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Abstract: 
The large-deviation-based asymptotic-analysis and importance-sampling methods for computing bit-error 
probabilities for avalanche-photodiode (APD) based optical receivers, developed by Letaief and Sadowsky [IEEE 
Trans. Inform. Theory, vol. 38, pp. 1162-1169, 1992], are extended to include the effect of dead space, which is 
significant in high-speed APDs with thin multiplication regions. It is shown that the receiver's bit-error 
probability is reduced as the magnitude of dead space increases relative to the APD's multiplication-region 
width. The calculated error probabilities and receiver sensitivities are also compared with those obtained from 
the Chernoff bound. 
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SECTION I. Introduction 
Avalanche photodiodes (APDs) are often preferred over p-i-n photodiodes in high-speed receivers because of 
their internal optoelectronic gain, which results in converting each incoming photon, absorbed by the APD, into 
a cascade of electron-hole pairs [1]. This internal-gain mechanism results in an amplified photocurrent, which 
combats the Johnson noise present in the pre-amplifier stage of the receiver, thereby improving the receiver 
sensitivity drastically [1]. The optoelectronic gain results from the cascade (or avalanche) of carrier impact 
ionizations that take place in the high-field intrinsic multiplication layer of the APD. Due to its stochastic nature, 
however, this avalanche multiplication process is inherently noisy, resulting in random fluctuations in the gain 
and the time response of APDs [2], [3]. Moreover, following a photoexcitation, the avalanche-buildup time, 
which is the time required for the cascade of impact ionizations to complete, can be a limiting factor in modern 
transmission systems that operate near 10-Gbps transmission rates. Fortunately, APDs with thin multiplication 
layers (i.e., <200 nm) have been shown to offer reduced buildup times and reduced gain fluctuations [4], [5], 
making them suitable for high-speed optical receivers [1]. 

Indeed, it is known that the excess noise factor, which is a measure of gain uncertainty, is significantly lowered 
in thin APDs. This is known to be a result of the dead space, which is the minimum distance that a newly 
generated carrier must travel before becoming capable of impact ionizing [4]. Additionally, as the APD becomes 
thinner, dead space occupies a larger fraction of the multiplication region (e.g., 20–25%) and its effect on the 
gain statistics becomes progressively more substantial [4]. A key consequence of dead space is that the carrier 
multiplication process is no longer Markovian [6]. Therefore, the traditional theory for gain statistics in thick 
APDs, originally developed by McIntyre [7], is not applicable to thin APDs. Subsequently, a generalized theory, 
based on renewal relations, was developed to characterize the mean, excess noise factor, and the gain's 
moment generating function (mgf) in the presence of dead space [2], [8]. 

Exact calculation of the bit-error probability (𝑃𝑃𝑏𝑏)has been a challenge due to the lack of explicit, closed-form 
expressions for the probability distribution functions of the APD’ s gain and the test-statistic used by the 
receiver. This led to the development of a number of approximate methods for calculating the error probability 
over the years. These include the Gaussian approximation [9], the saddle-point approximation [10], and 
Chernoff bounds [9]. Generally, the accuracy of the Gaussian approximation is questionable while the Chernoff 
bound is usually not sufficiently tight (although it is exponentially tight). The saddle- point method, on the other 
hand, is an analytical technique that provides an accurate approximation of the error probability. More recently, 
Letaief and Sadowsky [11] developed a probabilistic asymptotic-analysis method, based on large-deviation 
theory, that facilitates the approximation of the error probability. Their technique yields an elegant probabilistic 
equivalent to the saddle-point approximation [11] and also offers an efficient Monte-Carlo simulation method 
for estimating the error probability. However, the mgf for the APD's gain used in their work does not account for 
the dead space. In this letter, we generalize the asymptotic analysis and efficient Monte-Carlo technique by 
Letaief and Sadowsky [11] to accommodate APDs with dead space, thereby making their technique applicable to 
thin, high-speed APDs. 

SECTION II. Preliminaries 
Consider an on-off-keying (OOK) optical communication scheme. The decision of the received signal in each bit is 
made by means of a simple threshold test based on the statistic 𝐷𝐷 = ∑ 𝐺𝐺𝑘𝑘 + 𝑁𝑁 𝑀𝑀

𝑘𝑘=1 [11], where 𝐺𝐺𝑘𝑘 ∈ IN denotes 
the avalanche gain associated with the 𝑘𝑘th primary electron, 𝑀𝑀 is a Poisson random variable representing the 



total number of primary electrons produced in a bit, and N is the receiver's zero-mean Gaussian thermal 
(Johnson) noise with variance 𝜎𝜎2 [3]. The sequence {𝐺𝐺𝑘𝑘} is i.i.d., and its univariate gain distribution is 
characterized by the mgf reported in [2], [8]. 

Under hypotheses 𝐻𝐻0 and 𝐻𝐻1, the mean of 𝑀𝑀 is assumed to be 𝜆𝜆0 and 𝜆𝜆1, respectively, where 𝜆𝜆0 < 𝜆𝜆1. These 
parameters can be calculated from the signal intensities and the dark current parameters. The type-I and type-II 

error probabilities are given by 𝑃𝑃0,𝛾𝛾 =Δ P{𝐷𝐷 ≥ |𝐻𝐻0} and 𝑃𝑃1,𝛾𝛾 =Δ P{𝐷𝐷 < 𝛾𝛾|𝐻𝐻1}, respectively, where 𝛾𝛾 is the test 
threshold; consequently 𝑃𝑃𝑏𝑏 = 0.5(𝑃𝑃0,𝛾𝛾 + 𝑃𝑃1,𝛾𝛾). 

SECTION III. Asymptotic Analysis 
Letaief and Sadowsky have provided a probabilistic method, based on Cramer's theorem [12], for the asymptotic 
analysis of the bit-error probability for the detection model described above. For its close relevance to our work, 

we will briefly recall germane aspects of it. Define 𝑠𝑠 = 𝑠𝑠𝑠𝑠𝑠𝑠{𝑠𝑠 ∈ IR, ∧𝐺𝐺 (𝑠𝑠) < ∞}, where ∧𝐺𝐺=Δ log𝜙𝜙𝐺𝐺  is log-mgf 

of the APD's gain, 𝐺𝐺, and 𝜙𝜙𝐺𝐺(𝑠𝑠) =Δ E[𝑒𝑒𝑠𝑠𝐺𝐺] is its mgf. Note that 𝑠𝑠 ≥ 0 since ∧𝐺𝐺 (0) = 0. Also, since 𝐺𝐺 > 0 a.s. 
(since 𝐺𝐺 ∈ IN), we have ∧𝐺𝐺 (𝑠𝑠) < ∞ for all 𝑠𝑠 < 𝑠𝑠, and moreover, Λ𝐺𝐺(𝑠𝑠) is strictly increasing and analytic 
on (−∞, 𝑠𝑠) [11]. The function Λ𝐺𝐺(⋅) is said to be steep if ∧𝐺𝐺 (𝑠𝑠) ↑ ∞ as 𝑠𝑠 → 𝑠𝑠 [12]. In what follows, it is 
assumed that 𝛾𝛾 = 𝑐𝑐𝑖𝑖−1𝜆𝜆𝑖𝑖, 𝑖𝑖 = 0,1, where 𝑐𝑐0 and 𝑐𝑐1 are positive constants [11]. The term asymptotic refers to the 
parameter 𝛾𝛾 being large. 

III. Theorem 1 
(Letaief and Sadowsky [11]) Suppose that - - -._._ (i) 𝑐𝑐0 < 𝜇𝜇𝐺𝐺−1 < 𝑐𝑐1, where 𝜇𝜇𝐺𝐺 =Δ E[𝐺𝐺], and (ii) ∧𝐺𝐺 (𝑠𝑠) is steep. 

Then, 𝑃𝑃𝑖𝑖,𝛾𝛾 ∼ 𝐶𝐶𝑖𝑖∗𝛾𝛾
−12𝑒𝑒−𝐼𝐼𝑖𝑖

∗𝛾𝛾 

, where 

 𝐶𝐶𝑖𝑖 ∗=
(2𝜋𝜋𝑤𝑤𝑖𝑖∗𝑠𝑠𝑖𝑖∗2[Λ𝐺𝐺′ (𝑠𝑠𝑖𝑖∗)2 + Λ𝐺𝐺′′(𝑠𝑠𝑖𝑖∗) + (𝑐𝑐/𝑤𝑤𝑖𝑖∗)])−1/2, 𝐼𝐼𝑖𝑖∗ = 𝑠𝑠𝑖𝑖∗ −
𝑐𝑐𝑖𝑖(𝑒𝑒∧𝐺𝐺(𝑠𝑠𝑖𝑖

∗) − 1) − 1
2
𝑐𝑐𝑠𝑠𝑖𝑖∗2,𝑤𝑤𝑖𝑖∗ = 𝑐𝑐𝑖𝑖𝑒𝑒∧(𝑠𝑠𝑖𝑖

∗2), 𝑐𝑐 = 𝜎𝜎2/𝛾𝛾,𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖∗
  

is the unique solution of the equation 𝑐𝑐𝑖𝑖 ∧𝐺𝐺′ (𝑠𝑠)exp (∧𝐺𝐺 (𝑠𝑠)) + 𝑐𝑐𝑠𝑠 = 1. 

Now, according to [2], the dead-space-generalized mgf 𝜙𝜙𝐺𝐺 of the APD's gain is given by 

𝜙𝜙𝐺𝐺(𝑆𝑆) = 𝑒𝑒𝑠𝑠+𝑟𝑟𝑠𝑠/2(𝑑𝑑−1),(1) 

where for any 𝑧𝑧 ∈ ℂ, 𝑟𝑟𝑧𝑧 is the solution to the equation 𝑟𝑟𝑧𝑧 + 𝛼𝛼𝑤𝑤(𝑒𝑒2𝑧𝑧+𝑟𝑟𝑧𝑧(3𝑑𝑑−1) − 1) = 0. Here, 𝑤𝑤 is the width of 
the multiplication region of the APD, 𝛼𝛼 is the electron ionization coefficient, and the dimensionless quantity 𝑎𝑎 is 
the dead space normalized by 𝑤𝑤. (In the above mgf, it is implicitly assumed that (i) the hole ionization coefficient 
is also equal to 𝛼𝛼, viz., the hole-to-electron ionization ratio 𝑘𝑘 = 1, a condition that is well approximated in thin 
APDs, and (ii) electrons and holes have equal dead spaces.) Finally, we assume that the avalanche multiplication 
is initiated by an electron at the edge of the multiplication region. In order to apply Theorem 1 to this mgf, we 
must show that ∧𝐺𝐺 (𝑠𝑠) = 𝑠𝑠 + 𝑟𝑟𝑠𝑠/2(𝑎𝑎 − 1) is steep. 

III. Theorem 2 
For 𝑎𝑎 < 1/3,∧𝐺𝐺 (𝑠𝑠).𝑎𝑎 < 1/3,∧𝐺𝐺 (𝑠𝑠) is steep and the conclusion of Theorem 1thus holds for the mgf given by (1). 

https://ieeexplore.ieee.org/document/#deqn1


III. Proof 
We begin by calculating 𝑠𝑠 associated with ∧𝐺𝐺 (𝑠𝑠) = 𝑠𝑠 + 𝑟𝑟𝑠𝑠/2(𝑎𝑎 − 1). It can be shown by direct substitution 
that 𝑟𝑟𝑠𝑠/2 = 𝛼𝛼𝑤𝑤 −𝜓𝜓(𝛼𝛼𝑤𝑤(3𝑎𝑎 − 1)𝑒𝑒𝛼𝛼𝛼𝛼(3𝑑𝑑−1)+𝑠𝑠)/(3𝑎𝑎 − 1), where 𝑦𝑦 = 𝜓𝜓(𝑥𝑥)is the zeroth-branch solution to the 
equation 𝑦𝑦𝑒𝑒𝑦𝑦 = 𝑥𝑥 (also called the Lambert W function). Since 𝜓𝜓(𝑥𝑥) ≤ 0 whenever 𝑥𝑥 < 0, the hypothesis 𝑎𝑎 <
1/3 implies that 𝑟𝑟𝑠𝑠/2 < 0. Hence, ∧𝐺𝐺 (𝑠𝑠)has maximum value when 𝑟𝑟𝑠𝑠/2is minimum (since 𝑎𝑎 ≤ 1by definition). 
Now, 𝜓𝜓(𝑥𝑥)has a minimum value of −1 when 𝑥𝑥 = −𝑒𝑒−1. Thus, the minimum 𝑟𝑟𝑠𝑠/2 occurs precisely when 𝛼𝛼𝑤𝑤(3𝑎𝑎 −
1)𝑒𝑒𝛼𝛼𝛼𝛼(3𝑑𝑑−1)+𝑠𝑠 = −𝑒𝑒−1. We can now solve for 𝑆𝑆 at which 𝑟𝑟𝑠𝑠/2is minimized. Thus, 𝑆𝑆 = 𝛼𝛼𝑤𝑤(1 − 3𝑎𝑎) −
log (𝑒𝑒𝛼𝛼𝑤𝑤(1 − 3𝑎𝑎)). Next, it is easy to see that ∧𝐺𝐺′ (𝑠𝑠) = 1 + 𝑟𝑟𝑠𝑠/2

′ (𝑎𝑎 − 1)and 𝑟𝑟𝑠𝑠/2
′ = −𝛼𝛼𝑤𝑤(1 + 𝑟𝑟𝑠𝑠/2

′ (3𝑎𝑎 −
1))𝑒𝑒𝑠𝑠+𝑟𝑟𝑠𝑠/2(3𝑑𝑑−1)The latter yields 

 

𝑟𝑟𝑠𝑠/2
′ =

−𝛼𝛼𝑤𝑤𝑒𝑒𝑠𝑠+𝑟𝑟𝑠𝑠/2(3𝑑𝑑−1)

1 + 𝛼𝛼𝑤𝑤𝑒𝑒𝑠𝑠+𝑟𝑟𝑠𝑠/2(3𝑑𝑑−1)(3𝑎𝑎 − 1)
. 

 

By setting 𝑠𝑠 = 𝑠𝑠, we obtain 𝑟𝑟𝑠𝑠/2 = 𝛼𝛼𝑤𝑤 + 1/(3𝑎𝑎 − 1), and the numerator of 𝑟𝑟𝑠𝑠/2
′ becomes 1/(3𝑎𝑎 − 1) < 0. 

However, as 𝑠𝑠 ↑ 𝑠𝑠, the denominator of 𝑟𝑟𝑠𝑠/2
′  converges to 0 monotonically from above. Hence, 𝑙𝑙𝑖𝑖𝑙𝑙𝑠𝑠↑𝑠𝑠𝓇𝓇′𝑠𝑠/2 =

−∞ and consequently 𝑙𝑙𝑖𝑖𝑙𝑙
𝑠𝑠↑𝑠𝑠

Λ𝐺𝐺′ (𝑠𝑠) = 𝑙𝑙𝑖𝑖𝑙𝑙𝑠𝑠↑𝑠𝑠1 − 𝑟𝑟𝑠𝑠/2
′ (1 − 𝑎𝑎) = ∞· □ 

III. Remark 
The mean gain 𝜇𝜇𝐺𝐺 and the parameter 𝛼𝛼𝑤𝑤 are related by 𝛼𝛼𝑤𝑤 = (1 − 𝜇𝜇𝐺𝐺)/((3𝑎𝑎 − 1)(𝜇𝜇𝐺𝐺 − 2𝑎𝑎)) [13]. This 
relationship is used in Section V in determining the parameter αw that would yield a certain mean gain. 

SECTION IV. Efficient Monte-Carlo Calculation of the Bit-error Probability 
In [11], an efficient Monte-Carlo estimation method was adopted for calculating the bit -error probabilities 
based on importance sampling. A sequence 𝐷𝐷(𝑙𝑙) = �𝑀𝑀(𝑙𝑙),𝐺𝐺(𝑙𝑙),𝑁𝑁(𝑙𝑙)�, 𝑙𝑙 = 1,2, … , 𝐿𝐿 of realizations of all the 
random quantities is first generated according to their twisted distributions. The error probability is then 

estimated using the unbiased estimator 𝑃𝑃
^
𝑖𝑖,𝛾𝛾
∗ = 𝐿𝐿−1� 1𝑖𝑖(𝐷𝐷(𝑙𝑙))𝑊𝑊(𝐷𝐷(𝑙𝑙))𝐿𝐿

𝑙𝑙=1 , where 1𝑖𝑖(⋅) is the indicator function 
for error events, viz., 11(𝐷𝐷) = 1 if 𝐷𝐷 < 𝛾𝛾 and zero otherwise, and 10(𝐷𝐷) = 1 if 𝐷𝐷 < 𝛾𝛾 and zero otherwise. 𝑊𝑊(⋅
) is the importance-sampling weighting function, defined as the ratio of true distribution of 𝐷𝐷 with respect to 
the twisted sampling distribution [11], 

𝑊𝑊(𝐷𝐷) = exp (𝜆𝜆𝑖𝑖∗ − 𝜆𝜆𝑖𝑖 + 𝑠𝑠𝑖𝑖∗2
𝜎𝜎2

2 )exp (−𝑠𝑠𝑖𝑖∗[�𝐺𝐺𝑘𝑘 + 𝑁𝑁
𝑀𝑀

𝑘𝑘=1

]

+[Λ𝐺𝐺(𝑠𝑠𝑖𝑖∗) + log (𝜆𝜆𝑖𝑖/𝜆𝜆𝑖𝑖∗)]𝑀𝑀),

 

where 𝜆𝜆𝑖𝑖∗ = 𝑤𝑤𝑖𝑖∗𝛾𝛾 is the biased dominant value of 𝜆𝜆𝑖𝑖 [11]. 

The above simulation procedure can be applied to the mgf given by (1) by virtue of Theorem 2. To generate 

simulations of the APD’ s gain from the twisted distribution, we first generate random samples 𝐺𝐺
~

(𝑙𝑙)from the 

probability mass function of the gain, 𝑃𝑃𝐺𝐺(𝑘𝑘) =Δ P{𝐺𝐺 = 𝑘𝑘},𝑘𝑘 = 1,2, ….These are calculated from the gain's 
characteristic function 𝜙𝜙𝐺𝐺(𝑗𝑗𝑠𝑠)using the efficient inversion method described in [14]. We then employ the 
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acceptance/rejection procedure with acceptance probability expexp (𝑠𝑠𝑖𝑖∗𝐺𝐺
~

(𝑙𝑙) −∧𝐺𝐺 (𝑠𝑠𝑖𝑖∗))using the numerically 
calculated values of 𝑠𝑠𝑖𝑖∗according to Theorem 1. With this procedure the accepted samples are distributed 

according to the twisted probability mass function 𝑃𝑃𝐺𝐺
(𝑠𝑠𝑖𝑖
∗)(𝑘𝑘) = 𝑒𝑒𝑠𝑠𝑖𝑖

∗𝑘𝑘−∧𝐺𝐺(𝑠𝑠𝑖𝑖
∗)𝑃𝑃𝐺𝐺(𝑘𝑘). The random variable 𝑀𝑀 is also 

simulated using a twisted Poisson distribution with parameter 𝜆𝜆𝑖𝑖∗, and 𝑁𝑁 is a twisted Gaussian random variable 
with mean 𝑠𝑠𝑖𝑖∗𝜎𝜎2and variance 𝜎𝜎2. We omit the details. 

SECTION V. Results 
We calculated the error probability 𝑃𝑃ℎ using (i) efficient Monte-Carlo simulation (with 𝐿𝐿 = 20,000), (ii) 
asymptotic analysis (using 𝑃𝑃𝑖𝑖,𝛾𝛾 ∼ 𝐶𝐶𝑖𝑖∗𝛾𝛾−1/2𝑒𝑒−𝐼𝐼𝑖𝑖

∗𝛾𝛾, and (iii) the Chernoff bound, given by 𝑃𝑃𝑖𝑖,𝛾𝛾 ≤ 𝑒𝑒−𝐼𝐼𝑖𝑖
∗𝛾𝛾 [11]. We 

considered 𝜆𝜆0 = 𝜂𝜂𝜆𝜆1, where the transmitter extinction ratio is 𝜂𝜂 ≈ 0.02 [1], and used the test threshold 𝛾𝛾 =
(E0[𝐷𝐷] + E1[𝐷𝐷])/2. 

Fig. 1 depicts the dependence of 𝑃𝑃𝑏𝑏 on the normalized dead space, 𝑎𝑎, for fixed average mean numbers of 
primary electrons, 𝜆𝜆 = (𝜆𝜆0 + 𝜆𝜆1)/2 and 𝜇𝜇𝐺𝐺 = 10. The calculations show that the receiver performance is 
improved as d increases. Clearly, the Chernoff bound yields an upper bound for 𝑃𝑃𝑏𝑏. On the other hand, the 
efficient Monte-Carlo results differ only slightly from the asymptotic analysis. 

 
Fig. 1 Average bit-error probability as a function of the normalized dead space. For each method, thick and thin curves 
correspond to mean numbers of primary electrons 𝜆𝜆 of 4000 and 4500, respectively. The variance of the Gaussian thermal 
noise is assumed as 𝜎𝜎2 = 3.6 × 107 [1]. 

 

In optical communications, it is customary to measure the performance of the receiver by its sensitivity, 𝑆𝑆𝑜𝑜, 
which is defined as the minimum mean number of photons per bit necessary to produce 𝑃𝑃𝑏𝑏 = 10−9. The lower 
the sensitivity, the better the receiver is. Fig. 2 depicts the dependence of the receiver sensitivity on the mean 
APD gain 𝜇𝜇𝐺𝐺 , parameterized by 𝑎𝑎. It is seen that for any 𝜇𝜇𝐺𝐺 , the presence of dead space lowers the sensitivity. 
Moreover, for a fixed 𝑎𝑎, there exists an optimal value for 𝜇𝜇𝐺𝐺  that minimizes the value of the sensitivity. For the 
case considered, the optimal mean gain is approximately 80. At this mean gain, 𝑆𝑆𝑜𝑜 improves from 1300 to 890 
photons per bit (a 31% improvement) as the relative dead space 𝑎𝑎 increases from 0 to 0.2. Beyond the optimal 
gain, gain-fluctuation noise begins to outweigh the benefit of the gain and the sensitivity begins to deteriorate. 
This behavior is consistent with the dependence of the signal-to-noise ratio of the photocurrent on the APD's 
mean gain [1], [8]. 
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Fig. 2 Receiver sensitivity as a function the APD's mean gain 𝜇𝜇𝐺𝐺  for 𝑎𝑎 = 0 and 𝑎𝑎 = 0.2, It is assumed that 𝜎𝜎2 = 8 × 106 and 
that each incident photon results in a primary electron. 

SECTION VI. Conclusions 
We extended the efficient Monte-Carlo and asymptoticanalysis techniques for conventional APD-based 
receivers to the class of thin APDs, which is of significant practical importance in high-speed optical receivers. 
For these APDs, the dead space plays an important role in the statistics of the gain. Our calculations showed that 
the receiver performance improves as the dead space increases relative to the width of the APD's multiplication 
region. 
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