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ABSTRACT

In this study, we report a novel ZnO/polyaniline (PANI) nanocomposite optical gas sensor for the determination
of acetic acid at room temperatures. ZnO nanorods, synthesized in powder form were coated by PANI (ZnO/
PANI) by chemical polymerization method. The obtained nanocomposites were deposited on glass substrate and
dried overnight at room temperature. Structure and optical properties of ZnO/PANI nanocomposite have been
studied by using X-ray diffraction, transmission electron microscopy, scanning electron microscopy, diffuse
reflectance and photoluminescence spectroscopy. Tests towards acetic acids were performed in the range of
concentrations 1-13 ppm. The adsorption of acetic acid on the sensor's surface resulted in the decrease of ZnO/
PANI photoluminescence. The response and recovery time of the sensor were in the range of 30-50 s and 5 min,
respectively. The developed sensors showed sensitivity towards acetic acid in a range of 1-10 ppm with the limit
of detection of 1.2 ppm. Specially designed miniaturized sensing system based on integrated sensing layer, light
emission diode as excitation source and optical fiber spectrometer was developed for the measurement of the
sensor signal. The developed sensing system was applied for the investigation of some real sample assessment
including the evaluation of storage conditions of ancient cellulose acetate films, which during the degradation
are releasing acetic acid. The obtained results suggest that the developed novel optical ZnO/PANI nanocompsite
based sensor shows great potential for acetic acid determination in various samples.

1. Introduction

made using cellulose derivate [4,5]. More than 75 years of visual and
audio memories are in serious danger to be lost due to the natural in-

Sensing of small organic volatile compounds is an important issue in
sensor development. Numerous small organic molecules are dangerous
for human health or interfere severely in numerous industrial produc-
tions [1]. Acetic acid is a corrosive substance that is used in numerous
industrial applications and hence it is present, mainly as vapor, in some
industrial atmospheres. It is the principal constituent of the volatile
acidity of wines and vinegars. It is also traditionally used as an oxi-
dizing agent in organic synthesis [2]. On another hand, acetic acid is an
important compound for the monitoring of cellulose acetate films [3]. A
huge percentage of the recent cultural heritage can be found in movies,
photographs, posters and slides produced between 1895 and 1970 were
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stability of cellulose acetate. The degradation produces acetic acid
(vinegar effect), in an autocatalytic process [5]. Thus, it is important to
have sensors able to detect the presence of acetic acid and to control its
concentration over time in order to be able to take preventive actions
for human health and heritage preservation [5].

In past decades, some gas sensors for the determination acetic acid
have been developed [6,7]. Quartz crystal microbalance (QCM) based
sensors, coated with polyaniline (PANI) layers were used for the de-
termination of acetic acid [3]. The sensors were suitable for the mea-
surement of acetic acid concentrations in a wide range but irreversible
changes of signal response were observed over time. The same
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irreversible changes were observed in optical sensors, based on PANI
[8]. Therefore, such sensors were very inaccurate and/or needed very
frequent recalibration [3,8].

In another research, it was demonstrated that Poly[2-methoxy-5-(2-
ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) based films can be
used as fluorescent probes for acetic acid vapor detection [9] and
therefore such layers probably are suitable for the determination of
acetic acid. However, these sensors require a high-intensity light source
for photoluminescence (PL) excitation and show lower sensitivity
compared to PANI-based layers sensors. Furthermore, sensor stability
over time and use is also a concern since these films undergo photo-
degradation. Therefore, practical application of sensors based on such
layers is very limited.

Considerable attention in recent years has been directed to sensors
for toxic gases based on metal oxide semiconductors. Among many
others, zinc oxide (ZnO) is a unique material, which possesses specific
semiconducting and optical properties. Many different nanostructures
based on ZnO are known, all of them have very high surface area
compared to their geometrical area. Such extended ZnO surface area is
very important for the application in sensing and biosensing devices
[3]. Zinc oxide has a wide band gap, which depends on doping and/or
the number of defects in the crystal structure of ZnO [1]. This semi-
conducting material shows good applicability in catalytic and sensing
devices [2,3,10,11].

In addition to attractive physicochemical properties, zinc oxide is
non-toxic and possess good biocompatibility, which makes this material
even more attractive for sensor development [3]. Till now, few studies
have been carried out regarding the acetic acid sensing characteristics
of ZnO nanoparticles. Some sensors utilize doped semiconducting metal
oxide nanolayers, with detection based on resistance measurements
[6,7]. The principle of action of such sensors is based on the catalytic
degradation of acetic acid on the doped metal nanostructured surface.
However, the most common metal oxide semiconductors sensitive to
gasses are n-type semiconductors, thus, they demand high operating
temperatures that limits their use at room temperature. Particularly, the
resistance of metal oxide based sensors for acetic acid at 120-400 °C
depends on the type of metal oxide and the doping. In particular, a
correlation between concentration of acetic acid and variation in
measured resistance of the sensor has emerged [6,7].

Therefore, novel analytical and/or bioanalytical methods, which
overcome current state-of-the-art and enable fast, sensitive, specific and
high-throughput detection, are in great demand.

The photoluminescence of ZnO is very attractive for sensor devel-
opment operating at room temperature because, once properly func-
tionalized, ZnO can be exploited as a selective analytical transducer,
which enables to enhance the analytical signal, increase detection
sensitivity and signal-to-noise ratio [3-8].

In the present work, we report novel ZnO/PANI nanocomposite
based photoluminescence sensors for the determination of acetic acid
vapors at room temperatures. The main sensors parameters (sensitivity,
selectivity, limit of detection, response and recovery time, etc.) are
discussed. Integration of the ZnO/PANI nanocomposites with portable
optical system for application in vinegar analysis and in cultural heri-
tage protection has been demonstrated.

2. Materials and methods
2.1. Materials and consumables

Aniline monomer (CAS Number: 62-53-3), ethanol (CAS Number:
64-17-5) and hydrogen peroxide (30%) (CAS Number: 7722-84-1), pure

acetic acid (98%) (CAS Number: 64-19-7) were purchased from Sigma
Aldrich. Mili-Q water was used in all experiments.
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2.2. ZnO deposition and formation of ZnO-PANI composite

Indium thin oxide coated glass plate was used as solid support. ZnO
nanorods were deposited as powder by gaseous disperse method as
explained in previous methods [12]. PANI was synthesized by oxida-
tive-chemical deposition method [13]. The 1 mg/ml of ZnO nanorod
(ZnO-NR) colloidal suspension in water was mixed with pure aniline.
50 mM and 200 mM aniline concentrations were used for composite
preparation. The solution was rigorously stirred and treated by ultra-
sound for 15 min. Then an oxidizing agent — hydrogen peroxide — was
added. The synthesis was performed at room temperature for 8 h.

In order to prepare sensing layer, glass substrates 10 mm X 10 mm
were cleaned in isopropanol and dried at room temperature. Twenty
microliters of the ZnO-PANI composite solution were deposited on the
prepared glass by drop casting method and then dried overnight.

2.3. Characterization techniques

Structural properties of ZnO-PANI nanocomposites have been in-
vestigated by X-ray diffraction spectroscopy (XRD) on a Rigaku Ultima
XRD-setup (CuKa, A = 0.154 nm). Conventional powder diffraction
analysis was performed by acquiring the 0-20 spectra in the 6 range
from 20 to 80°. The surface morphology of the samples was determined
using TESCAN scanning electron microscope (SEM) and high resolution
transmission electron microscopy (HRTEM) Tecnai GF20 from FEI
(Eindhoven, The Netherlands). Room temperature photoluminescence
spectra of ZnO-PANI nanocomposites were studied in the range of
360-800 nm using light emitting diode (LED) (A = 340 nm, 0.4 mW
output power) and Ocean optic (USB4000) spectrometer for excitation
and registration of photoluminescence. Reflectance measurements were
performed by using Ocean optic (USB4000) spectrometer and halogen-
deuterium light source (Ocean Optics).

2.4. Experimental setup for gas sensing

The experimental laboratory setup for gas sensing is shown in
Fig. 1A. The setup is mounted on an optical table rail. Light emitting
diode (LED) was used as an excitation source. The band pass filter with

B) s

| zi
Fig. 1. Experimental setup for gas integrated sensing scheme (A) based on: LED
(1), band pass filter (2), gas chamber (3), sample holder (4), long pass filter (5),

detector (6), lens (7), computer (8) and gas supply system (B) showing air pump
(1), buffer volume (2), inlet chamber (3), measurement cell (4) and outlet (5).
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transmittance in the range of 320-380 nm was used to cut off noise
green emission from LED. The gas chamber made of plastic was
equipped with a sample holder. The emitted light was passed through
long pass filter 5 with transmittance in the range of 370-900 nm to cut
off a signal from LED. The signal was collected with fiber optic spec-
trometer Ocean Optics USB4000, equipped with collimating lens fixed
on the tip of 600 pm core multimode optical fiber. Measurements were
performed in dynamic regime with SpectraSuite software.

Gas supply system is shown in Fig. 1B. Air pump with a fixed
pumping speed (50 1/h) was connected with a buffer volume. The probe
was introduced into the inlet chamber filled with 4 ml of buffer solution
and then it was pumped into the measurement cell, which was of 60 ml
volume. The gas was removed from the measurement cell through
outlet. The measurement cell was equipped with transparent quartz
glass (green colored) to transmit excitation and emission lights.

Several wavelengths from PL spectra of ZnO/PANI were selected for
kinetic measurements. As result, PL intensity at the fixed wavelengths
was analyzed before and after exposure towards gas. Pure acetic acid
(98%) was added to the buffer volume 2 in the range of 0.25-2 L.
Concentration of acetic acid was calculated according to literature
corresponding to 1-13 ppm [3].

Miniature prototype of the integrated system was built up using
newly designed measurement cell (made in black delrin) that can hold
sensing layer, excitation light (LED with wavelength 340 nm and output
power 0.4 mW), filter and optical fiber required for the measurement of
the emitted photoluminescence. The measurement cell allows exposure
to the acetic acid on the surface of the sensing layer through an inlet
and outlet (Fig. 2C). The PL of ZnO/PANI surface was excited by
340 nm wavelengths. PL integration time was 5 s.

2.5. Measurements of cellulose acetate by indicators strips

A-D Strips (RIT Image Permanence Institute, UK) are dye-coated
paper strips that detect and measure the severity of acetate film dete-
rioration, vinegar syndrome, in film collections. When placed inside a

WWQT 2|0H J03838Q
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closed system for 24 h the change color in the presence of the acidic
vapor given off by degrading film. As the level of acidity increases, they
change from their original blue color (0: no deterioration) through blue-
green (1: deterioration starting), green (2:actively degrading), and fi-
nally to bright yellow (3 critical degrading).

3. Results and discussion
3.1. Structural properties of ZnO-PANI nanocomposites

The XRD patterns obtained for ZnO and ZnO/PANI nanocomposite
are presented in Fig. 3A. The 50 mM concentration of aniline didn't
provide conformal coating (data not shown) therefore all the experi-
ments performed with composite material obtained by 100 mM aniline
coating. XRD spectrum of ZnO nanorods showed reflection peaks re-
lated to ZnO at 26 31.6°, 34.3°, 36.1°, 47.4°, 56.4°, 62.7°and 67.8° [14].
The observed peaks correspond to the reflections from the next crystal
planes: (100), (002), (101), (102), (110), (103), (112) and (004) re-
spectively which were similar to that reported previously [14]. PANI
layer deposited on ZnO surface quenches some of XRD peaks, related to
ZnO. New peaks at 25.88, 27.08, 28.83° were attributed to PANI peaks,
related to (200), (121) and (022) PANI crystallographic planes [15].
The XRD peaks point the forming of crystalline conductive PANI in the
form of emeraldine salt [15]. Peaks of ZnO at 55.88, 60.2 and 64.88 are
shifted due to forming of ZnO/PANI composite structure [16].

Scanning electron microscopy (SEM) image of the ZnO/PANI on a
glass substrate Fig. 3B shows a uniform distribution of nanostructure
grains of about 60-90 nm diameter and 400-600 nm length. The di-
mensions of ZnO nanorods after PANI deposition slightly increased,
comparing to that reported in other researches [14,17]. Fig. 3C shows
HRTEM image of the ZnO/PANI indicating, conformal coating of PANI.
The average thickness of the PANI coating, estimated from HRTEM
image was estimated 7 + 3 nm.

50 mM and 200 mM aniline concentrations were used for composite
preparation. The lower concentration do not provided conformal

Fig. 2. A) Drawings of the measurement chamber
indicating the angle of measurement of photo-
luminescence by the fiber optic spectrometer Ocean
Optics USB4000, B) parts of the developed sensor
array, C) in order from left: LED mounted on mea-
surement cell, measurement cell when UV LED
turned on, filter mounted on measurement cell,
complete sensor assembly with glass plate deposited
ZnO/PANI sensing layer.
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Fig. 3. Structural characterization of ZnO/PANI nanocomposite: (A) XRD spectra of the ZnO nanorods and ZnO/PANI nanocomposite (ZnO and PANI peaks are
marked as * and W, respectively), SEM image (B) and HRTEM image (C) of ZnO/PANI nanocomposite.

coating but the higher concentration significantly quenched PL of ZnO,
what is in line with similar effect observed for interaction of some other
photoluminescence exhibiting materials with other conducting polymer
— polypyrrole [18,19].

3.2. Photoluminescence measurements

Optical properties of ZnO/PANI nanocomposite were evaluated
after the deposition of this composite on glass slide. Fig. 4A shows
diffuse reflectance spectra of ZnO nanorods before and after PANI de-
position. It was seen, that the absorption edge of ZnO/PANI has shifted
towards UV region compared to ZnO nanorods. It points the charge
transfer from PANI to ZnO in formed ZnO/PANI nanocomposites [16].
In addition, two absorption edges appeared in ZnO/PANI spectra in the
range of 470 and 700 nm. The observed peaks correspond to PANI
absorption peaks [20]. According to the literature [20], PANI nanos-
tructures have broad absorption peak at 325 nm with full width of half
maximum ~ 60 nm. It points that PANI absorption might overlap with
ZnO emission in UV and visible ranges.

Photoluminescence spectra of ZnO NRs before and after PANI de-
position are shown in Fig. 4B. PANI deposition results in a decrease of
intensity of ZnO-based PL. Sufficient decrease of PL emission might be
related to absorption of the emitted light by PANI. Peak shifts are ob-
served in UV and visible region, suggesting the formation of composite
with charge transfer between PANI and ZnO. We suppose, that PANI
formation on the surface of ZnO might passivate surface centers of non-
emission recombination and forming additional bonds with ZnO.

ZnO/PANI PL spectra were excited by LED with wavelength of
340 nm at output power 0.4 mW. The obtained PL spectra were dif-
ferent from that reported in other research based on bare ZnO layers not
modified by PANI [14]. PL intensity of ZnO nanostructures is

significantly dependent on the excitation power [21]. For UV peak of
ZnO (mainly free excitons) this dependence is superliner, whereas for
Vis peak of ZnO (mainly defect emission) it remains sublinear [21].
Therefore, by using single 340 nm LED there is a risk of suppression of
PL intensity, but at the same time the increase of noise-to-signal ratio is
observed. In this context, further kinetic measurements of the sensor
prototype were performed only at fixed 380 nm and 520 nm wave-
lengths, where the best PL performance has been determined.

3.3. Evaluation of sensor response towards acetic acid

A miniaturized (5 X 5x6 cm) prototype of the optical sensing
system was developed (Fig. 2C). The sensor is composed by a black
derlin cell with a UV LED mounted on a proper filter, exciting the ZnO/
PANI sensing layer on glass. The emission of photoluminescence ac-
tivity is read by an optical fiber at 90°.

The presence of acetic acid into the measurement cell resulted in the
decrease of the PL intensity of ZnO/PANI nanocomposites (Fig. 4C).
The kinetic study of adsorption/desorption of acetic acid on the surface
of ZnO/PANI is summarized in Fig. 5 A and 5B. Results shows that the
intensity of the PL emission peaks decreased when the acid con-
centration has increased.

Sensitivity of the sensor was calculated using following equation
[22]:

I() - I(C)

S =
I (@]

where Ip and I, are intensities of emission before and after acetic acid
exposure respectively. The calibration curve of the ZnO gas sensor de-
picts the linear behavior of the sensor response at the measured range of
the acetic acid concentrations Fig. 5C and 5D. Limit of detection for the
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Fig. 4. Optical characterization of ZnO nanorods and ZnO/PANI nanocomposites: Diffuse reflectance spectra of ZnO nanorods and ZnO/PANI composite (A),
Photoluminescence spectra of ZnO nanorods and ZnO/PANI nanocomposite (B), PL spectra of ZnO/PANI nanocomposites before and after injection of acetic acid (C).
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sensor was calculated using the following equation [22,23]:

30-
LOD = ra @
where o0 and K are standard deviation and a slope of linear part of the
sensitivity plot, respectively. The obtained LOD values were 2 ppm and
1.2 ppm for 380 and 520 nm peaks. Difference in sensitivity is related to
the PANI layer and their optical properties. Due to interaction with
acetic acid partial oxidation might take place that results in change of
optical absorption and of PL signal of the sensor.

It is important to explore sensing principle and underly reasons for
the improved sensing properties of the ZnO/PANi composite structure.
The response of the composite, when exposed to acetic acid, can be
attributed to the physicochemical properties of PANI and its interaction
with ZnO nanomaterials. The proposed sensor is based on the interac-
tion between PANI and acetic acid, which involves a process of physical
adsorption and chemisorption of acetic acid over PANL. It is followed by
the photooxidation of acetic acid by ZnO-PANI composite and oxidation
of PANI due to interaction with acetic acid. There are some studies
reporting that enhanced sensitivities for acids or bases may be due
porous structure of PANi/ZnO films, leading to the predominance of
surface phenomena over bulk material phenomena [3,8,24-26] ex-
plained the increase in sensitivity of PANI-ZnO composite by the in-
terference of molecular dimension factor of PANI particle size, pro-
viding more surface area to interact with the gas vapor [26]. Several
studies explained the enhancement of the response magnitude of in-
organic/inorganic or organic/inorganic nanocomposites based on p/n
junction theory. They also claimed that the depletion layer established
at the interface between ZnO and PANI might result in the decrease of
the activation energy and enthalpy of physisorption for target gases,
being conducive to better sensing [27]. The common idea is that the
increase in the response magnitude of the composites should be due,
more than to the increased specific surface area of nanostructures, to
the formation of p/n junction between p-type HCl doped polyaniline
thin film and n-type ZnO semiconductor. The appearance of a variety of
p-n semiconductor contacts likely facilitates the formation of various
molecular adsorption sites on the polyaniline surface thus the sensi-
tivity is increased as compared to pure ZnO or polyaniline [24,26,28].
We suppose that acetic acid detection occurs due to interaction between
NH2- groups and the target molecules. As result, electric field is formed
on the surface, which increase depletion width and move electrons from
emission centers to the surface. As result, PL intensity decreases.

We also studied response and recovery time of the sensor with re-
spect to acetic acid vapor exposure. From Fig. 5A and B it can be seen
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that the sensor signal was partially reversible. Drift of the sensor signal
is observed at higher concentrations of acetic acid. Sensor reaches 90%
of its saturation value from the initial value in 30 s after exposure to
acetic acid vapor. Recovery time of the sensor increases from 215 to
360 s, proportional to the acetic acid concentration in the tested range.
The larger recovery times are likely due to the slow rate of diffusion and
desorption of acetic acid from the sensing surface.

3.4. Stability, repeatability and selectivity of the sensor

In order to allow long-term measurements, it is desirable that
ZnO/PANI sensing layer is retained on the glass without any sig-
nificant loss of activity over long periods. Thus, the stability of the
deposited ZnO/PANI layer was tested by measuring the photo-
luminescence activity for 40 days by exposing 5 ppm acetic acid
vapor. The sensor retained approximately 98, 95, 94 and 85% of its
initial PL-based response toward acetic acid after 3, 10, 20 and 40
days respectively, when stored at room temperature (25 °C).
Significant loss (30%) of the photoluminescence response was ob-
served only after 40 days. Thus, it can be concluded that the sensor
could be efficiently used up to 30 days.

Operational stability of the sensor system was studied over 10 h.
Measurements were performed every 30 min with integration time 15 s
and 40 repetitions. The signal changes show an average value of the
signal and standard deviation for 380 nm and 520 nm of 12219 + 176
and 1107 * 29 counts, respectively (Fig. 6A). Relative change of the
sensor signal after continuous interaction with acetic acid was also
tested. The developed sensor is resistive against low concentrations of
acetic acid (1-13 ppm). The signal drops up to 20% when exposed to
concentrations of acetic acids over 20 ppm.

The reproducibility and repeatability of the proposed acetic acid gas
sensor were evaluated by photoluminescence measurements. The glass
plates containing deposited sensing layer were prepared independently
at different days showing an acceptable reproducibility with relative
standard deviations (RSD) of 0.8 = 0.1 for each 5 ppm of acetic acid
vapor determination. The RSDs for each 5 ppm measurements (n = 6)
were 0.6 * 0.08 for developed gas sensor revealing the good repeat-
ability of the proposed system.

The sensor selectivity was tested by exposing it to water vapors and
100 ppm ethanol. No signal changes were observed when they were
added into the chamber. These results indicate that ZnO/PANI com-
posite based sensor is resistive to water vapor and can successfully
distinguish acetic acid over ethanol Fig. 6B.

1200 B) HZO Ethanol
1000'“‘“—
5
1“;800" + 520 nm
.‘%600- ¢ 380 nm
c
0 i
E 400 HFO Et\hanol
i 200
0 T T T 1
0 400 800 1200 1600
Time(sec)

Fig. 6. Operational stability of the sensor signal (A) and response of the sensor to saturated water (over deionized water) and ethanol (over 96% ethanol solution)

vapors at 520 nm and 380 nm (B).
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Table 1

Summary of acetic acid detection by the developed sensor in vinegar and deteriorated cellulose acetate films. The data are average of three determinations = RSD.
Samples Value found with A-D strips Value found with described sensor system Recovery
Vinegar (Cirio; Label value 6%) - 5.7% *= 0.4 94.7%
Vinegar (Panorama; Label value 7%) - 6.4% += 0.5 92.1%
Film 1 (No deterioration) 0 (<1 ppm) Nr -
Film 2 (Deterioration started) 1 (1-2 ppm) 1,5 ppm * 0.3 -
Film 3 (Actively degrading) 2 (6-8 ppm) 7,6 ppm * 0.8 -

Nr.: Not revealed.

Table 2

The comparison of the proposed sensor with the previously reported ones based on the utilization of different methods.
Sensing layer Pr-doped ZnO poly[2-methoxy-5-(2-ethylhexyloxy)- ~ Y-doped SnO2 Ni?* ~doped ZnO CBF containing CTAB  ZnO/PANi

1,4-phenylenevinylene and SNARF-1 composite

Analyte Acetic acid Formic acid Acetic acid Acetic acid Acetic acid Acetic acid

Technique Resistive PL Resistive Resistive PL PL

Linear/Working range = 20-400 ppm 0-2500 ppm 10-500 ppm 0.001-10 ppm/ 3-65 ppb 1-10 ppm

10-1000 ppm

LOD N.R 348 ppm Not reported 0.001 ppm 3ppb 1.2 ppm

Operating temperature 200-375 °C R.T 300 °C 310 °C RT RT

Response time 37-51s 18s 4-7s 4s N.r. 30s

Recovery time 48-40s 8-11s 27s N.r. 215-360s

Partial selectivity over ~Methanol, DMF  Nr Ammonia, DMF Benzene Toluene SO, Ethanol
Methanol

Reference [30] [9] [71 [31] [32] Present work

N.r - not reported

3.5. Real sample analysis

We applied the sensor to the monitoring of acetic acid in real
samples. The proposed method was applied for the determination of
acetic acid concentrations in two commercial vinegar samples from the
local market. The concentrations of acetic acid in commercial vinegar
and produced by film samples (average of three determinations) were
measured using the proposed sensor Table 1. Using the calibration
curve, the acid concentration of the commercial vinegar samples was
found to be around 6-7%. Obtained results are in line with by producer
declared acetic acid concentration.

Another application of ZnO/PANI-based sensor, which was tested in
this research, was related to the determination of acetic acid arising
during the degradation of cellulose acetate, which is used in ancient
films. Acetic acid gas arising from ancient film samples was measured
after 1 h incubation of the films with the gas sensor in a sealed box.

The results summarized in Table 1 were in good agreement with the
results obtained with A-D strips. These are filter paper strips soaked
with a pH colorimetric indicator, which are placed inside the film box
and incubated for 24 h. By reacting with the acetic acid produced by the
film degradation, the pH indicator in the strips changes color. After the
incubation, the degradation level is evaluated by comparing the color of
the strips with a provided color reference. The degradation level at-
tributed depends on the color of the strip, ranging from 0 (strip blue, no
acetic acid detected) to 3 (strip yellow, acetic acid concentration in the
box > 20 ppm). Each degradation level is correlated with a range of
acetic acid vapor concentration.

The developed ZnO/PANI-based sensors showed good sensitivity
comparing to ZnO-based gas sensors, based on resistive metal oxide
nanostructures [6,7,29]. As published in Refs. [6,7,29], the resistive
sensors has wide working range with fast response and recovery time
Table 2. Fast recovery in resistive type acetic acid gas sensor can be
attributed their high operating temperatures. However, sensors oper-
ating at high temperature consume more energy and cannot be used to
detect gases at archives where nitrocellulose films stored due to their
explosive nature.

In monitoring of cellulose degradation, the key parameters are op-
eration at room temperature and fast response. Therefore, the proposed
optical sensors can be used for this purpose.

4. Conclusions

The results presented in this work show for the first time that ZnO/
PANI-based nanocomposites are good candidates for the determination
of acetic acid at room temperature based on photoluminescence mea-
surements. The results of the photoluminescence and measurements of
these composites exposed to the acetic acid vapors show that photo-
luminescence decrease with increasing the samples concentration. Here
developed ZnO/PANI-based sensor showed good sensitivity to acetic
acid in the range of 1-13 ppm, with acceptable response and recovery
times suitable for the monitoring of acetic acid.

A new miniaturized sensing system based on ZnO/PANI sensing
layer prototype was developed. The prototype combines LED (UV) and
a fiber optic measurements system with photoluminescence ZnO/PANI
sensing element. The sensor prototype collected the photoluminescence
signal via optical fiber with high yield. The developed sensor can be of
practical interest for monitoring vinegar and for precaution in protec-
tion of the cultural heritage against acetic acid production during the
degradation of acetate cellulose films, since their storage is an im-
portant task related to protection and conservation of cultural heritage.
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