3, …
0, otherwise

⟨𝐼𝐼b(𝑡𝑡)⟩ = �

1
2 ,  if 𝑡𝑡 ≤ 0
0,  if 𝑡𝑡 > 0 and current bit is 0 
1,  if 𝑡𝑡 > 0 and current bit is 1.
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The mean value of the receiver output can be calculated by 

⟨Γ⟩ = 𝜙𝜙1 �  

𝑇𝑇b

0

��𝐼𝐼p(𝑡𝑡 − 𝜉𝜉)�
𝑡𝑡

−∞

⟨𝐼𝐼b(𝜉𝜉)⟩𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑. 

If the current bit being sent is zero, then ⟨𝐼𝐼b(𝜉𝜉)⟩ = 0 for 0 ≤ 𝜉𝜉 < 𝑇𝑇b, and 

𝜇𝜇0 = 𝜙𝜙1
2 ∫  𝑇𝑇b

0 � �𝐼𝐼p(𝑡𝑡 − 𝜉𝜉)�
0

−∞
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑.(44) 

On the other hand, if the current bit being sent is one, then ⟨𝐼𝐼b(𝜉𝜉)⟩ = 1 for 0 ≤ 𝜉𝜉 < 𝑇𝑇b, and 

𝜇𝜇1 = 𝜙𝜙1
2 ∫  𝑇𝑇b

0 � �𝐼𝐼p(𝑡𝑡 − 𝜉𝜉)�
0

−∞
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝜙𝜙1 ∫  𝑇𝑇b

0 � �𝐼𝐼p(𝑡𝑡 − 𝜉𝜉)�
𝑡𝑡

0
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝜇𝜇0 + 𝜙𝜙1 ∫  𝑇𝑇b
0 � �𝐼𝐼p(𝑡𝑡 − 𝜉𝜉)�

𝑡𝑡

0
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑.

 (45) 

To calculate the variance of Γ, we will utilize standard analysis of filtered shot-noise processes [26] while 
considering the stochastic nature of the transmitted signal 𝐼𝐼b(𝑡𝑡). This yields 

⟨Γ2⟩ = ∫  𝑇𝑇b
0 ∫  𝑇𝑇b

0 ∫  𝜇𝜇
−∞ ∫  𝜈𝜈

−∞
𝜉𝜉1≠𝜉𝜉2

�𝐼𝐼p(𝜇𝜇 − 𝜉𝜉1)𝜙𝜙1(𝜉𝜉1)𝐼𝐼p(𝜈𝜈 − 𝜉𝜉2)𝜙𝜙1(𝜉𝜉2)�

× 𝑑𝑑𝜉𝜉1𝑑𝑑𝜉𝜉2𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
+∫  𝑇𝑇b

0 ∫  𝑇𝑇b
0 � �𝐼𝐼p(𝜇𝜇 − 𝜉𝜉)𝐼𝐼p(𝜈𝜈 − 𝜉𝜉)𝜙𝜙1(𝜉𝜉)�

𝜇𝜇∧𝜈𝜈

−∞
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝜙𝜙12 ∫  𝑇𝑇b
0 ∫  𝑇𝑇b

0 ∫  𝜇𝜇
−∞ ∫  𝜈𝜈

−∞
𝜉𝜉1≠𝜉𝜉2

�𝐼𝐼p(𝜇𝜇 − 𝜉𝜉1)� �𝐼𝐼p(𝜈𝜈 − 𝜉𝜉2)�

× ⟨𝐼𝐼b(𝜉𝜉1)𝐼𝐼b(𝜉𝜉2)⟩𝑑𝑑𝜉𝜉1𝑑𝑑𝜉𝜉2𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

+𝜙𝜙1 ∫  𝑇𝑇b
0 ∫  𝑇𝑇b

0 � �𝐼𝐼p(𝜇𝜇 − 𝜉𝜉)𝐼𝐼p(𝜈𝜈 − 𝜉𝜉)�
𝜇𝜇∧𝜈𝜈

−∞
⟨𝐼𝐼b(𝜉𝜉)⟩𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑.

. 

Since ⟨𝐼𝐼b(𝜉𝜉1)𝐼𝐼b(𝜉𝜉2)⟩ = ⟨𝐼𝐼b(𝜉𝜉1)⟩⟨𝐼𝐼b(𝜉𝜉2)⟩+ 𝜎𝜎𝐼𝐼b
2 (𝜉𝜉1, 𝜉𝜉2), and since the set {(𝜉𝜉1, 𝜉𝜉2): 𝜉𝜉1 ≠ 𝜉𝜉2}has zero area, we 

obtain 

𝜎𝜎Γ2 = 𝜙𝜙12 ∫  𝑇𝑇b
0 ∫  𝑇𝑇b

0 ∫  𝜇𝜇
−∞ � �𝐼𝐼p(𝜇𝜇 − 𝜉𝜉1)�

𝜈𝜈

−∞
�𝐼𝐼p(𝜈𝜈 − 𝜉𝜉2)�

× 𝜎𝜎𝐼𝐼b(𝜉𝜉1, 𝜉𝜉2)𝑑𝑑𝜉𝜉1𝑑𝑑𝜉𝜉2𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

+𝜙𝜙1 ∫  𝑇𝑇b
0 ∫  𝑇𝑇b

0 ∫  𝜇𝜇∧𝜈𝜈
−∞ 𝑅𝑅𝐼𝐼p(𝜇𝜇 − 𝜉𝜉, 𝜈𝜈 − 𝜉𝜉)⟨𝐼𝐼b(𝜉𝜉)⟩𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑d𝜈𝜈.

 (46) 

We first consider the case for which the current bit is zero; in this case 

𝜎𝜎02 = 𝜙𝜙12

4 ∫  𝑇𝑇b
0 ∫  𝑇𝑇b

0 ∫  0
−∞ ∫  0

−∞ (𝜉𝜉1,𝜉𝜉2)∈𝔻𝔻
�𝐼𝐼p(𝜇𝜇 − 𝜉𝜉1)��𝐼𝐼p(𝜈𝜈 − 𝜉𝜉2)�𝑑𝑑𝜉𝜉1𝑑𝑑𝜉𝜉2𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

+ 𝜙𝜙1
2 ∫  𝑇𝑇b

0 ∫  𝑇𝑇b
0 ∫  0

−∞ 𝑅𝑅𝐼𝐼p(𝜇𝜇 − 𝜉𝜉, 𝜈𝜈 − 𝜉𝜉)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
 (47) 

 

where 𝔻𝔻 = {(𝜉𝜉1, 𝜉𝜉2):𝑛𝑛𝑇𝑇b ≤ 𝜉𝜉1, 𝜉𝜉2 < (𝑛𝑛 + 1)𝑇𝑇b, 𝑛𝑛 = −1,−2,−3, … }. 



Alternatively, if the current bit is one, then 𝜎𝜎𝐼𝐼b
2 (𝜉𝜉1, 𝜉𝜉2) = 0 for 0 ≤ 𝜉𝜉1, 𝜉𝜉2 < 𝑇𝑇b, and we obtain  

𝜎𝜎12 = 𝜙𝜙12

4 ∫  𝑇𝑇b
0 ∫  𝑇𝑇b

0 ∫  0
−∞ ∫  0

−∞
(𝜉𝜉1,𝜉𝜉2)∈𝔻𝔻

�𝐼𝐼p(𝜇𝜇 − 𝜉𝜉1)��𝐼𝐼p(𝜈𝜈 − 𝜉𝜉2)�𝑑𝑑𝜉𝜉1𝑑𝑑𝜉𝜉2𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

+ 𝜙𝜙1
2 ∫  𝑇𝑇b

0 ∫  𝑇𝑇b
0 ∫  0

−∞ 𝑅𝑅𝐼𝐼p(𝜇𝜇 − 𝜉𝜉, 𝜈𝜈 − 𝜉𝜉)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

+𝜙𝜙1 ∫  𝑇𝑇b
0 ∫  𝑇𝑇b

0 ∫  𝜇𝜇∧𝜈𝜈
0 𝑅𝑅𝐼𝐼p(𝜇𝜇 − 𝜉𝜉, 𝜈𝜈 − 𝜉𝜉)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝜎𝜎02 + 𝜙𝜙1 ∫  𝑇𝑇b
0 ∫  𝑇𝑇b

0 ∫  𝜇𝜇∧𝜈𝜈
0 𝑅𝑅𝐼𝐼p(𝜇𝜇 − 𝜉𝜉, 𝜈𝜈 − 𝜉𝜉)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑.

.(48) 

We next specialize these results to the DD-E model and RD-R models. For the DD-E model, we substitute the 
impulse-response function 𝐼𝐼DD(𝑡𝑡) = 𝑞𝑞𝑞𝑞𝑞𝑞e−𝑏𝑏𝑏𝑏and the autocorrelation function 𝑅𝑅𝐼𝐼DD(𝜇𝜇, 𝜈𝜈) =
⟨𝐺𝐺2⟩𝑏𝑏2e−𝑏𝑏(𝜇𝜇+𝜈𝜈) into (44), (45), (47), and (48), use 𝑏𝑏 = 2𝜋𝜋𝐵𝐵3-dB, and define 𝜆𝜆 = 2𝜋𝜋𝑇𝑇b𝐵𝐵3-dBto obtain 

𝜇𝜇0,DD = 1
2
𝑛𝑛0⟨𝐺𝐺⟩
𝜆𝜆

�1 − e−𝜆𝜆�

𝜎𝜎0,DD
2 = 1

4
𝑛𝑛02⟨𝐺𝐺⟩2

𝜆𝜆2
(1−e−𝜆𝜆)4

�1−e−2𝜆𝜆�

+ 𝑛𝑛0�𝐺𝐺2�
𝜆𝜆

(1 − e−𝜆𝜆)2 + 𝜎𝜎J2

𝜇𝜇1,DD = 𝜇𝜇0,DD + 𝑛𝑛0⟨𝐺𝐺⟩
𝜆𝜆

�𝜆𝜆 − 1 + e−𝜆𝜆�

𝜎𝜎1,DD
2 = 𝜎𝜎0,DD

2 + 𝑛𝑛0�𝐺𝐺2�
2𝜆𝜆

(2𝜆𝜆 − (1 − e−𝜆𝜆)2)

 (49)(50)(51)(52) 

where 𝑛𝑛0 is the average number of absorbed photons per “1” bit �𝜙𝜙1 = 𝑛𝑛0
𝑇𝑇b
� and 𝜎𝜎J is the Johnson-noise 

parameter. The general expressions of SNR and ISI for this RD-exponential model are given by 

SNRDD = (𝜇𝜇1,DD−𝜇𝜇0,DD)2

𝜎𝜎1,DD
2

ISIDD = 𝜎𝜎0,DD
2 − 𝜎𝜎J2.

.(53)(54) 

For the RD-R model, in particular, we substitute the approximations (21), (43), 𝑎𝑎
𝑏𝑏se

≈ ⟨𝐺𝐺⟩, and 𝑐𝑐
𝑏𝑏se

≈

�𝐺𝐺
2

𝑇𝑇
�into (44), (45), (47), and (48), use 𝑏𝑏se = 4𝐵𝐵sneq, 𝜅𝜅 = 4𝐵𝐵sneq

2𝜋𝜋𝐵𝐵3-dB
, and 𝜆𝜆 = 2𝜋𝜋𝑇𝑇b𝐵𝐵3-dB, and obtain 

𝜇𝜇0,RD = 1
2
𝑛𝑛0⟨𝐺𝐺⟩
𝜅𝜅𝜅𝜅

�1 − e−𝜅𝜅𝜅𝜅�

𝜎𝜎0,RD
2 = 1

4
𝑛𝑛02⟨𝐺𝐺⟩2

𝜅𝜅𝜆𝜆2
(1−e−𝜅𝜅𝜅𝜅)4

1−e−4𝜋𝜋𝜋𝜋𝑇𝑇b𝐵𝐵3-dB

+ 𝑛𝑛0�𝐺𝐺2�
2𝜅𝜅𝜅𝜅

�1 − e−𝜅𝜅𝜅𝜅 − 𝜅𝜅𝜅𝜅e−𝜅𝜅𝜅𝜅� + 𝜎𝜎J2

𝜇𝜇1,RD = 𝜇𝜇0,RD + 𝑛𝑛0⟨𝐺𝐺⟩
𝜅𝜅𝜅𝜅

�𝜅𝜅𝜅𝜅 − 1 + e−𝜅𝜅𝜅𝜅�

𝜎𝜎1,RD
2 = 𝜎𝜎0,RD

2 + 𝑛𝑛0�𝐺𝐺2�
𝜅𝜅𝜅𝜅

�𝜅𝜅𝜅𝜅 − 2 + 2e−𝜅𝜅𝜅𝜅 + 𝜅𝜅𝜅𝜅e−𝜅𝜅𝜅𝜅�.

.(55)(56)(57)(58) 

Finally, the general expressions of SNR and ISI for this RD-R model are given by 

https://ieeexplore.ieee.org/document/#deqn44
https://ieeexplore.ieee.org/document/#deqn45
https://ieeexplore.ieee.org/document/#deqn47
https://ieeexplore.ieee.org/document/#deqn48
https://ieeexplore.ieee.org/document/#deqn21
https://ieeexplore.ieee.org/document/#deqn43
https://ieeexplore.ieee.org/document/#deqn44
https://ieeexplore.ieee.org/document/#deqn45
https://ieeexplore.ieee.org/document/#deqn47
https://ieeexplore.ieee.org/document/#deqn48


SNRRD = (𝜇𝜇1,RD−𝜇𝜇0,RD)2

𝜎𝜎1,RD
2

ISIDD = 𝜎𝜎0,RD
2 − 𝜎𝜎J2.

 (59)(60) 
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