
Eötvös Loránd University

Faculty of Informatics

Department of Programming Languages

and Compilers

Use of Cloud Technologies in a Modern
Scalable Web Application

Dr. Viktória Zsók

Lecturer

Basir Doost Mohammadi

Computer Science BSc

Budapest, 2020

Contents

1 INTRODUCTION 1

1.1 Motivation . 1

1.2 Thesis Structure . 2

2 USER DOCUMENTATION 4

2.1 Project Description . 4

2.2 Technical Information . 4

2.3 Usage Information . 5

2.3.1 Getting Started . 5

2.3.2 Registering for a Conference 7

2.3.3 User Registrations . 8

2.4 Moderator Usage Information . 10

2.4.1 Managing Conferences . 10

2.4.2 Creating a New Conference 12

2.4.3 Scanning a Ticket . 13

3 DEVELOPER DOCUMENTATION 14

3.1 Problem Specification . 14

3.2 Project Structure . 15

3.2.1 Overview . 15

3.2.2 Used Technologies and Methods 16

3.2.3 Abstract Architecture of Resources 17

3.3 Build and Deployment . 18

3.3.1 Backend Deployment Process 18

3.3.2 Frontend Deployment Process 19

3.4 Project Resources . 20

3.4.1 User Pool . 20

3.4.2 Databases . 20

3.4.3 Lambda Functions . 23

3.4.4 API Endpoints . 29

3.4.5 Website . 30

4 CONCLUSION 34

APPENDICES 35

A Services Package API Documentation 36

A.1 services module . 36

A.1.1 IdService . 37

A.1.2 ResponseService . 37

A.1.3 EventService . 38

A.1.4 ConferenceService . 41

A.1.5 PaymentService . 45

A.1.6 TicketService . 48

A.1.7 UserService . 52

REFERENCES 56

Chapter 1

INTRODUCTION

1.1 Motivation

In this project we create a web application to serve as a platform for a host

institution to announce their conferences, and to streamline the process of registering

to a conference both for the user and the institution. This project has been created

using modern web development principles and designs, to create a rich and seamless

user experience and to comply with the current standards set for web applications.

Over the past decade, internet access has rapidly spread across people in all

continents and with popularization of smartphones, the web has become a very

important part of most people’s lives. Consequently, many new concepts, methods,

and technologies have been created over the past few years, to provide a better web

experience with the significant increase of demand. Web applications and websites

as a whole have changed to an extent that now browsing most webpages from the

2000’s often feels outdated and obsolete. Since all current major web applications

such as Facebook or Gmail now leverage many of these new technologies to offer their

services, they technologies are updated frequently to provide the best experience

possible for users and developers. Utilization of these tools in our project helps with

many of the challenges we face, and makes the development process more efficient

and structured. It also provides us with a solid infrastructure to build the application

on, and to extend it with new use cases and features.

Cloud technology is used in this project to contain and process all of the applic-

ation resources, and offers on-demand storage and processing power that we require

for the application. This removes the need for buying or renting servers to hold the

project, and eliminates the burden of having to maintain and configure the servers

and lets us focus only on development on a reliable infrastructure. It also provides

automatic scaling, to allocate more processing power whenever needed to deal with

the amount of traffic on the application [1][2].

1

Using the Cloud, we only pay for the amount of computational resources we use,

instead of having a fixed amount of resources for a fixed fee. This ultimately reduces

the cost of development and running the project, especially since our application

does not require any intense processing. Apart from that, our Cloud provider offers

a certain amount of usage on each of the services for free each month. At the time

of writing the application has not been receiving traffic from the public, but there

is a live deployment of the application which is used for development, testing, and

demo purposes. Our total Cloud costs for this project including the cost of the live

application and running the build and deployment system over about three months

has been $0, since we do not pass any of our Cloud provider’s limits to actually be

charged for the resources consumed. With the amount of traffic we expect a project

like this to receive after being publicly released, it is still very unlikely to incur costs

more than a very insignificant amount.

The user interface of the application has also been made using modern frame-

works and design principles, to deliver a quick and intuitive interaction with the

user. It is implemented as a Single Page Application using React, an open-source

UI framework for JavaScript maintained by Facebook and community developers.

React allows us to create a website, using a nested structure of so called components.

These components are defined with a syntax called JSX, which resembles HTML

but provides the functionalities of JavaScript within it, to define the user interface

of the application.

One of the main focuses in the design process of this project has been to maintain

separation of concerns. This combined with the strong error-logging capabilities of

our Cloud system, makes the process of finding the root cause of bugs and patch-

ing them easier, and allows for a better overall developer experience. Adding new

features and tools to the website can also be easily done, by defining the necessary

backend operations, performing those operations in a Lambda function in response

to API requests, and finally, extending the user interface to utilize the new opera-

tions to allow the user to interact with the new features.

1.2 Thesis Structure

Chapter 2 of this thesis contains a user documentation, which provides a descrip-

tion of the application and its use cases, a brief overview of the technical methods

used in the implementation and how it affects the user experience, and a complete

user’s guide for all of the available features of the application.

Chapter 3 is a developer documentation, containing all the technical details of the

application. In this chapter we specify all the tasks and challenges of the development

2

process, and provide detailed information about the concepts and components used

in the application - including how they function, and how they connect with each

other to shape the functionality of the application.

API documentation of the main code component of the application can be found

in the appendices, which provides detailed information about the classes and func-

tions used in the application.

3

Chapter 2

USER DOCUMENTATION

2.1 Project Description

The goal of this project is to create a website named Confer, to manage re-

gistrations for an institution’s conferences. Visitors can find information about the

offered conferences, and sign in to make a registration through the website. There

are also tools and features implemented for the host institution’s management, so

that they can create new conferences, modify existing ones, and manage payments

and registrations submitted by users.

All visitors are able to view the conferences, but creating an account is required

to make a registration on the system. During registration, users can also request

meal preparation and assistance with accommodation; in which case they will be

contacted later by the host institution for more details. After payment for the regis-

tration has been processed, a PDF document containing the user’s entrance ticket

is sent to the email provided during registration.

Each registered user of the application has a user type of either basic, moderator,

or admin. An account created using the website will have the type basic, and allows

the user to make registrations and access their previous registrations and payments.

Additionally, the host institution can grant a user moderator or admin rights, al-

lowing them to use the moderator tools for managing the system. Currently the

admin and moderator users can perform the same operations, however they have

been implemented separately to allow extending the application’s use cases in the

future with two different levels of management rights.

2.2 Technical Information

In this project, we have used the Serverless computing technology based on

Amazon Web Services. In this architecture, the application runs inside managed

4

containers that are hosted on the Cloud provider’s servers, which eliminates the

need for developers to manage and maintain the servers themselves since all server

configuration and maintenance is done by the provider. Using a serverless solution,

we are able to deliver a scalable and highly available application, to ensure the system

is always accessible to users even when experiencing higher-than-expected traffic

on the website. Also with the rapid development process resulting from serverless,

we have the means to introduce new features and solve bugs in the application

more quickly to provide a better user experience [3][4]. More information about the

technical stack of the application can be found in the developer documentation.

2.3 Usage Information

In this section we provide the information needed for a user to interact with the

application. The website can be accessed using the URL:

https://master.d6nxzuw99ek2a.amplifyapp.com/.

2.3.1 Getting Started

Upon opening the website, the available conferences page is displayed as depicted

above; containing a list of all upcoming conferences that the user can register for.

Clicking on any of the conferences redirects the user to a page containing more

information about the conference.

5

A navigation bar is always present on top of the screen which the user can use

to navigate between the different sections of the application, or to sign in or out

of their account. In the Conferences section, the user can switch between upcoming

conferences and all conferences on the website - including those that are past their

registration deadline - using the navigation bar.

To use most features of the website, creating an account is required. To create a

new account, the user can click on the ”Create Account” button in the navigation

bar; after which they will be presented with a form containing information needed

for creating a new account. A valid email address, user’s full name, and a password

- containing minimum 8 characters and composed of at least one uppercase letter,

one lowercase letter, and one digit - are required when creating an account.

After an account is successfully created on the system, the verification form

is shown on the website and the user will receive an email to confirm their email

address. This email contains a code, which has to be typed into the verification form

along with the email address used to create the account. In case the user closes the

verification form after account creation, they can access it again by clicking on the

”Sign In” button in the navigation bar and pressing ”Verify your account”.

In case the user has already created an account on the website but has forgotten

their password, they can navigate to the ”Sign In” page and press ”Forgot your

password”, after which a form is displayed that asks for the email address that was

used when creating the account. Upon submission of this form, the user receives an

email containing a confirmation code that is needed to change their password, and

a new form opens on the website for the user to enter their new password. Now the

user can enter their email address, the confirmation code they just received, and a

new password, to gain access back into their account.

6

2.3.2 Registering for a Conference

Users can register for a conference by navigating into the details page for a given

conference (depicted above), and pressing the ”Register Now” button which can be

found below the conference description, on the bottom right hand side of the blue

overview dialogue. After that they are presented with a form, containing three steps

needed for registration. On the first step, the user needs to input the full name and

email address of the person for whom the registration is made, along with separate

billing information including full name, email, and address of billing. Additionally,

the user can choose to use the name and email provided in their account for making

the registration by checking the ”Use name and email from profile” box, and to have

the same billing information as in the registration with the ”Use name and email

from previous section” checkbox.

After pressing next, the user is asked to enter whether they want additional

services and assistance for the conference, including meal preparation and help with

accommodation. They are also able to enter notes for the meal, such as dietary

restrictions or allergies, and provide their date of arrival to the conference and the

number of days they will need accommodation for, so that the host institution can

provide assistance with it. It should be noted that filling this information is not

required for registration.

On the last step, the user can review all the submitted information and verify if

they are all correct, and finally submit the registration. After processing the registra-

7

tion, a new page is displayed, stating that the registration has been successful, and

containing important information that the user must note to be able to make the

payment. This page includes a payment ID, a detailed invoice of the total amount

they need to pay, and payment instructions and bank account details to help the

user transfer the registration fee.

Note: The payment ID needs to be included as a comment in the bank transfer

to highlight which payment the transfer is made for.

After the success of the payment is confirmed by the moderators, the user receives

an email address with a PDF document attached, containing the ticket they need

for entry to the conference. The ticket looks similar to the figure below:

The user needs to have this document with them when they enter the conference.

The document does not need to be printed, and can simply be shown from the

attendee’s phone; however, if for any reason this is not possible for the attendee,

they can choose to print the document and have it with them at the conference.

A user can make multiple registrations for the same conference. This way, a

coordinator in an institution or a business who wants to register a number of their

colleagues to a conference can make a separate registration for each person using

their own account, on behalf of the attendees. In this case, the user can provide the

name and email address of the attendee during registration, and the website will

send the ticket document to the attendee’s email.

2.3.3 User Registrations

Users can find all their past registrations by clicking on ”My Registrations”. The

page displayed afterwards consists of two lists, containing user’s upcoming and past

registrations. The lists look similar to the figure on the next page.

8

By clicking on ”Registration for {attendee’s name}” on each list item, the user

can navigate to a page containing the registration’s details and QR code. This page

can be used to verify the registration’s provided information and contact the insti-

tution in case any of the information needs to be changed, and also to save the QR

code needed for entry in case they do not have access to the ticket document that

was emailed to them. Part of this page’s content can be found in the figure below.

9

The ”Go to payment” button can be used to navigate to a page containing the

details of the payment associated with this registration, displayed in a format similar

to the current page.

The ”Go to conference” button can also be used to navigate to the details page

of the conference corresponding to the registration.

2.4 Moderator Usage Information

The moderator section of the website can be accessed using the URL:

https://master.d6nxzuw99ek2a.amplifyapp.com/moderator. Accessing this part of

the website is only possible if the user is already signed into an account with moder-

ator or admin type. The navigation bar in this section contains a button to display

a list of all existing conferences to manage, and a button that navigates to the

conference creation page.

2.4.1 Managing Conferences

The conference management page is displayed when the user first opens the mod-

erator section of the website, and it can also be accessed from anywhere within the

moderator section by clicking on the ”Manage Conferences” button in the navigation

bar. This page looks like the figure below.

10

This page contains all the conferences created on the website, split into upcoming

and past conference. The moderator can edit the details of a conference by clicking

on ”Modify” below a conference. This displays a form with all of the conference

details, which the moderator can modify and submit. More information about this

form and its parameters can be found in Creating a New Conference.

Clicking on ”Registrations”, opens a page containing a table with all of the

submitted registrations for the conference. This table is depicted below.

All information associated with a registration can be found in this table, which

is used by the host institution to be able to plan the conference according to the

number of attendees and assist the users who requested accommodation and meals.

This information can also be exported into a .csv file to be opened with Microsoft

Excel or similar applications. Also, the moderator is able to modify the information

of a registration by clicking on the button under the modify column of the table. This

opens a dialog inside the current page, containing a form with all of the registration’s

data which the moderator can modify and submit.

Clicking on ”Payments” below a conference also opens a page similar to the

conference registrations page, with a table containing information regarding all of

the payments created for that conference. This table is shown in the figure on the

next page.

11

The payment amount and the billing information can be found in this table.

Additionally, the moderator can use this page to validate the status of a payment

after confirming the bank transfer. The modify button can be used to edit the

payment details when needed, such as when a user’s billing information has changed,

or the amount of payment needs to be changed due to a special pricing.

2.4.2 Creating a New Conference

A new conference can be created by clicking on ”New Conference” in the mod-

erator section’s navigation bar, and the user is navigated to a page with a form

containing the fields needed to create a conference. The moderator needs to submit

a name, a description, the page content, starting and ending date of the conference,

the registration fee, and the registration deadline. The name, description, and dates

of the conference are displayed in the main page of the website, and the content

can be styled using Markdown to be displayed in the conference details page. Fee is

the amount users will be charged for a registration, and the registration deadline is

the last date that registration is possible for the conference. Also the ”Registration

Open” checkbox can be used to control whether or not registration is open and the

conference is displayed in the website. Moderators can uncheck this box to make

the conference private, which hides the conference from the website and closes regis-

tration. Note that if either the deadline is passed or the conference is set to closed,

users will not be able to register for the conference. This form is depicted on the

next page.

12

2.4.3 Scanning a Ticket

Moderators can scan the QR code on a ticket document to validate the state of

registration. For this, first the moderator has to be signed into the website on the

device they are using to scan the QR code. Scanning the QR results in the following

URL:

https://master.d6nxzuw99ek2a.amplifyapp.com/moderator/qr/{ticketId}

After opening this link, the status of the the ticket is displayed as either valid,

invalid, or used. Along with this, a table containing all of the registration details is

included. Scanning a valid ticket will also set its status to used, which will be shown

the next time that the ticket is scanned.

13

Chapter 3

DEVELOPER

DOCUMENTATION

3.1 Problem Specification

The goal of this project is to create a modern and user friendly platform to host

and manage an institution’s conferences. This platform is offered as a web applic-

ation, and we have used the placeholder name ”Confer” during the development

process to refer to it - however this name can be adjusted to the host institution’s

needs for commercial usage. The main challenges of the project can be summarized

as following:

• Separating the application into a ”backend” part that contains all of the sys-

tem’s data and allows operations on them, and a ”frontend” part that allows

users to interact with the system.

• The application needs to be able to handle information that can be categorized

into conferences, users, registrations, and payments.

• Providing a secure way of authenticating users into the system.

• Providing an accessible and fast method of data storage.

• Creating a modern web user interface.

• Maintaining a list of all conferences and sharing them on the website.

• Adding a purchase flow for registering to a conference.

• Automatically generating a PDF document as a ticket for every successful

registration.

14

• Means to send this PDF document to the provided email address on registra-

tion.

• Offering the ability to scan and verify the authenticity of a ticket document.

• Offering a moderator interface for management.

• Keeping all billing information required for invoicing payments.

• Keeping information about whether the user requires extra services such as

accommodation and meal preparation, and displaying the requests to moder-

ators to prepare accordingly.

• Allowing a user to register other people with a different name and email ad-

dress, to allow easier batch registration from businesses or institutions for their

employees.

• Creating a logical structure that can be easily maintained and extended with

new features.

• Using the right architectural practices to minimize Cloud resource usage and

execution times to reduce costs, and to improve API response times for a quick

and seamless user experience.

3.2 Project Structure

3.2.1 Overview

Confer is a web application consisting of a frontend and a backend layer. The

frontend is a web client that runs on the user’s browser and performs server-side

operations through HTTP calls to the backend’s REST API. This API is the in-

terface through which accessing and modifying internal data is achieved - such as

retrieving the list of offered conferences, or making a registration. Authentication

in the website and authorization for API requests is possible by configuring a user

pool that allows the application to securely create, store, and retrieve users on the

backend. A Cloud Database stores the system’s data about the users, conferences,

tickets, and payments; and this data is consumed and updated by the API endpoints

to form the usage flow of Confer.

15

3.2.2 Used Technologies and Methods

Backend

The backend is implemented using AWS Serverless Application Model (SAM), an

open-source framework for development of serverless applications on AWS, providing

all resources required [5]. SAM is an extension to CloudFormation, an Infrastructure-

as-Code system which allows defining and provisioning all of the Cloud resources of

the application from a single template file [6].

Having a template file define all the resources and infrastructure of the applic-

ation makes configuration and management of the resources much easier, and also

allows us to easily use a CI/CD pipeline for maintaining build and deployment.

We use AWS CodeStar, CodePipeline, CodeBuild, and CodeDeploy for our CI/CD

system. More information on this can be found in section 3.3 Build and Deployment.

For data storage we use DynamoDB; a fully-managed, scalable, and distributed

NoSQL database on AWS. DynamoDB comes with built-in security and encryption

features and has good integration capabilities with the rest of our stack [7].

A Cognito UserPool is used for authentication. It provides a secure and easy

way to perform user registration and login, [8] and it allows the user to receive an

identity token that can be used to authorize API requests [9].

The business logic is implemented as microservices through AWS Lambda, a

serverless computation tool that allows execution of a function written in one of the

supported programming languages - Node.js in this project - in response to events.

Frontend

The frontend is implemented using React, a web framework based on JavaScript

that helps us create stylish and fast user interfaces on a web browser. Reacts follows

the Single Page Application (referred to as SPA) design.

SPAs are a common practice in modern websites and can be seen in major

products such as Gmail, Facebook, Airbnb, and many more. They function differ-

ently from static websites - such that instead of a new page being fetched from the

server and rendered in the browser every time the user navigates, the application is

fetched into the browser at once and the content of the page is handled dynamically

using JavaScript. This approach offers a richer interaction between the user and the

application, by removing a lot of loading time on user actions since we don’t have to

fetch a new HTML from the server on every navigation to a new page. This approach

does increase initial loading time, however, this should be quite insignificant in most

currently used computers and smartphones. But overall, this does not outweigh the

advantage of offering a more continuous and smooth user experience.

16

React implements this by creating a tree of elements and inserting them into a

”root” node in the browser DOM. Every time a React element on the UI changes,

that element and its children are re-rendered and the tree is modified according

to that. To display those changes on the browser, React uses the package React-

DOM that performs a diff operation to find what actually changed between what

is currently on the UI and the new tree, and updates only what’s necessary [10].

This process is referred to as Reconciliation, and uses an algorithm based on a list

of heuristics for common use cases to update the UI faster while keeping updates

predictable [11].

React uses a syntax extension called JSX, which resembles HTML and is used

to define UI elements. JSX is not simply an HTML representation, as it supports

JavaScript language capabilities and allows a loose coupling between the JavaScript

logic of the UI and the UI element itself in each React component. This way, the

markup and the logic of UI components do not have to be separated which improves

the development experience in React [12].

We also utilize AWS Amplify for the frontend in this project. Amplify is the col-

lection of a development framework and other developer services that provide a fast

and easy way to create mobile and web applications. Amplify offers tools to control

AWS resources to create fullstack applications [13], although in this project we are

only using Amplify in our frontend to interact with the backend infrastructure, and

to deploy the frontend.

3.2.3 Abstract Architecture of Resources

In this section we describe the resources of the project and how they interact

with each other to create the functionality of the application. The figure below

demonstrates an overall view of the project’s abstract structure.

17

When the user opens the website in their browser, Amplify retrieves the static

website content in form of HTML, JavaScript, and CSS files from a nearby available

cache server in the CloudFront network, and returns it to the user.

When the website is loaded in user’s browser, it can directly communicate with

our Cognito user pool to authenticate users and retrieve a token validating their

identity.

The website sends HTTP requests to the REST API to interact with the backend

system - supplying the identity token received from Cognito if necessary, and these

requests are handled by API Gateway. Using Lambda integration, API Gateway

invokes the Lambda microservice with an event containing the request properties.

Lambda processes the request, by retrieving and modifying data from our data-

base when needed. After processing the request, Lambda returns a response to API

Gateway; and API Gateway in turn creates an HTTP response corresponding to

the response received from Lambda and sends it to the user’s browser. Finally, this

response in displayed as part of the website in user’s browser.

3.3 Build and Deployment

The source code of the application is stored on the ”Confer” and ”confer-website”

repositories on GitHub, for the backend and frontend projects respectively. All of the

application’s resources are deployed on AWS, and we use a set of deployment tools

to publish changes from the master branch of the repositories to the live deployment

of the application.

3.3.1 Backend Deployment Process

Since all the resources of the backend part are defined using CloudFormation

(CF), we can also use CF for provisioning those resources using what is known as

”stacks”. A stack contains all the resources defined in the CF template file and can

be managed by CF. In this project, the CloudFormation template is defined within

the ”template.yml” file. This file essentially contains the configuration of all the

backend resources.

Continuous Integration and Continuous Delivery are achieved using CodeStar.

The CodeStar console provides a unified interface to manage the backend’s build and

deployment process, and uses CodePipeline to create a pipeline for deployment to

production. The pipeline in our project consists of the Confer GitHub repository as

the source, a build stage, and a deploy stage. CodePipeline connects to the GitHub

repository, and whenever a change is pushed to the master branch, the pipeline

18

stores the code in a source artifact on AWS S3 and starts executing the build and

deploy stages.

CodeBuild handles the build stage by retrieving the source artifact made by

CodePipeline in the last step, and executing the build according to the instructions

from the ”buildspec.yml” file. The build stage is made up of four phases: install, pre-

build, build, and post-build. In this stage, we first install any dependencies we might

have using npm, and we also install the ”services” package in the ”LambdaLayer-

s/services/nodejs/” directory to be in the correct folder structure to be used as a

Lambda Layer. Then, we package the application from the template.yml using the

AWS CloudFormation CLI, and create a build artifact with a CF export template

that is ready to be deployed.

CodeDeploy handles the deployment by first using a CloudFormation Gener-

ageChangeSet action on the CF stack and the build artifact created in the previous

stage. This actions compares the current stack with the new artifact, and creates

a JSON representation of all the changes of the stack’s resources. Finally, an Ex-

ecuteChangeSet action is triggered, which uses the previously generated change set

to update the stack’s resources and release the changes to production.

3.3.2 Frontend Deployment Process

Amplify offers a smooth development experience, by handling the whole deploy-

ment process of the frontend and producing a versioned and robust final deployment

of the website - with a few simple configuration steps. It offers a complete set of

CI/CD tools, supports build and deployment of React projects by default, and hosts

the website itself through a Content Delivery Network (CDN).

CloudFront is used by Amplify as a CDN to host the static content of the website.

It caches the website content in many servers in different regions of the world to

deliver to end users, which results in low latency and high availability for the website

[14].

Amplify is connected to the ”confer-website” GitHub repository and every time a

change is pushed to the master branch, it creates a new build using the instructions

in the ”amplify.yml” file. The build process is fairly simple, and consists of a ”npm

ci” command in and a ”npm run build” command to perform a clean install on all

the project dependencies and to build the application using the build script defined

in the ”package.json” file. Finally, the build artifacts are used to deploy the website

to Amplify.

19

3.4 Project Resources

In this section we will provide detailed information on each of the resources of

the application and how they function.

3.4.1 User Pool

We created a user pool for this project on Cognito that handles all of the authen-

tication needs of the project. This user pool securely stores the user authentication

data on Amazon servers, and the website can interact with it using the Amplify

JavaScript framework to perform actions such as signing in, creating an account, or

resetting a forgotten password. It also takes care of securely storing the login session

on user’s browser automatically, and refresh the session if necessary.

The user’s email address is used as the username to make registration and signing

in easier for users. Also, the user must provide their full name when registering, and

the password must be at least 8 characters long and include uppercase and lowercase

letters and at least one digit.

3.4.2 Databases

We use four DynamoDB tables to store the system’s data: Users, Conferences,

Tickets, and Payments. Details about each of these tables can be found below.

Wherever a date is used, the format is considered to be the ISO 8601 Date format

i.e. ”YYYY-MM-DD”. The id column is set as the primary key for all the tables.

On a simple table, retrieving an item or items is only possible by specifying

the primary keys or scanning all of the items. To be able to perform a query using

conditions on a different column, we need to have a Global Secondary Index (GSI)

on the table for that column [15]. The Tickets and Payments tables each have a GSI

on the ”conference” column. This allows us to query the table with to retrieve all

the ticket or payment items which match a given conference ID value. This method

can be seen in use in the Confer moderator console.

Users

The Users table holds all data that we need to store for each user. Currently, it

stores each user’s name, user type, and their purchased tickets. The columns of this

table can be found below.

Column Data Type Description

id String User ID

family name String User family name

20

Column Data Type Description

given name String User given name

conferences attending List A list containing a map for each user ticket

Notes: ID of a user is considered to be their email address used when creating

their account. Also in the conferences attending column, each ticket is stored in the

list as map containing two keys ”id” and ”conference”, holding the ticket ID and

the conference ID respectively.

Conferences

The Conferences table holds data regarding each conference. It stores all inform-

ation needed to display and register for a conference.

Column Data Type Description

id String Conference ID

name String Conference name

description String Conference description

page content String Main content of the conference page

fee Number Registration fee (HUF)

starts at String Starting date

ends at String Ending date

deadline String Registration deadline date

is open Boolean Is conference shown on website

Notes: ID of a conference is the string representation of a 24 bit number in base

16. The page content column is meant to contain the content in Markdown format

to allow customizing style in the editor. The is open property can be set to false to

hide conference from the website homepage and also close registration.

Tickets

The Tickets table holds data regarding the tickets created on the system. It

stores information about the owner of the ticket and their submitted preferences

during purchase, and also the status of the ticket.

Column Data Type Description

id String Ticket ID

conference String ID of the conference corresponding ticket

user String ID of submitting user

21

Column Data Type Description

given name String Ticket owner’s given name

family name String Ticket owner’s family name

email String Ticket owner’s email

status String Ticket status; ”valid”, ”invalid”, or ”used”

payment id String ID of the corresponding payment

created at String Date of invoice

requested meal Boolean Whether user requested meal preparation

meal notes String Notes for meal

requested accommodation Boolean Whether user requested accommodation help

arriving time String Date of arrival in case of accommodation

stay length String Duration of stay in case of accommodation

entered at String Time of user entrance scan

Payments

The Payments table holds data regarding the payments created on the system.

It stores the billing information, payment amount, and the status of the payment.

Column Data Type Description

id String Payment ID

conference String ID of the conference payment is made for

user String ID of the user submitting the paper

given name String Billing given name

family name String Billing family name

email String Billing email

address String Billing address

postalcode String Billing postal code

city String Billing city

country String Billing country

amount String Billing city

conference name String Name of the conference payment is made for

ticket id String ID of the corresponding ticket

type String Payment type; currently only ”transfer”

status String Payment status; ”waiting” or ”accepted”

transactions Array Online transaction IDs; Currently only empty

created at String Date of invoice

22

3.4.3 Lambda Functions

The Lambda functions are where all of the backend operations of the application

is processed. All of the Lambda functions in the project except ”ConferPostUserVeri-

fication” and ”ConferSendTicketAsEmail” are used to process requests on an API

endpoint, and we refer to them collectively as API Lambdas for the sake of simplicity.

We have created a package called ”services” to be used by the API Lambdas to

define all the valid operations within the system. It provides the main functionalities

and the logic of the application, and allows performing actions on the whole system

while keeping system’s information consistent. Functions in one of the services can

also use functions from another service to implement their behaviour. This package

contains a set of Service classes, listed below:

• IdService: Used to generate IDs compliant with our system for conferences,

tickets, and payments.

• ResponseService: Used to create a success or error response in a format com-

patible with API Gateway’s Lambda integration to be returned from Lambdas.

• EventService: Used to retrieve information and supplied parameters in the API

request from the event object passed to Lambda

• ConferenceService: Used to perform defined operations that mainly involve

the conferences on the system, such as creating a new conference or retrieving

overviews for all current conferences.

• PaymentService: Used to perform defined operations that mainly involve the

payments on the system, such as retrieving a payment’s details or validating

one.

• TicketService: Used to perform defined operations that mainly involve the

tickets on the system, such as creating a ticket or scanning its QR code.

• TicketService: Used to retrieve information about a user, such as getting a

user’s type or full name.

A detailed API documentation of this package containing all functions, their

exact behaviour and structure, and their required parameters and response type

can be found in Appendix A.

The services package is used inside the API Lambdas through Lambda Layers.

Lambda Layers is a feature of Lambda that allows sharing code between different

Lambdas without including the code in each one’s deployment package [16]. This

way, the services package is deployed once to AWS as a layer, and the same layer is

23

included in the API Lambdas so that they can use the services package just as they

normally would with a package installed in the node modules directory.

We have also created another layer used by ConferSendTicketAsEmail to provide

the dependencies we use for ticket PDF document generation. Although these pack-

ages are not shared between different Lambdas, it is still useful to use Layers for

this purpose since this keeps the Lambda deployment package small.

A list of all the Lambda functions and their functionality can be found below.

API Lambdas

The API Lambdas take their input values from the event object passed to them

when they are called by API Gateway. This object contains the API request’s body

and path parameters, and also in case of protected endpoints, claims from the au-

thorizer containing information about the identity of the user who made the request.

We extract request information from this event using the EventService class. Func-

tions that require the user ID or a specific user type will return with an error if the

user ID is missing or user does not have permission for the given operation. Similarly,

the function will return with an error if a required body property or path parameter

is missing. We also define some body properties as optional, and if these properties

are missing from the API request they will be evaluated to string ”NONE”.

They implement their functionality using a combination of the functions provided

by the services package, and return a standard response using the ResponseService

module at the end of their execution. The function returns the following after a

successful execution:

{

statusCode: 201,

body: JSON.stringify({

Result: result,

Reference: awsRequestId

}),

headers: {

’Access-Control-Allow-Origin’: ’*’,

},

}

And in case of an error during the execution:

{

statusCode: 500,

body: JSON.stringify({

24

Error: errorMessage,

Reference: awsRequestId,

}),

headers: {

’Access-Control-Allow-Origin’: ’*’,

}

}

JSON.stringify in the body denotes that the JavaScript object given as the para-

meter is converted into its JSON string representation in order for it to be trans-

ferable inside the HTTP response body. These return values are parsed by API

Gateway to form the HTTP response of API endpoints. The Result property can

contain any JavaScript object, to be able to return responses of different types for

different endpoints; however, the Error property is meant to be used to send the

error message as a string.

ConferGetConferenceDetails

This function returns details for a conference given in the event’s path paramet-

ers. This operation can be used by guests.

Requires Path Parameter: conferenceId

Result type ConferenceService˜ConferenceDetails

ConferGetCurrentConferences

This function returns a list of overviews for conferences that are currently avail-

able for registration, meaning the conference is open and registration deadline has

not passed. This operation can be used by guests.

Result type Array.<ConferenceService˜ConferenceOverview>

ConferGetOpenConferences

This function returns a list of overviews for all publicly open conferences, even

if registration deadline has passed. This operation can be used by guests.

Result type Array.<ConferenceService˜ConferenceOverview>

ConferModeratorCreateConference

This function creates a conference in the system with the given properties. This

operation can only be used by moderators.

Requires Body Parameters: name, description, page content, fee, starts at,

ends at, is open, deadline

Result type {id, name} - Created conference’s ID and name

25

ConferModeratorGetAllConferences

This function returns a list of overviews for all conferences on the system, in-

cluding the ones that are not open. This operation can only be used by moderators.

Result type Array.<ConferenceService˜ConferenceOverview>

ConferModeratorGetConferencePayments

This function returns a list of all payments for a given conference. This operation

can only be used by moderators.

Result type Array.<PaymentService˜PaymentDetails>

ConferModeratorGetConferenceTickets

This function returns a list of all tickets for a given conference. This operation

can only be used by moderators.

Result type Array.<TicketService˜TicketDetails>

ConferModeratorModifyPayment

This function modifies the properties of the payment with the provided ID. This

operation can only be used by moderators.

Requires Path Parameter: paymentId

Requires Body Parameters: given name, family name, email, amount, city,

postalcode, country, address

Result type {given_name, family_name} - Updated payment’s name properties

ConferModeratorModifyTicket

This function modifies the properties of the ticket with the provided ID. This

operation can only be used by moderators.

Requires Path Parameter: ticketId

Requires Body Parameters: given name, family name, email, reques-

ted accommodation

Optional Body Parameters: meal notes, arriving time, stay length

Result type {given_name, family_name} - Updated ticket’s name properties

ConferModeratorScanQR

This function is used for scanning a ticket’s QR. It takes the ticket ID and gives

back the ticket information to moderator and sets its state to used. This operation

can only be used by moderators.

Requires Path Parameter: ticketId

Result type TicketService˜ScanResult

26

ConferModeratorUpdateConference

This function is used to update the properties of the conference with the provided

ID. This operation can only be used by moderators.

Requires Path Parameter: conferenceId

Requires Body Parameters: name, description, page content, fee, starts at,

ends at, is open, deadline

Result type {id, name} - Updated conference’s ID and name

ConferModeratorValidateTransferPayment

This function is used to confirm a payment by bank transfer has been made.

It sets the state of the payment and its corresponding ticket to valid, adds the

ticket to user’s profile, and at the end of its execution, invokes Lambda function

ConferSendTicketAsEmail asynchronously to send the ticket document to its owner.

This operation can only be used by moderators.

Requires Path Parameter: paymentId

Requires Body Parameters: name, description, page content, fee, starts at,

ends at, is open, deadline

Result type {paymentId, status} - The updated paymentId and its status con-

taining string ”valid”.

ConferPreparePayment

This function is used when submitting a registration for a conference, and cre-

ates a new payment and ticket in the system, with status ”waiting” and ”invalid”

respectively. This operation can be used by all registered users.

Requires Path Parameter: conferenceId

Requires Body Parameters: given name, family name, email, invoice given name,

invoice family name, invoice email, invoice address, invoice postalcode, invoice city,

invoice country, payment type, requested meal, requested accommodation

Optional Body Parameters: meal notes, arriving time, stay length

Result type {conference, user, payment_id, given_name, family_name} - ID of

the conference, user, and the newly created payment, and the newly created ticket’s

name properties.

ConferUserGetConferences

This function returns all of the tickets in the user’s profile. This operation can

be used by all registered users.

Result type {id, conference, given_name, family_name} - An object containing

ID of the the ticket, overview of type ConferenceService˜ConferenceOverview for the

conference corresponding to ticket, and the ticket’s name properties.

27

ConferUserGetPaymentDetails

This function returns details for a payment given in the event’s path parameters.

Only the owner of the payment can access the result, and the function return with

an error otherwise.

Requires Path Parameter: paymentId

Result type PaymentService˜PaymentDetails

ConferUserGetTicketDetails

This function returns details for a ticket given in the event’s path parameters.

Only the owner of the ticket can access the result, and the function return with an

error otherwise.

Requires Path Parameter: ticketId

Result type TicketService˜TicketDetails

ConferUserGetUserType

This function returns the user type of the currently signed in user. This operation

can be used by all registered users.

Result type {user_type} - User type of the sender of the API request.

Helper Lambdas

ConferPostUserVerification

This function is used as a post-confirmation trigger for our Cognito user pool. It

is invoked by Cognito after a user completes their registration by confirming their

email address. It adds the new user to the Users database table with ”basic” user

type and their registration information.

ConferSendTicketAsEmail

Upon invocation, this function creates a PDF file as the ticket document and

sends it to the email address provided on the ticket. It is meant to be invoked as

a separate microservice after the ticket is added to the user’s profile. We use npm

packages ”qrcode”, ”pdfkit”, and ”nodemailer” in this function through the Lambda

layer ticketemailtools. The qrcode package is used to generate a QR code containing

a link to the moderator scan page on the website with the ticket’s ID. Next, pdfkit

is used to generate a PDF document using a static template and the previously

generated QR code. Finally, this PDF document is emailed to the email address

on the ticket (not the user’s email) using the nodemailer package and throught the

AWS SES mailing service.

28

This function takes parameters id, name, and conference id in its event, repres-

enting the ticket ID, ticket owner’s full name, and the conference ID respectively.

3.4.4 API Endpoints

API Gateway is used to create the REST API of the backend which makes

communication between the website’s frontend and backend possible. API Gateway

uses Lambda Integration to forward the API call’s HTTP request to the Lambda

function, and send the results back to the client. CORS is also enabled through API

Gateway to allow access to our API from the website’s origin.

One of the important features of API Gateway for our project is the integration

with our Cognito user pool. A Cognito Authorizer has been set up on Confer’s API,

which guards our protected API endpoints from unauthorized access. On protected

endpoints, API Gateway checks the ”Authorization” header of the sent request and

rejects the request if it is not present. A valid Authorization header on a request

is the identity token returned from Cognito for the Confer user pool. API Gateway

decodes this token and verifies its signature using the user pool’s public RSA key,

to verify the identity of the request sender. After receiving the identity information,

it attaches them to the request before sending it to the Lambda function. This way,

we can find the user ID of the request sender, to enforce user permissions on API

requests.

Using Lambda integration, when an HTTP request is received by an endpoint,

API Gateway creates an event containing all the necessary information for Lambda

- including the request headers, body, and path parameters, and results from the

Cognito Authorizer - and invokes the corresponding Lambda function with that

event. After the Lambda returns with a successful or failed response, API Gateway

parses it into a valid HTTP response with the correct response status code, the

necessary CORS headers, and a string representing a JSON object containing the

invocation result or error; and finally sends that response to the submitter of the

request.

A list of all API endpoints and their details can be found below. All endpoints

require the Authorization header, unless specified otherwise.

– /conferences - GET: ConferGetCurrentConferences (No authorization re-

quired)

– /open - GET: ConferGetOpenConferences (No authorization required)

– /{conferenceId} - GET: ConferGetConferenceDetails (No authoriza-

tion required)

– /payments - POST: ConferPreparePayment

29

– /moderator

– /conferences - GET: ConferModeratorGetAllConferences, POST: Con-

ferModeratorCreateConference

– /{conferenceId} - PUT: ConferModeratorUpdateConference

– /payments - GET: ConferModeratorGetConferencePayments

– /tickets - GET: ConferModeratorGetConferenceTickets

– /payments

– /{paymentId} - PUT: ConferModeratorModifyPayment

– /qr

– /{ticketId} - GET: ConferModeratorScanQR

– /tickets

– /{ticketId} - PUT: ConferModeratorModifyTicket

– /transfer payments

– /{paymentId} - PUT: ConferModeratorValidateTransferPayment

– /user

– /conferences - GET: ConferUserGetConferences

– /payments

– /{paymentId} - GET: ConferUserGetPaymentDetails

– /tickets

– /{ticketId} - GET ConferUserGetTicketDetails

– /type - GET: ConferUserGetUserType

3.4.5 Website

The website is a user interface made using React that allows users to interact

with Confer. React projects are made up of components that can be defined as ES6

classes or functions, and in this project we have chosen the functional components

approach. In earlier versions of React, using class components offered states and life-

cycle hooks that were missing in functional components; but since the introduction

of React Hooks, these features can be achieved using useState and useEffect hooks

in functional components.

We use the Material-UI as one of the main dependencies of the website. Material-

UI is a framework that provides React components based on the popular open-source

30

Material design system, and helps us create a modern and stylish user interface

efficiently.

The main files in the project are index.html, index.js, App.js, Moderator.js, and

the views, components, and Services directories. We will explain how each of these

affect the application.

The index.html file is the entry point of the project. It has a body with only an

empty div element with id ”root”, and contains the index.js file as a script. When the

index.js file is loaded into the user’s browser, it renders the App component into the

element with id ”root” in the index.html file by modifying the browser DOM using

ReactDOM. The App component is the parent component of our React application.

It includes the main navigation bar of the website which is present in all pages, and it

defines the body of the web page depending on the URL entered in the browser using

React router. The router checks if the URL entered in the browser matches any of the

defined routes, and renders the component of the matching route, or the not found

page if the URL didn’t match any of the routes. As an example, when opening

URL https://master.d6nxzuw99ek2a.amplifyapp.com/conferences/all the URL

matches the route /conferences/all, and React router renders the associated com-

ponent AllConferencesPage in the body.

In the App component there is also a route defined for /moderator, which renders

the ModeratorApp component. ModeratorApp is meant to be a main component

over the moderator section of the application, and includes its own Router to redirect

to specific pages of the moderator section. In this component we have a ”userType”

state, and when the component is first mounted - without displaying the moderator

section just yet - we first check the logged in user’s type by sending an API call

to our backend endpoints. Once we receive the response, we update the userType

state, which re-renders the component with the new state. Now if the user type

is moderator or admin, the component renders the requested moderator page; and

otherwise the user does not have permission to access the moderator section and

will be redirected to a not authorized page.

The files inside the views directory each contain a React component correspond-

ing to the body content of a page in the application. A view component is the parent

component of the content of a page, and defines its user interface using Material-UI

elements and our custom components defined in the components directory.

In the components directory, we have defined a set of components specific to this

project using Material-UI that are used to display a specific part of a page’s data,

or self-contained dialogues or forms that implement a certain part of the website’s

functionality and user interface. The aim was to encapsulate any certain functionality

of the website in a separate component to allow easier maintenance and re-usability

in the code.

31

The Services directory contains two service modules ”AuthService” and ”ApiSer-

vice”. They both use the Amplify framework as a dependency and create a connec-

tion to the backend of our application. AuthService is used for interacting with our

Cognito user pool, to receive the identity token of the currently signed in user or

to perform operations such as signing in or creating a new account. ApiService con-

tains three classes: ConferencesApi for guest actions, UserApi for user actions, and

ModeratorApi for moderator actions. Each contains functions for sending an HTTP

request to one of our backend REST API endpoints, and they can be used by our

React components to retrieve data from the backend or to perform operations.

The website can be started locally by navigating to the confer-website repository

using the terminal and first running the command npm install to install all of the

project’s dependencies, and next running npm start to build the website and start

a local deployment on localhost. Now, the website can be used by navigating to

http://localhost:3000/ in a browser.

All pages of the website and their corresponding URL can be found below. The

notation /:parameter in a URL defines the route parameter of the route. As an

example, the /conference/:conferenceId opens the Conference Details page for the

conference with ID equal to :conferenceId. Also, the terminology ”Ticket” from the

backend has been changed to ”Registration” in the website design to better resonate

with users; however this does not cause any inconsistencies since the frontend and

backend projects are encapsulated from each other. All of the pages of the application

require the user to be signed in, unless specified otherwise in the list below.

• AvailableConferencesPage: Used to display conferences available for regis-

tration. This page is considered as the main page of the application, and can

be used by guests.

Route: / or /conferences

• AllConferencesPage: Used to display all publicly open conferences. This

page can be used by guests.

Route: /conferences/all

• ConferenceRegisterPage: The registration page containing the forms re-

quired for registering to a given conference.

Route: /conferences/:conferenceId/register

• RegistrationsPage: Used to display the current user’s successful registra-

tions.

Route: /user/registrations

32

• RegistrationDetailsPage: Used to display a given registration’s details.

Route: /user/registrations/:registrationId

• PaymentDetailsPage: Used to display a given payment’s details.

Route: /user/payments/:paymentId

• ModeratorConferencesPage: This page displays all open and non-open

conferences on the system and allows modification and moderation capabilities

for them. This page is considered as the main page of the moderator section

of the website.

Route: /moderator /moderator/conferences

• ModeratorNewConferencePage: This page is used to create a new confer-

ence on the system.

Route: /moderator/conferences/new

• ModeratorModifyConferencePage: This page is used to modify details of

an existing conference.

Route: /moderator/conferences/:conferenceId

• ModeratorConferenceRegistrationsPage: This page is used to display

information about all the registrations submitted for a given conference. It

also provides the ability to modify any of those registrations.

Route: /moderator/conferences/:conferenceId/registrations

• ModeratorConferencePaymentsPage: This page is used to display in-

formation about all the payments submitted for a given conference. It also

provides the ability to modify any of those payments.

Route: /moderator/conferences/:conferenceId/payments

• ModeratorConferencePaymentsPage: This page is meant to be used in

the QR code of the ticket, such that an admin can open it after scanning the

QR code to check the validity of a ticket upon user entrance to a conference.

Route: /moderator/qr/:registrationId

• NotAuthorizedPage: This page is displayed when a signed in user with type

basic attempts to open any of the valid moderator pages.

• NotFoundPage: This page is used when the route entered is invalid and does

not correspond to any of the website pages, or when a guest user tries to access

any of the protected parts of the website that require the user to be signed in.

33

Chapter 4

CONCLUSION

With the level of quality that is currently offered by popular websites and ap-

plications, there is no doubt that a successful solution needs to comply with current

standards to be able to satisfy users. In this project we achieved our goal of creat-

ing a fast and elegant web application, and delivering the promised functionalities.

The approaches chosen in this project are far from being the most straightforward

solution for creating a web application; however, they provide a solid and scalable

infrastructure, and a structured development process needed for large scale complex

applications.

AWS provided many useful services to make this project possible, and helped

tremendously with the development process by encapsulating much of the server

configuration and allowing us to focus on development of the application itself.

Apart from that, using AWS allowed us to run a live deployment of the application

without incurring any costs. Since many of the used services were released not too

long ago, they have not yet been widely adopted by the community, so there is

relatively fewer articles and sources of information that can be found for them apart

from the official documentation. Due to this, some of these tools - especially the less

explored sections of them - have a steep learning curve, and it might take a while

to get familiar with their definitions and methods.

Because of the full-stack nature of this project, many core concepts in different

fields of Computer Science had to be thoroughly explored to be able to have a clear

vision of each used component’s behaviour, resulting in valuable personal learn-

ings on web development. During the development process of this project, extensive

background research was done on foundation topics such as NoSQL databases, the

HTTP protocol, REST APIs, DevOps, and the functionality of web browsers - to

be able to utilize the components of the application to their full potential.

34

APPENDICES

35

Appendix A

Services Package API

Documentation

The services package contains all of the service classes used in Confer backend.

This package is used as a layer in Lambda functions to provide their main func-

tionalities and create a consistent interface through which the data of the system is

accessed an modified - such as a standard format to return responses, and perform

operations to modify or retrieve data on the database. In this appendix, we provide

detailed information about the classes and functions that each of the modules in

this package contains.

A.1 services module

The services module is defined in the index.js file, which is set to be the ’main’

module in the package using the package.json file. This means that this module’s

exports will be returned as a result of using require on the services package. This

module exports an object used as a namespace containing all the other service

modules.

Example usage: const ResponseService = require(’services’).ResponseService;

• services

– .ConferenceService ⇒ ConferenceService

– .EventService ⇒ EventService

– .IdService ⇒ IdService

– .PaymentService ⇒ PaymentService

– .ResponseService ⇒ ResponseService

– .TicketService ⇒ TicketService

– .UserService ⇒ UserService

36

services.ConferenceService ⇒ ConferenceService

Exports the ConferenceService class

services.EventService ⇒ EventService

Exports the EventService class

services.IdService ⇒ IdService

Exports the IdService class

services.PaymentService ⇒ PaymentService

Exports the PaymentService class

services.ResponseService ⇒ ResponseService

Exports the ResponseService class

services.TicketService ⇒ TicketService

Exports the TicketService class

services.UserService ⇒ UserService

Exports the UserService class

A.1.1 IdService

This module creates IDs to be used by the rest of the application.

IdService.generate(bytes) ⇒ string

Creates a hexadecimal identifier with the given number of bytes.

Kind: static method of IdService

Param Type

bytes number

A.1.2 ResponseService

This module provides a way to generate a valid success or error response with

API Gateway integration from Lambda functions.

• ResponseService

– .error(errorMessage, awsRequestId) ⇒ Object

– .success(result, awsRequestId) ⇒ Object

ResponseService.error(errorMessage, awsRequestId) ⇒ Object

Returns an error response object with a 500 status code and the given error

message in the body. The response body also contains awsRequestId for debugging.

Kind: static method of ResponseService

37

Param Type

errorMessage string

awsRequestId string

ResponseService.success(result, awsRequestId) ⇒ Object

Returns a successful response object with a 201 status code and the given result

in the body. The response body also contains awsRequestId for debugging.

Kind: static method of ResponseService

Param Type

result any

awsRequestId string

A.1.3 EventService

This module provides Lambda functions with the ability to parse and extract

data from the API request event. It includes three classes Event, Body and Path-

Params. Event is the only class that is exported from this module, and the Path-

Params and Body classes can be accessed using the PathParams() and Body() func-

tions of the Event class.

• EventService

– ˜Event

∗ new Event(event)

∗ .getAuthenticatedUser() ⇒ string

∗ .PathParams() ⇒ PathParams

∗ .Body() ⇒ Body

– ˜Body

∗ new Body(body)

∗ .getFor(key) ⇒ string

∗ .getForOptional(key) ⇒ string

– ˜PathParams

∗ new PathParams(pathParams)

∗ .getFor(key) ⇒ string

EventService˜Event

A class representing an API request event sent to a Lambda function. This class

is exported from the module and can be accessed as a static member of EventService.

Example usage: const event = new EventService.Event(event);

38

Kind: inner class of EventService

• ˜Event

– new Event(event)

– .getAuthenticatedUser() ⇒ string

– .PathParams() ⇒ PathParams

– .Body() ⇒ Body

new Event(event) Constructor for the Event class.

Param Type

event object

event.getAuthenticatedUser() ⇒ string Returns the current authenticated

user’s ID.

Kind: instance method of Event

event.PathParams() ⇒ PathParams Returns an instance of the PathParams

helper class instantiated with the event data from the parent Event object. Example

usage: const pathParams = new EventService.Event(event).PathParams();

Kind: instance method of Event

Returns: PathParams - An instance of the PathParams class made from

this.event.pathParameters

event.Body() ⇒ Body Returns an instance of the Body helper class instantiated

with the event data from the parent Event object. Example usage: const pathParams

= new EventService.Event(event).PathParams();

Kind: instance method of Event

Returns: Body - An instance of the Body class made from this.event.body parsed

to JSON

EventService˜Body

A class representing body of the API request event. This class is not exported

from the module and is meant to be instantiated only from within this module, so it

is not accessible through ”require(”services”).EventService.Body”. Creating a new

instance is only possible through ”new EventService.Event({event}).Body()”.

39

Kind: inner class of EventService

Access: protected

• ˜Body

– new Body(body)

– .getFor(key) ⇒ string

– .getForOptional(key) ⇒ string

new Body(body) Constructor for the Body class. Can only be used from within

this module.

Param Type

body object

body.getFor(key) ⇒ string Returns the body property from the API request

with the given key or throws an error if a body property with the given key does

not exist. Is used when a body property is required in the API request and we need

to fail the request in case it is missing.

Kind: instance method of Body

Throws:

• Error with message: ”Body does not have key {key}”

Param Type

key string

body.getForOptional(key) ⇒ string Returns the body property from the API

request with the given key or ”NONE” if a body property with the given key does not

exist. Is used when a body property is optional in the API request. The ”NONE”

placeholder string is used instead of the empty string since DynamoDB does not

allows insertion of empty strings in the database.

Kind: instance method of Body

Throws:

• Error with message: ”Body does not have key {key}”

40

Param Type

key string

EventService˜PathParams

A class representing path parameters of the API request event. This

class is not exported from the module and is meant to be instanti-

ated only from within this module, so it is not accessible through ”re-

quire(”services”).EventService.PathParams”. Creating a new instance is only pos-

sible through ”new EventService.Event({event}).PathParams()”.

Kind: inner class of EventService

Access: protected

• ˜PathParams

– new PathParams(pathParams)

– .getFor(key) ⇒ string

new PathParams(pathParams) Constructor for the PathParams class. Can

only be used from within this module.

Param Type

pathParams object

pathParams.getFor(key) ⇒ string Returns the path parameter with the given

key or throws an error if a path parameter with the given key does not exist.

Kind: instance method of PathParams

Throws:

• Error with message: ”Path parameters does not have key {key}”

Param Type

key string

A.1.4 ConferenceService

This module provides Lambda functions with services and the ability to retrieve

data and perform operations mainly involving Conference items on our database. All

41

the functions in this module are asynchronous, and therefore need to be called using

the ’await’ keyword. Example usage: await ConferenceService.getAllOverviews();

• ConferenceService

– static

∗ .createConference(id, name, description, page content, fee, starts at,

ends at, is open, deadline)

∗ .getAllOverviews() ⇒ Array.<ConferenceOverview>

∗ .getAllCurrentOverviews() ⇒ Array.<ConferenceOverview>

∗ .getAllOpenOverviews() ⇒ Array.<ConferenceOverview>

∗ .getOverviewForConference(conferenceId) ⇒ ConferenceOverview

∗ .getAllOpenOverviews(conferenceIds) ⇒

Array.<ConferenceOverview>

∗ .getDetailsForConference(conferenceId) ⇒ ConferenceDetails

∗ .getDetailsForConference(conferenceId) ⇒ Array.<TicketDetails>

∗ .getPaymentsForConference(conferenceId) ⇒

Array.<PaymentDetails>

– inner

∗ ˜ConferenceOverview : Object

∗ ˜ConferenceDetails : Object

ConferenceService.createConference(id, name, description, page content,

fee, starts at, ends at, is open, deadline)

(Async) Creates a Conference in the database with the given parameters. This

function can also be used to update an existing Conference, since it performs a Put

operation on the database.

Kind: static method of ConferenceService

Param Type

id string

name string

description string

page content string

fee string

starts at string

ends at string

is open boolean

deadline string

42

ConferenceService.getAllOverviews() ⇒ Array.<ConferenceOverview>

(Async) Returns with an array containing the overview objects of all the Con-

ferences on the database.

Kind: static method of ConferenceService

ConferenceService.getAllCurrentOverviews() ⇒

Array.<ConferenceOverview>

(Async) Returns with an array containing the overview objects of all the available

Conferences on the database. A conference is available when the registration deadline

is not over and the conference is open to public.

Kind: static method of ConferenceService

ConferenceService.getAllOpenOverviews() ⇒

Array.<ConferenceOverview>

(Async) Returns with an array containing the overview objects of all the Con-

ferences on the database that are open to public.

Kind: static method of ConferenceService

ConferenceService.getOverviewForConference(conferenceId) ⇒ Confer-

enceOverview

(Async) Returns with an object containing the overview object of the Conference

on the database with the given ID.

Kind: static method of ConferenceService

Param Type

conferenceId string

ConferenceService.getAllOpenOverviews(conferenceIds) ⇒

Array.<ConferenceOverview>

(Async) Returns with an array containing the overview objects of the Conferences

on the database with the given array of IDs.

Kind: static method of ConferenceService

Param Type

conferenceIds Array.<string>

43

ConferenceService.getDetailsForConference(conferenceId) ⇒ Conferen-

ceDetails

(Async) Returns with an object containing the all the properties of the Confer-

ences with the given ID on the database.

Kind: static method of ConferenceService

Param Type

conferenceId string

ConferenceService.getDetailsForConference(conferenceId) ⇒

Array.<TicketDetails>

(Async) Returns with an array containing the TicketDetails objects that are

associated with the given Conference ID.

Kind: static method of ConferenceService

Param Type

conferenceId string

ConferenceService.getPaymentsForConference(conferenceId) ⇒

Array.<PaymentDetails>

(Async) Returns with an array containing the PaymentDetails objects that are

associated with the given Conference ID.

Kind: static method of ConferenceService

Param Type

conferenceId string

ConferenceService˜ConferenceOverview : Object

Kind: inner typedef of ConferenceService

Properties

Name Type Description

id string Conference ID

name string Conference name

description string Description of the conference

starts at string Starting date

ends at string Ending date

deadline string Registration deadline

44

Name Type Description

is open boolean Whether conference is discoverable to public

ConferenceService˜ConferenceDetails : Object

Kind: inner typedef of ConferenceService

Properties

Name Type Description

id string Conference ID

name string Conference name

description string Description of the conference

page content string Content displayed on the conference page

fee string Conference fee

starts at string Starting date

ends at string Ending date

deadline string Registration deadline

is open boolean Whether conference is discoverable to public

A.1.5 PaymentService

This module provides Lambda functions with services and the ability to retrieve

data and perform operations mainly involving Payment items on our database.

• PaymentService

– ˜Payment

∗ new Payment(id)

∗ .createTransferPayment(conference, user, given name, family name,

email, address, postalcode, city, country, ticket id)

∗ .getPaymentDetails() ⇒ PaymentDetails

∗ .validateTransferPayment()

∗ .modifyPayment(given name, family name, email, amount, city,

postalcode, country, address)

– ˜PaymentDetails : Object

PaymentService˜Payment

A class that holds a payment ID as a property and provides services involving

that payment. All the functions in this class are asynchronous, and therefore need

to be called using the ’await’ keyword.

45

Example usage: await new PaymentService.Payment({id}).getPaymentDetails();

Kind: inner class of PaymentService

• ˜Payment

– new Payment(id)

– .createTransferPayment(conference, user, given name, family name,

email, address, postalcode, city, country, ticket id)

– .getPaymentDetails() ⇒ PaymentDetails

– .validateTransferPayment()

– .modifyPayment(given name, family name, email, amount, city,

postalcode, country, address)

new Payment(id) Constructor for the Payment class. Takes the Payment’s ID

as a parameter.

Param Type

id string

payment.createTransferPayment(conference, user, given name, fam-

ily name, email, address, postalcode, city, country, ticket id) (Async) Cre-

ates a payment with type ’transfer’ in the database with the object’s id parameter

and the given parameters.

Kind: instance method of Payment

Param Type Description

conference string ID of the conference payment is made for

user string ID of the user submitting the paper

given name string Billing given name

family name string Billing family name

email string Billing email

address string Billing address

postalcode string Billing postal code

city string Billing city

country string Billing country

ticket id string ID of the corresponding ticket

payment.getPaymentDetails() ⇒ PaymentDetails (Async) Returns with a

PaymentDetails object corresponding to the payment details on the database.

46

Kind: instance method of Payment

payment.validateTransferPayment() (Async) Sets the status of the payment

to accepted, validates the ticket, and finally adds the registration to user profile and

emails it to the provided email address. This function is meant to be used after

verifying the user has transferred the payment.

Kind: instance method of Payment

Throws:

• Error Throws an error if the database update fails or payment type is not

transfer.

payment.modifyPayment(given name, family name, email, amount, city,

postalcode, country, address) (Async) Modifies the details of the payment in

the database with the given parameters.

Kind: instance method of Payment

Param Type Description

given name string Billing given name

family name string Billing family name

email string Billing email

amount string The amount of payment in HUF

city string Billing city

postalcode string Billing postal code

country string Billing country

address string Billing address

PaymentService˜PaymentDetails : Object

Kind: inner typedef of PaymentService

Properties

Name Type Description

id string Payment ID

conference string ID of the conference payment is made for

user string ID of the user submitting the paper

given name string Billing given name

family name string Billing family name

email string Billing email

47

Name Type Description

address string Billing address

postalcode string Billing postal code

city string Billing city

country string Billing country

amount string Billing city

conference name string Name of the conference payment is made for

ticket id string ID of the corresponding ticket

type string Payment type; currently only ”transfer”

status string Payment status; ”waiting” or ”accepted”

transactions Array Online transaction IDs; Currently only empty

created at string Date of invoice

A.1.6 TicketService

This module provides Lambda functions with services and the ability to retrieve

data and perform operations mainly involving Ticket items on our database.

• TicketService

– ˜Ticket

∗ new Ticket(id)

∗ .createTicket(conference, user, given name, family name, email, pay-

ment id, requested meal, meal notes, requested accommodation, ar-

riving time, stay length)

∗ .modifyTicket(given name, family name, email, requested meal,

meal notes, requested accommodation, arriving time, stay length)

∗ .getTicketDetails() ⇒ TicketDetails

∗ .getTicketName() ⇒ Name

∗ .validateTicket()

∗ .addToUserProfile()

∗ .scanTicket() ⇒ ScanResult

– ˜TicketDetails : Object

– ˜Name : Object

– ˜ScanResult : Object

TicketService˜Ticket

A class that holds a ticket ID as a property and provides services involving

that ticket. All the functions in this class are asynchronous, and therefore need

48

to be called using the ’await’ keyword. Example usage: await new TicketSer-

vice.Ticket({id}).getTicketDetails();

Kind: inner class of TicketService

• ˜Ticket

– new Ticket(id)

– .createTicket(conference, user, given name, family name, email, pay-

ment id, requested meal, meal notes, requested accommodation, arriv-

ing time, stay length)

– .modifyTicket(given name, family name, email, requested meal,

meal notes, requested accommodation, arriving time, stay length)

– .getTicketDetails() ⇒ TicketDetails

– .getTicketName() ⇒ Name

– .validateTicket()

– .addToUserProfile()

– .scanTicket() ⇒ ScanResult

new Ticket(id) Constructor for the Payment class. Takes the Payment’s ID as a

parameter.

Param Type

id string

ticket.createTicket(conference, user, given name, family name, email,

payment id, requested meal, meal notes, requested accommodation, ar-

riving time, stay length) Creates a ticket in the database with the object’s id

parameter and the given parameters.

Kind: instance method of Ticket

Param Type Description

conference string ID of the conference corresponding ticket

user string ID of submitting user

given name string Ticket owner’s given name

family name string Ticket owner’s family name

email string Ticket owner’s email

payment id string ID of the corresponding payment

requested meal boolean Whether user requested meal preparation

meal notes string Notes for meal

49

Param Type Description

requested accommodation boolean Whether user requested accommodation help

arriving time string Date of arrival in case of accommodation

stay length string Duration of stay in case of accommodation

ticket.modifyTicket(given name, family name, email, requested meal,

meal notes, requested accommodation, arriving time, stay length) Cre-

ates a ticket in the database with the object’s id parameter and the given parameters.

Kind: instance method of Ticket

Param Type Description

given name string Ticket owner’s given name

family name string Ticket owner’s family name

email string Ticket owner’s email

requested meal boolean Whether user requested meal preparation

meal notes string Notes for meal

requested accommodation boolean Whether user requested accommodation help

arriving time string Date of arrival in case of accommodation

stay length string Duration of stay in case of accommodation

ticket.getTicketDetails() ⇒ TicketDetails (Async) Returns with a TicketDe-

tails object corresponding to the ticket details on the database.

Kind: instance method of Ticket

ticket.getTicketName() ⇒ Name (Async) Returns with an object containing

the given name and family name on the ticket. This functions is preferred over using

getTicketDetails for retrieving the name since the implementation provides better

database response time.

Kind: instance method of Ticket

ticket.validateTicket() (Async) Sets the state of the ticket to ’valid’. This func-

tion is meant to be used after validation of payment.

Kind: instance method of Ticket

50

ticket.addToUserProfile() (Async) Adds the ticket to be user profile by ap-

pending the ticket as an ’AttendingConference’ object (from module UserService)

to the conferences attending property of the user, and sends an email containing the

ticket document to the provided address. This function is meant to be used after

validation of the ticket.

Kind: instance method of Ticket

ticket.scanTicket() ⇒ ScanResult (Async) Sets the state of the ticket to used,

and returns the an object containing the ticket details and time of execution. This

function is meant to be used for scanning a ticket’s QR code.

Kind: instance method of Ticket

TicketService˜TicketDetails : Object

Kind: inner typedef of TicketService

Properties

Name Type Description

id string Ticket ID

conference string ID of the conference corresponding ticket

user string ID of submitting user

given name string Ticket owner’s given name

family name string Ticket owner’s family name

email string Ticket owner’s email

status string Ticket status; ”valid”, ”invalid”, or ”used”

payment id string ID of the corresponding payment

created at string Date of invoice

requested meal boolean Whether user requested meal preparation

meal notes string Notes for meal

requested accommodation boolean Whether user requested accommodation help

arriving time string Date of arrival in case of accommodation

stay length string Duration of stay in case of accommodation

TicketService˜Name : Object

Kind: inner typedef of TicketService

Properties

Name Type Description

given name string Ticket owner’s given name

51

Name Type Description

family name string Ticket owner’s family name

TicketService˜ScanResult : Object

Kind: inner typedef of TicketService

Properties

Name Type Description

id string Ticket ID

conference string ID of the conference corresponding ticket

user string ID of submitting user

given name string Ticket owner’s given name

family name string Ticket owner’s family name

email string Ticket owner’s email

status string Ticket status; ”valid”, ”invalid”, or ”used”

payment id string ID of the corresponding payment

created at string Date of invoice

requested meal boolean Whether user requested meal preparation

meal notes string Notes for meal

requested accommodation boolean Whether user requested accommodation help

arriving time string Date of arrival in case of accommodation

stay length string Duration of stay in case of accommodation

time string Scan time

A.1.7 UserService

This module provides Lambda functions with services regarding a user item in

the database.

• UserService

– ˜User

∗ new User(id)

∗ .getUserType() ⇒ string

∗ .getUserName() ⇒ Name

∗ .getTickets() ⇒ Array.<AttendingConference>

– ˜AttendingConference : Object

– ˜Name : Object

52

UserService˜User

A class that holds a user ID as a property and provides services and information

about the user. All the functions in this class are asynchronous, and therefore need

to be called using the ’await’ keyword.

Example usage: await new UserService.User({id}).getUserType();

Kind: inner class of UserService

• ˜User

– new User(id)

– .getUserType() ⇒ string

– .getUserName() ⇒ Name

– .getTickets() ⇒ Array.<AttendingConference>

new User(id) Constructor for the user class. Takes the user’s ID as a parameter.

Param Type

id string

user.getUserType() ⇒ string (Async) Returns with the user type. The result

can be ’basic’, ’admin’, or ’moderator’.

Kind: instance method of User

user.getUserName() ⇒ Name (Async) Returns with an object containing the

user’s name.

Kind: instance method of User

user.getTickets() ⇒ Array.<AttendingConference> (Async) Returns with

an array containing the AttendingConference objects from all the tickets that have

been added to user’s profile.

Kind: instance method of User

UserService˜AttendingConference : Object

Kind: inner typedef of UserService

Properties

53

Name Type Description

Name Type Description

id string Ticket’s ID

conference string Conference’s ID

UserService˜Name : Object

Kind: inner typedef of UserService

Properties

Name Type Description

given name string User’s given name

family name string User’s family name

54

REFERENCES

[1] P. Srivastava and R. Khan, “A review paper on cloud computing”,
International Journal of Advanced Research in Computer Science and

Software Engineering, vol. 8, p. 17, 2018-06.
doi: 10.23956/ijarcsse.v8i6.711.

[2] What is cloud computing?,
[Online]. Available: https://aws.amazon.com/what-is-cloud-computing/
(accessed on 2019-12-04).

[3] M. Stigler, “Understanding serverless computing”,
in Beginning Serverless Computing: Developing with Amazon Web Services,

Microsoft Azure, and Google Cloud. Berkeley, CA: Apress, 2018, pp. 1–14,
isbn: 978-1-4842-3084-8. doi: 10.1007/978-1-4842-3084-8_1.

[4] ——, “Amazon web services”, in Beginning Serverless Computing:

Developing with Amazon Web Services, Microsoft Azure, and Google Cloud.
Berkeley, CA: Apress, 2018, pp. 41–81, isbn: 978-1-4842-3084-8.
doi: 10.1007/978-1-4842-3084-8_3.

[5] What is the aws serverless application model (aws sam)?,
[Online]. Available: https://docs.aws.amazon.com/serverless-
application-model/latest/developerguide/what-is-sam.html

(accessed on 2019-11-25).

[6] What is aws cloudformation?,
[Online]. Available: https://docs.aws.amazon.com/AWSCloudFormation/
latest/UserGuide/Welcome.html (accessed on 2019-11-25).

[7] What is amazon dynamodb?,
[Online]. Available: https://docs.aws.amazon.com/amazondynamodb/
latest/developerguide/Introduction.html (accessed on 2019-11-25).

[8] What is amazon cognito?, [Online]. Available:
https://docs.aws.amazon.com/cognito/latest/developerguide/what-

is-amazon-cognito.html (accessed on 2019-11-25).

[9] Control access to a rest api using amazon cognito user pools as authorizer,
[Online]. Available: https://docs.aws.amazon.com/apigateway/latest/
developerguide/apigateway-integrate-with-cognito.html (accessed on
2019-11-25).

55

https://doi.org/10.23956/ijarcsse.v8i6.711
https://aws.amazon.com/what-is-cloud-computing/
https://doi.org/10.1007/978-1-4842-3084-8_1
https://doi.org/10.1007/978-1-4842-3084-8_3
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/what-is-sam.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/what-is-sam.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introduction.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introduction.html
https://docs.aws.amazon.com/cognito/latest/developerguide/what-is-amazon-cognito.html
https://docs.aws.amazon.com/cognito/latest/developerguide/what-is-amazon-cognito.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-integrate-with-cognito.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-integrate-with-cognito.html

[10] Rendering elements, [Online]. Available:
https://reactjs.org/docs/rendering-elements.html (accessed on
2019-12-01).

[11] Reconciliation,
[Online]. Available: https://reactjs.org/docs/reconciliation.html
(accessed on 2019-12-01).

[12] Introducing jsx,
[Online]. Available: https://reactjs.org/docs/introducing-jsx.html
(accessed on 2019-12-01).

[13] Aws amplify faq, [Online]. Available:
https://aws.amazon.com/amplify/faqs/ (accessed on 2019-12-02).

[14] Aws amplify faq - hosting,
[Online]. Available: https://aws.amazon.com/amplify/faqs/#Hosting
(accessed on 2019-12-02).

[15] Dynamodb developer guide: Global secondary indexes,
[Online]. Available: https://docs.aws.amazon.com/amazondynamodb/
latest/developerguide/GSI.html (accessed on 2019-12-02).

[16] New for aws lambda use any programming language and share common
components, [Online]. Available:
https://aws.amazon.com/blogs/aws/new-for-aws-lambda-use-any-

programming-language-and-share-common-components/ (accessed on
2019-12-02).

56

https://reactjs.org/docs/rendering-elements.html
https://reactjs.org/docs/reconciliation.html
https://reactjs.org/docs/introducing-jsx.html
https://aws.amazon.com/amplify/faqs/
https://aws.amazon.com/amplify/faqs/#Hosting
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GSI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GSI.html
https://aws.amazon.com/blogs/aws/new-for-aws-lambda-use-any-programming-language-and-share-common-components/
https://aws.amazon.com/blogs/aws/new-for-aws-lambda-use-any-programming-language-and-share-common-components/

	INTRODUCTION
	Motivation
	Thesis Structure

	USER DOCUMENTATION
	Project Description
	Technical Information
	Usage Information
	Getting Started
	Registering for a Conference
	User Registrations

	Moderator Usage Information
	Managing Conferences
	Creating a New Conference
	Scanning a Ticket

	DEVELOPER DOCUMENTATION
	Problem Specification
	Project Structure
	Overview
	Used Technologies and Methods
	Abstract Architecture of Resources

	Build and Deployment
	Backend Deployment Process
	Frontend Deployment Process

	Project Resources
	User Pool
	Databases
	Lambda Functions
	API Endpoints
	Website

	CONCLUSION
	APPENDICES
	Services Package API Documentation
	services module
	IdService
	ResponseService
	EventService
	ConferenceService
	PaymentService
	TicketService
	UserService

	REFERENCES

