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ABSTRACT 

EFFECT OF AGGREGATE PROPERTIES ON THE MECHANICAL AND 

ABSORPTION CHARACTERISTICS OF GEOPOLYMER MORTAR 

MANGURI, Soran Rasul Khdr 

M.Sc. in Civil Engineering 

Supervisor: Assist. Prof. Dr. Kasım MERMERDAŞ 

December 2016, 72 pages 

Various amounts of natural resources are consumed to manufacture ordinary 

Portland cement which causes considerable environmental problems for its 

production. A new technological process called geopolymerization provides an 

innovative solution in this issue. In addition to potentially reducing carbon emissions, 

geopolymers can be synthesized with many industrial waste products or natural 

pozzolans such as fly ash, ground granulated blast furnace slag, metakaolin, etc. In 

the present study, the experimental study was executed to establish the relation 

between aggregate features and some engineering properties of fly ash based 

geopolymer mortar. To achieve this goal, two types of sand and four grading of each 

type of aggregate were used. The geopolymer binder is mixture of alkaline liquids 

and fly ash. Compressive strength values were in the range of 47.83-40.25 MPa, 

44.93-38.09 MPa, and 39.37-28.25 MPa, for crushed limestone, combined sand, and 

natural sand respectively. In addition, the absorption of geopolymer mortar, made of 

these mixes, was also studied, using water absorption test and water sorptivity test. 

The test results indicated that absorption of fly ash based geopolymer mortar was 

improved by using combined sand aggregate (50% crushed limestone and 50% 

natural sand) compared to the ones with single aggregate type. 

Key Words: Geopolymer, Aggregate properties, Strength, Absorption
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ÖZET 

AGREGA ÖZELLİKLERİNİN JEOPOLİMER HARÇLARININ MEKANİK 

VE ABSORPSİYON ÖZELLİKLERİNE ETKİSİ 

MANGURI, Soran Rasul Khdr 

Yüksek Lisans Tezi, İnşaat Mühendisliği Bölümü  

 Danışman: Yrd. Doç. Dr. Kasım MERMERDAŞ 

Aralık 2016, 72 sayfa 

Üretiminde önemli çevresel sorunlara neden olan Portland çimentosunun imalatı için 

çeşitli doğal kaynaklar tüketilmektedir. Jeopolimerizasyon adı verilen yeni bir 

teknolojik süreç bu konuda yenilikçi bir çözüm getirmektedir. Jeopolimerler karbon 

emisyonu potansiyelini düşürmenin yanı sıra, uçucu kül, öğütülmüş yüksek fırın 

cürufu, metakaolin, vb. gibi birçok endüstriyel atık ürünü veya doğal puzolan ile 

sentezlenebilir. Bu çalışmada, uçucu kül esaslı jeopolimer harcın agrega özellikleri 

ile bazı mühendislik özellikleri arasındaki ilişkiyi ortaya koymak amacıyla deneysel 

bir çalışma yürütülmüştür. Bu amaç doğrultusunda, agrega olarak iki tür kum ve dört 

farklı gradasyon kullanılmıştır. Jeopolimer bağlayıcı, alkalin sıvılar ve uçucu kül 

karışımından oluşmaktadır. Kırma kireç taşı, karışık kum ve doğal kum için sırasıyla 

basınç dayanımı değerleri 47.83-40.25 MPa, 44.93-38.09 MPa, ve, 39.37-28.25 MPa 

aralığındadır. Ayrıca, su emme ve kılcal su emme deneyleri ile jeopolimer harçların 

geçirimlilikleri değerlendirilmiştir. Elde edilen test sonuçlarına göre uçucu kül esaslı 

jeopolimer harcın su emme kapasitesinin karışık agregalı olanlarda (%50 kırma kireç 

taşı ve %50 doğal kum), tek tip agregalı olanlara kıyasla iyileştiği gözlenmiştir. 

Anahtar Kelimeler: Jeopolimer, Agrega özellikleri, Dayanım, Absorpsiyon
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CHAPTER 1 

INTRODUCTION 

1.1 General 

OPC-based concrete is mostly used in construction industry. Every year hundreds of 

millions of tons are used in the worldwide. The global use for concrete is only 

second to water, it accounts for 70% of all building and construction materials. The 

essential and main binder for producing concrete is ordinary Portland cement (OPC). 

Moreover, the production of (OPC) is increase at a rate about 3% per year, due to the 

raw materials are available all over the world, also because of its versatile and 

diverse behavior which gave architectural freedom and ease application (McCaffrey, 

2002). 

On the other hand, the paramount concern of the concrete industry is the use of 

Portland cement. It could be considered as one of the reason contributing to global 

warming. Harmful gasses like CO2, NO2, SO2 and specks of dust are discharged into 

the atmosphere during the production of Portland cement because of the calcination 

of limestone and combustion of fossil fuel (Hardjito, 2005). Along with 

environmental issues, Portland cement production also requires a considerable 

amount of energy, following steel and aluminum (Hardjito, 2005). For this concern 

several efforts have been developed for reducing ordinary Portland cement in 

concrete by using supplementary cementitious material to address the global 

warming. These by product materials by itself does not has the binding properties. 

Development of high volume fly ash was a good achievement for reducing Portland 

cement successfully up to 60-65% (Malhotra, 2002; Malhotra and Mehta, 2002). 

Common supplementary cementitious materials used are fly ash, GGBS, rice husk 

ash, and metakaolin. 

In recent years, geopolymer technology has been developed to decrease the use of 

Portland cement in concrete (Davidovits, 1994). As part of the sustainability
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movement in the concrete industry, the technology has led researchers to the 

discovery of a green concrete as a substitute for traditional concrete. This binder in 

the resulting caused by low-cost and greener compare to PC. In geopolymers 

production half amount energy required to produce the activator compared to the PC 

production. Geopolymer concrete has a potential to reduce CO2 emission by 80% 

(Daniel et al., 2006). In addition, by product material such as fly ash has cheaper than 

Portland cement about 10-30 percent according to (Rangan, 2008). 

Mechanical properties of geopolymer are better than cement paste. Therefore, not 

only helps to generate less CO2 than PC, but also one of the best behavior of 

geopolymer is converting waste material such as fly ash, slag and other materials to 

useful material for making friendly-economic concrete. 

Generally, concrete volume contains around 80% of aggregate, which could greatly 

influence the characteristic of concrete, freshness as well as its hardness. Plus, this 

will have an influence upon the concrete cost (Hudson, 1999). Aggregates grading, 

shape, and texture greatly affect workability, finishability, bleeding, pumpability, and 

segregation of fresh concrete. However, when hardened characteristics are taken into 

account, strength, stiffness, shrinkage, creep, density, permeability, and durability are 

also highly affected by aggregate features. It was also mentioned that the poor 

mixture proportioning and grading variation will cause construction and durability 

problems (Lafrenz, 1997). 

If the voids between aggregates are decreased, the amount of paste need to fill these 

voids will be decreased, keeping desired workability and target strength. Therefore, 

best mixture proportion will create good concrete-quality with a lowest amount of 

cement. The lesser cement paste at a constant water to cement ratio provide the 

concrete more durable (Shilstone, 1994). 

1.2 Objective of the Research 

This study was carried out to investigate the possibility of utilizing fly ash to replace 

Portland cement in different construction applications. Moreover, this thesis will 

cover the following objectives: 
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1. To make a new green binder to replace cement mortar, with a low- cost, better 

mechanical strength and improving absorption properties. 

2. Effect of grading and type of aggregate on mechanical strength and absorption 

properties of geopolymer mortar. 

Class F fly ash was used as 100% replacement of Portland cement to develop 

geopolymer mortar. In addition, the technology and the equipment currently used to 

produce cement mortar or concrete were used throughout the experiments. The 

concrete properties studied mainly included compressive strength, splitting tensile 

strength, water absorption, and water sorptivity along with early features of fresh 

mortar property like flow table test.  

1.3 Research Layout 

Chapter one: includes the introduction of the geopolymer material disadvantage of 

OPC, some aggregate properties, and objective of the research. 

Chapter two: previous studies based on the scope of the study have been reviewed 

and maintained, reviews the utilization of fly ash in geopolymer. It presents the 

mechanism of geopolymerization, application of geopolymer material, properties of 

the fly ash based geopolymer materials and the factor affecting geopolymer 

properties, as well as discussed about aggregate, and characterization. It was also 

dialed with the effect of different type and grading of aggregate on cement concrete 

and mortar. Besides, the effect of type and grading of aggregate on properties of fly 

ash based geopolymer.  

Chapter three: materials and experimental design, gives the details of the materials 

and equipment used in the study. It also explains the procedure for the research and 

the experiments in detail. 

 Chapter four: experiment analysis, result and discussion, presents test results. Also, 

it analyzes the results of the experiments.  

In chapter five: the conclusion built on the results or these comparative investigations 

were provided in this section. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 General 

The development of geopolymer by Davidovits is the major advantage in concrete 

technology which provided a cleaner and environmentally friendly alternate to the 

traditional cement binders in some engineering applications. Using fly ash as a 

source materials for the production of geopolymer achieve a good economical and 

environmental benefits and very good physical and mechanical properties which is in 

some cases better than Portland cement. This chapter will include available literature 

related to geopolymer concrete and mortar. It will also present the current and 

possible usage of geopolymer in different construction applications and the factors 

affecting its performance. 

2.2 Geopolymer and Environment 

One of the major sources of CO2 emission is ordinary Portland cement. As a result of 

a reduction in the use of Portland cement will have a notable impact on CO2 

emission. Each ton of Portland cement generates approximately 0.51 tons of 

chemical CO2 and 0.40 tons of CO2 from fuel combustion (Wallah and Rangan, 

2006). It has been estimated that the energy required to produce the activators for 

geopolymers is less than half the energy required to produce Portland cement, and 

the chemical CO2 produced by geopolymers is less than 20% the amount produced 

by portland cement (Davidovits et al., 1999). So, a conservative estimate shows that 

each ton of geopolymer will produce 0.3 tons of CO2 emissions, 67% less than the 

amount produced by Portland cement. This finding for material emissions alone is 

comparable to a case study investigating the carbon emissions from geopolymer 

concrete compare to ordinary portland cement concrete in the Australian market. The 

case study factored in transportation emissions as well as the material emissions and 

found that production and placement of geopolymer concrete emits 44-64% less CO2
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than ordinary Portland cement concretes (Nazari et al., 2013). The total CO2 

emissions in the U. S. As well as the emissions due to Portland cement production in 

the U.S. are illustrated in Figure 2.1 (Fillenwarth, 2013). Similarly, total CO2 

emissions worldwide and the emissions due to Portland cement production 

worldwide are illustrated in Figure 2.2 (Fillenwarth, 2013). 

 

Figure 2.1 U. S. CO2 emissions (Fillenwarth, 2013) 

 

Figure 2.2 Worldwide CO2 emissions (Fillenwarth, 2013) 
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These figures indicate that the CO2 emissions due to Portland cement production in 

the U.S. has stayed around 1% of the total from 1990 to the present, but the CO2 

emissions due to Portland cement production worldwide has steadily increased from 

4% of the total in 1990 to 9% of the total in 2010. From this and knowing 

geopolymers will produce at least 67% less CO2 emissions than portland cement, it 

can be concluded that a complete replacement of portland cement with geopolymer 

cement will yield at least a 6% reduction in global CO2 emissions. 

2.3 Geopolymer 

Geopolymer is listed as classified a member of inorganic polymers, the 

“geopolymer” term was first coined by French scientist Joseph Davidovits (1978) in 

reference to alumino-silicate polymers with an amorphous microstructure, and 

formed in alkaline environment. It was also conducted that geopolymer binder could 

be formed by the aluminum (Al) and silicon (Si) in a source material of byproduct 

materials such as rice husk ash, fly ash and slag react with alkaline activators 

(alkaline hydroxide and alkaline silicate). 

Rangan (2008) conducted a research on geopolymers as member of the family of 

inorganic polymers. The chemical composition of the geopolymers is similar to 

natural zeolitic materials. It was described that the geopolymerization process is a 

substantially fast chemical reaction under alkaline activators resulted in a three-

dimensional polymeric chain and ring structure consisting of Si-O-Al-O bonds 

(Davidovits, 1994b, 1999), as follows:  

Mn [-(SiO2) z–AlO2] n. wH2O                                          

Where: M is the alkaline element or cation such as sodium, potassium, or calcium;  

The icon – indicates the presence of a bond,  

n represents the degree of polycondensation or polymerization; 

 z equal to 1, 2, 3, or higher, up to 32 

Davidovits (1988a; 1991; 1994; 1999) mentioned that polysialate consist of three 

types, the name and structures of these polysialates can be seen in Figure 2.3. 
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Figure 2.3 The chemical structure of polysialates type (Davidovits, 1988a; 1991; 

1994; 1999) 

In addition, Palomo et al. (1999) stated that geopolymerization process requires the 

chemical reaction of alumino-silicate oxides (Si2O5, Al2O2) with alkali polysilicates 

leading to polymeric Si – O – Al bonds. 

The schematic formation of geopolymer material as defined by Van Jaarsveld et al. 

(1997); Davidovits (1999); and Wallah and Rangan (2006) are presented as equations 

(1) and (2) in Figure 2.4. These chemical equations demonstrate that any materials 

which are rich in silicon (Si) and aluminum (Al) can be processed into geopolymer 

material. 
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Figure 2.4 Mechanisms of geopolymerization, (Van Jaarsveld et al., 1997; 

Davidovits , 1999; Wallah and Rangan, 2006) 

Rangan (2008) provided a substantial explanation of the second part of the previous 

equation, and it is reported that water is released by the chemical reaction which is 

occurs during the geopolymeric formation. This water leads to the formation of 

discontinuous nano-pores in the matrix which provides benefits to the performance 

of geopolymers. This water has no role in the chemical reaction except providing 

workability to the mix.  

Nonetheless, the most popular conceptual model proposed for setting and hardening 

of geopolymer materials comprises the following stages (Davidovits, 1999; Xu and 

Van Deventer, 2000): 

Dissolution of Si and Al atoms from the source material through the action of  

hydroxide ions. 

2. Transportation or orientation or condensation of precursor ions into monomers.  

3- Setting or polycondensation/polymerization of monomers into polymeric structures.  

Palomo et al. (1999) sited that these three steps can be intersect with each other and 

happens in the same time ,which make it hard to separate and test each of them 

individually.  

Yao et al. (2009) benefited from isothermal calorimetric method for alkali- 

metakaolin mix. However, in the study of He (2012) geopolymerization involves a 
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number of processes including dissolution, reorientation, and solidification as shown 

in Figure 2.5.  

 

Figure (2.5) Typical reaction mechanism of geopolymerization (Yao et al., 2009; He, 

2012) 

Nicholson et al. (2005) asserted that geopolymer concrete is an inorganic polymer 

formed by reaction of aluminosilicate source and an alkali activator at room 

temperature. The little energy process cause a fast-setting material exhibiting 

exceptional strength and hardness. A comparison of the reactions in Figure 2.6 shows 

that traditional cement is composed of portlandite Ca(OH)2 and calcium silicate 

hydrate (C-S-H) phases whereas, geopolymer cement is based on an aluminosilicate 

framework. It was also mentioned that aluminosilicate materials has very high 

resistant to chemical attack, like by acids, compare to calcium-rich Portland cement. 

In the polymerization process, there is no calcination step (heating to 1450 ºC) which 

is mitigating the release of CO2 as shown in Figure 2.6. Therefore, from this, it can 

be concluded that geopolymer have more advantage than Portland cement concrete. 
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Figure 2.6 Comparison of the reactions of Portland cement and geopolymeric cement 

(Nicholson et al., 2005) 

2.4 Constituents of Geopolymer 

Geopolymer has two key components, namely the source materials and the alkaline 

liquids.  

2.4.1 Source Materials 

Davidovits (1988b) demonstrated source material of geopolymers binder should 

contain the high amount of two main minerals which are: aluminum (Al) and silicon 

(Si). Also, the source material of geopolymers has two types natural and by product, 

natural minerals like; clay, kaolinite, micas and etc. As well as by-product mineral 

sources for instance rice husk ash, granulated furnace slag and, especially fly ash. 

The pick of the source materials for producing geopolymers rely on several factors 

such as accessibility, cost, application type and specific needs of the end users.  

In the range of the source materials previously noted, many of them have been 

investigated in the making of geopolymer concrete. However, the most popular 

among them in the technology of geopolymers are clay materials kaolinite and 

metakaolin, and industrial wastes (furnace slag, fly ash).  

Xu and Van Deventer (2002) concluded that utilizing a combination non-calcined 

material (e.g. kaolinite or kaoline clay and albite) and calcined (e.g. fly ash) resulted 

in good improvement in reduction in reaction time and compressive strength. 
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Deb et al. (2014) concluded that using 20% of GGBS with 80 % fly ash would obtain 

high compressive strength (51MPa) up to 180 days also decrease workability, when 

cured in ambient curing at 20
o
C. 

An investigation was done by Davidovits (1999), he concluded that calcined 

materials like fly ash, granulated blast furnace slag, and fly ash will produce high 

compressive strength than those made from non-calcined materials such as 

metakaolin clays. 

However, using fly ash to produce geopolymer is cheaper than using metakaolin due 

to the use of the calcination in producing metakaolin.  

Swanepoel and Strydom (2002) studied fly ash as a basic component of a 

geopolymeric binder material, it was showed that fly ash has the potential to be used 

as raw material in the manufacturing of geopolymer. 

Interesting research carried out by Fernandez-Jimenez and Palomo (2003) intended 

to find out the potential reactivity of fly ashes as alkaline cement. The test results 

showed that the different fly ashes used for the investigations were not only suitable 

to be alkali cement, but also their potential reactivity came from the following key 

factors such as the particle size distribution, the content of reactive silica, and the 

vitreous phase content. In addition, they stated that in order to produce a material 

with optimal binding properties by alkali liquid activation, the main characteristics of 

the low-calcium fly ash should be a percentage of unburned material less than 5%, a 

content of Fe2O3 equal to 10% or less, a low CaO content, a reactive silica content 40 

to 50%, and 80-90% of particles should have average size smaller than 45 μm. 

Van Jaarsveld et al. (2003) conducted an investigation about the characteristics of a 

source material in fly ash, they summarized that the size of particle, alkali content, 

morphology, calcium content, and origin of fly ash has great effect on the properties 

of geopolymer. Also, it was demonstrated that the calcium content has great role in 

development of strength and final compressive strength, which higher the content of 

calcium in fly ash led to faster development of strength and at the early age has 

higher compressive strength.  
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Gourley (2003) wrote that the utilization of by-products, such as slag and especially 

fly ash as raw material in the production of geopolymer concrete has been considered 

as the most promising materials due to the abundance and availability of fly ash 

worldwide. It has been shown that fly ash is more useful than slag because its finer 

particles make it possess high reactivity. Also, as in the case of high volume fly ash 

concrete, low calcium fly ash is recommended rather than high calcium fly ash. This 

preference for the Class F is because of the existence of high quantity of calcium in 

the Class C which can interfere with the polymerization process, and modify the 

microstructure.  

2.4.2 Alkaline Activators 

Generally, the common alkaline activator used for producing geopolymer is a 

combination of sodium silicate with sodium hydroxide NaOH and potassium silicate 

with potassium hydroxide KOH (Xu and Van Deventer, 2000; Davidovits , 1999; Xu 

and Van Deventer, 2002; Swanepoel and Strydom, 2002; Yao et al., 2009; Temuujin 

et al., 2010). In addition, single alkaline activators were used by (Palomo et al. 1999; 

Görhan and Kürklü, 2014). 

Palomo et al. (1999) demonstrated that the type of alkaline activator used for 

activating fly ash significantly affect the reaction development. Furthermore, they 

stated that high rate reaction occur when alkaline liquid activator solution contains 

silicate soluble, each, potassium or sodium silicate, in comparison to using only 

single alkaline hydroxides.  

 Xu and Van Deventer (2000) asserted that the reaction between the source material 

and alkaline liquid improved by adding solution to the NaOH solution. Also, after a 

conduct of the geopolymerization of sixteen natural Al-Si minerals, they established 

that commonly using the NaOH solution resulted in higher degree of dissolution of 

the raw material compare to KOH solution. 

2.5 Application of Geopolymer 

The use of geopolymer technology is primarily to contribute to the reduction of the 

environmental impact of ordinary Portland cement. However, geopolymer have 
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various other areas of applications from civil engineering field to automobile and 

aerospace industries as shown in Table 2.1 (Edouard, 2011). 

Table 2.1 Fields application of geopolymer (Edouard, 2011)  

Area Applications 

Civil engineering 
Low CO 2, fast setting cement, precast concrete 

products and ready mixed concrete 

Building materials 
Bricks, blocks, pavers, self glazed tiles, acoustic 

panels, pipes 

Archeology 
Archeological monuments by geopolymerization, 

Repairing & restoration 

Composite material 
Tooling for aeronautics Functional composite for 

structural ceramic application 

Fire resistant material 
Fire and heat resistant fiber composite material 

Carbon fiber composite 

Refractory application 

Refractory moulds for metal casting, Use of 

geopolymer as adhesive refractory, Refractory 

castables 

Utilization of waste 
Use of fly ash, blast furnace slag and tailings for 

geopolymer products 

Immobilization of toxic 

material 

Encapsulation of domestic, hazardous, 

radioactive and contaminated materials in a very 

impervious, high strength material 

Others Paints, Coatings, Adhesive 

 

In accordance to Davidovits (1999), the type of application of geopolymeric material 

depends on the Si:Al ratio, as it can be seen in Table 2.2. It appeared from this table 

that a low Si:Al ratio is suitable for many applications in the civil engineering as 

shown in Table 2.2. 
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Table 2.2 Application of geopolymer based on Si:Al (Davidovits, 1999) 

Si/Al Application 

1 Bricks, ceramics, fire protection 

2 
Low CO2 cements, concrete, radioactive, and toxic 

waste encapsulation 

3 
Heat resistance composites , foundry equipments, 

fibre glass composites 

<3 Sealants for industry 

20<Si/Al<35 Fire resistance and heat resistance fibre composites 

An experimental study was done by Balaguru et al. (1997) on the strength behavior 

of reinforced concrete beams with carbon fiber fabrics and geopolymer. Their 

research aimed to demonstrate the ability of geopolymer to be used as substitute to 

organic polymers for fastening the carbon fabrics to concrete. It was observed that 

geopolymer provides excellent adhesion both to surface of concrete and in the inter-

laminar planes of fabrics. 

Comrie et al. (1988) conducted a study to evaluate the applications of geopolymer 

technology to waste stabilization. This investigation targeted the physical properties 

of solidified waste and sand mortar mixes, on the basis of compressive strength 

testing. The results showed that this inorganic binder has the potential to efficiently 

immobilize hazardous wastes by reducing metal leachability. In addition, it was 

found that geopolymer technology is extremely effective not only in the case of 

heavy metals, but also for a wide variety of elements, ions, and compounds (Provis 

and Van Deventer, 2009). 

2.6 Fly Ash 

Fly ash is a by-product from the coal combustion, e.g. in the power plants, or in the 

production of iron. It has various chemical compositions based on the source coals. 

The main oxide components are SiO2, Al2O3, CaO, Fe2O3, and SO3 (Khale and 

Chaudhary, 2007).  
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Besides, fly ash is a by-product collected in the de-dusting of gases derived from the 

combustion of pulverized coal used in power plants. Fly ash is composed of fine 

particles, and its chemical composition is related to the different types and relative 

amounts of incombustible materials present in the coal. Generally, the particle of fly 

ash is spherical, diameter ranged from less than 1 μm to no more than 150 μm 

(Nawy, 2008). Generally, its constitutive elements are: aluminum, silicon, calcium, 

magnesium, and iron. Thus are depending on the combustion process and the type of 

fuel (Edouard, 2011). 

Generally, the constitutive elements of fly ash are aluminum, silicon, calcium, 

magnesium, and iron, although its composition changes with the source of coal. 

According to ASTM C618, there are two types of fly ash – Class F, usually formed 

from bituminous coals, and identified as low calcium fly ash - Class C, normally 

made from lignite or sub-bituminous coals, and known as high calcium fly ash .In 

order for a fly ash material to be classified as Class C, the silica (SiO2), the alumina 

(Al2O3), and the iron oxide (Fe2O3) constituents should not exceed by much 50% of 

the composition, while, Class F the summation of this three components can be 

greater than 70% (ACI committee 226 report).  

According to Fernández-Jiménez and Paolomo (2003), the percentage of unburned 

material in low-calcium fly ash should be less than 5%, reactive silica content SiO2 

should be range between 40- 50%, Fe2O3 content should be less than 10%, 80-90% 

particles of low-calcium fly ash should be smaller than 45 μm, and has low CaO 

content (less than 10%). 

It can be noticed that Class F fly ashes possess pozzolanic properties. Soft to the 

touch, (class F) is in the form of powder from gray to black in color depending on the 

unburned fuel and iron oxide contents, Whereas class C fly ash have the form of a 

fine gray powder, with physical properties and/or pozzolanic characteristics. They 

mainly contain reactive lime, reactive silica, and alumina. The amount of lime (CaO) 

in this type of ash is high. Therefore they are likely to consolidate without the use of 

binder.  
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Van Jaarsveld et al. (2003) mentioned that the high-calcium fly ash resulted in higher 

compressive strength in the primary age due to forming the calcium-silicate-hydrate 

gel and other calcium mixtures. 

2.7 Aggregate  

In general, the coarse and fine aggregates occupies 60% to 75% of the volume of 

concrete and ranged (70% to 85% by mass), which greatly affect the mixture 

proportions, fresh and hardened properties of concrete, as well as economy. 

Normally, fine aggregates composed of crushed limestone or natural sand and the 

particle size are mostly smaller than 5 mm. On the other hand, coarse aggregates 

consist of gravels or crushed limestone with particle size mostly larger than 5 mm, 

and commonly ranged from 9.5 mm to 37.5 mm. Natural sand and gravel are 

ordinarily dug or dredged from a lake, river, seabed or pit, while crushed limestone 

can be produced by crushing boulders, cobbles, quarry rock, or large size of gravel. 

Crushed limestone is mostly angular, elongated particles and rough-textured. 

Furthermore, natural sand aggregate particles are rounded and smooth (Kosmatka et 

al., 2011). 

Generally, natural river sand will be utilized as a fine aggregate in both concrete and 

mortar. It is considered as the most favorite material to be used as a fine aggregate 

material. Natural river sand is made of rocks by natural weathering over a long 

period of time equal to million years. Also, river sands are considered as a high- class 

material used for construction purposes.  

The call for sand has increased since the development of building construction 

industry. This led to real environmental problems especially in the last few days, fore 

that it has been thinking for finding a potential source as an alternative for river sand. 

Therefore, so many researchers have used a manufactured sand as a replacement of 

natural river sand (Praveen and Krishna, 2015; Fathi, 2014). Offshore sand, quarry 

dust, crushed limestone, quartzite and other manufactured sand have been identified 

as good alternative for river sand. 

As stated by Folliard and Kreger (2003) there are a great influence made by the fine 

aggregate considering its shape and texture on the workability of fresh concrete as 

well the strength and durability at hardened stage. Also, it’s mentioned that texture 
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and shape of fine aggregate are considered to be more effective than the coarse 

aggregate’s effectiveness.  

The study done by Shilstone (1999) showed that rounded or cubical particles 

required water and less paste for workability, because those particles have low 

surface area compared to elongated and flat particles. Moreover, flaky and elongated 

particles have a negative impact on workability, causing very harsh mixtures. 

The void content is affected by angularity. In fact, because the angular particles have 

a higher void content than the rounded particles, it will need more water than the 

rounded one. Research done by Kaplan (1959) demonstrated that mechanical 

strength of concrete rely on the angularity. Angular particles lead to increase in 

strength. 

According to Hudson (1999), natural river sands commonly need less water than 

crushed sands for a specified workability and this is because of natural river sand are 

rounded and smoother than manufactured sands. Nonetheless, the angular and rough 

particle can make a workable concrete, if their particle size are rounded and well 

graded aggregates.  

The grade of fine aggregate and coarse aggregate should be uniform. If the fine 

aggregate is too fine, the need for water will be increased. But, if fine aggregate is 

too coarse, it will lead to some harmful affective like bleeding, harshness, and 

segregation (Galloway, 1994). 

A study was carried out  by Cramer (1995) indicated that by using well-graded 

mixtures, the increase of concrete strength can be obtained.  

Folliard and Kreger (2003) said that permeability is one of the most significant 

factors which affect the durability of concrete. It is clearly correlated to void content 

of aggregate, in other words, the lower void content cause decrease in permeability. 

By reducing the permeability, it is possible to have the high amount of aggregate 

content. Therefore, producing a mixture with a well uniformly graded aggregate will 

make more durable concrete.  
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2.7.1 Effect of Aggregate on Cement Mortar and Concrete 

Jadhav and Kulkarni (2013) conducted the effect of using manufactured sand as 

partial replacement of natural river sand on the cement mortar’s compressive 

strength. The proportion 1:6, 1:3 and 1:2 with w/c ratio as 0.55 and 0.5 were 

conducted. By comparing the results of the present study with a reference mix of 

100% natural river sand, the higher compressive strength of cement mortar was 

observed with using 50% of manufactured sand as a replacement of natural river 

sand compared to reference mix. The manufactured sand has the ability to come up 

with another option to natural sand which in turn will aid to conserve both 

environmental and low-cost price. The rarity of natural sand at a low price has 

pushed to look for other materials. Manufactured sand can be classified as a 

preferable option at sensible price. It has been proven that when manufactured sand 

used in cement mortar, lead to a better result from the cohesiveness and strangeness 

side this is because of the good gradation which is lacked in natural sand. 

Wakchaure et al. (2012) studied the influence of type of fine aggregate on the 

mechanical strength of concrete. In their research, natural sand and artificial sand 

were used as a fine aggregates. Mechanical strength such us compressive strength, 

indirect tensile strength, and flexural strength were evaluated, based on the results, 

compressive strength and flexural strength improved by replacing total natural fine 

aggregate by artificial sand. It was also demonstrated that splitting tensile strength 

with natural fine aggregate obtained better results than with artificial sand.  

The effect of grading of sand on the mechanical strength of cement grout was done 

by Lim et al. (2013). To address the mechanical strength properties of cement grouts, 

three different grading of sand used for preparing all mixtures, namely 100% passing 

through 1.18 mm sieve (P1.18 mm), 0.90 mm sieve (P0.90 mm), and 0.60 mm sieve 

(P0.60 mm), respectively. By measuring the flow of mortar, results shown that the 

samples with the finer grading of sand had lower flow, in comparison to the coarser 

grade of sand due to the finer grade of sand samples need a high w/c ratio to obtain a 

suitable workability. When the lower w/c ratio (0.61 to 0.63) adopted, the coarser 

grade of sand samples obtained higher compressive strength at 7 and 28 days than 

the finer sand grading specimens. Nonetheless, when high w/c ratio (0.65–0.67) was 
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adopted, the finer sand grading specimens obtained high long term compressive, 

splitting tensile and flexural strength compare to the coarser sand grading. 

The effect of grading of sand on the mortar’s characteristics and soil–cement block 

masonry was studied by Reddy and Gupta (2008). Three type of grading sand were 

used, workability, compressive strength, and drying shrinkage were measured for 

cement mortar. They demonstrated that finer sand needs 25 to 30% more water for a 

given consistency. In addition, they concluded that coarser sand gives higher 

compressive strength than finer sand. 

2.7.2 Effect of Aggregate on Geopolymer  

Sreenivasulu et al. (2016) mainly focused on finding the mechanical properties of 

geopolymer concrete (GPC) mixes with different fine aggregate blending. Sand and 

granite slurry (GS) are blended in different proportions (100:0, 80:20, 60:40 and 

40:60). Two sizes of coarse aggregates 20 mm and 10 mm are blended in 60:40 

proportions by percentage of the weight of the total coarse aggregate. Fly ash (class 

F) and (GGBS) were used at 50:50 ratios as geopolymer binders. Compressive 

strength, flexural strength and split tensile strength were studied after 7, 28 and 90 

days of curing at ambient room temperature. From the results, it was revealed that 

the mechanical properties increased till fine aggregate blending of 60:40 and 

decreasing trend has been observed at 40:60 fine aggregate blending. It was also 

stated that optimum fine aggregate blending is 60:40.  

Olivia and Nikraz (2011) reported on the compressive strength and water 

penetrability of geopolymer concrete. The study included the compressive strength 

development, water permeability and water absorption of geopolymer concrete, the 

variation of geopolymer concrete mixtures, the ratio of aggregate to binder, water to 

binder ratio, grading of aggregate and the ratio of alkaline to fly ash were studied. 

Strength was evaluated by compressive strength, whereas to address water 

penetrability, water permeability and water absorption were measured. According to 

The test results, the compressive strength of geopolymer concrete was improved by 

decreasing the ratio of aggregate to binder and water/binder ratio. In addition, water 

absorption of geopolymer concrete was enhanced by using a well-graded aggregate, 

increase the fly ash content, and reducing the ratio of water to binder ratio. 
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Moreover, the permeability coefficient of geopolymer concrete was not changed 

significantly with different parameters.  

Mane and Jadhav (2012) studied the effect of elevated temperatures on geopolymer 

concrete and mortar for different types of fine and coarse aggregates. Besides, the 

experimental results are compared with the ordinary Portland cement concrete of 

grade M20. The geopolymer was produced with fly ash, sodium hydroxide solution, 

and sodium silicate solution. Granite and basalt aggregates were used as coarse 

aggregates for concrete specimens, whereas fine aggregates were used for mortar 

specimens are crushed sand and river sand. The test resulted showed that the 

geopolymer concrete has an excellent strength performance compare to OPC 

concrete, in both elevated temperature and ambient curing. Using coarse granite 

aggregate for producing geopolymer shows better strength than using basalt 

aggregates. Whereas crushed sand gives high strength compare to river sand in case 

of mortar. It was also observed that fly ash geopolymer concrete has a superb 

compressive strength (68% more for basalt aggregates and 67% more for granite 

aggregates) than the OPC concrete, and it is appropriate for structural applications. 

Similarly, geopolymer mortar gives excellent compressive strength (89% more for 

crushed sand and 81% more for natural river sand) than the OPC mortar. 

Temuujin et al. (2010) studied preparation and characterization of fly ash 

geopolymer mortars. Geopolymer mortars with different amount of sand aggregate 

(0- 50) % were made, and their mechanical and physical properties investigated. The 

ratio of geopolymer binder to weight of sand aggregate was changed from 9 to 1. 

Compressive strength of the fly ash based geopolymer paste was 60 MPa. It was also 

observed that the addition of sand aggregate up to 50% by weight reduce the level of 

geopolymerization, while it did not considerably affect the compressive strength. 

Strong bonding was revealed between geopolymer binder and sand aggregate. 

Besides, the amount of geopolymerization within the binder system decreased by 

increasing sand contents without increasing alkaline activator. 

Nuaklog et al. (2016) conducted a research on the effect of concrete’s recycled 

aggregate on strength and durability of geopolymer concrete. GPC specimens were 

synthesized with (high calcium fly ash, sodium based activator, crushed limestone 

and recycled concrete aggregate as a coarse aggregate, and natural sand was utilized 
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as a fine aggregate). Based on the test results, it was presented that concrete’s 

recycled aggregate can be utilized as a coarse aggregate for producing geopolymer 

concretes, 30.6 and 38.4 MPa compressive strength was obtained at 7-day, which 

were little fewer than those geopolymer concretes with crushed limestone. In 

addition, it was stated that the density of geopolymer concrete ranged between (2350 

and 2390 kg/m
3
), which were nearly the same as ordinary concrete (2400 kg/m

3
). It 

was also concluded that using recycled concrete aggregate lead to decrease density of 

geopolymer concrete by 6% to 10% ranged between (2160-2210 kg/m
3
). Eventually, 

it was claimed that using recycle concrete aggregate caused high sorptivity and water 

absorption.  

Joseph and Mathew (2012) studied the behavior of fly ash geopolymer concrete by 

effect of aggregate content. They concluded that increasing aggregate content lead to 

increase the split tensile strength of GPC. In their study, total amount of aggregate 

content in the range of 60% to 75% (with constant fine aggregate to total aggregate 

ratio of 0.35) was used. It was found that the flexural and split tensile strength 

increased by 30.6 % and 45.5 %, respectively. 

2.8 Superplasticizer 

Superplasticizer is considered as a high range water reducer. Possibly a flowing 

concrete with high slump ranged between 175-225 mm will be produced when 

superplasticizer is used, which can be utilized in a heavy structure reinforcement, 

where suitable consolidation cannot be obtained by vibration. It was mentioned that 

by using the superplasticizer, with w/c ratio of 0.3 to 0.4, high-strength concrete can 

be achieved. It can also improve the flow of slump (Najmabadi, 2012). 

Pacheco et al. (2011) stated that the workability of metakaolin based geopolymer 

mortar decreases with the increase of sodium hydroxide concentration, it was also 

observed that by increasing the amount of calcium hydroxide and superplasticizer, 

the workability of mortar will be increased. The test results showed that the mortar 

flow can be improved from less than 50% to upon 90%, by using 3% of 

superplasticizer, with 10% of calcium hydroxide content, while remaining a high 

compressive and flexural strength. 
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Interesting research was reported by Nurrudin et al. (2011) on the influence of NaOH 

and superplasticizer on the strength and workability of self-compacted geopolymer 

concrete SCGC. It was concluded that strength and workability increased by adding 

superplasticizer with 6% by weight of fly ash. 

2.9 Properties of Geopolymer  

In the development of geopolymer materials so many researches have been 

performed in order to determine the physical and chemical properties of 

geopolymers, as well as their long-term durability. It should be reminded that the 

physical properties take into account the behavior of materials subjected to the effect 

of temperature, electric or magnetic field, or light, whereas the chemical properties 

characterize the behavior of materials subjected to an environment more or less 

aggressive. Other properties are the mechanical that reflect the performance of 

materials deformed by force systems. Obviously, the most properties of geopolymer 

will be reviewed. Especially, those that will be addressed in this thesis and brief 

review of other properties will be discussed. 

2.9.1 Workability 

Workability is one of the fresh properties of concrete that effect strength and 

durability, and it has effect on easy handling and compaction of concrete. Many 

factors affect the workability of geopolymer mortar such as water, superplasticizer, 

admixtures, and proportion of material by mass. 

Sathia et al. (2008) stated that the workability of geopolymer will be improved by 

using water, as well as caused the porosity in concrete as a result of the evaporation 

of water during curing process at elevated temperature.  

Chindaprasirt et al. (2007) concluded that flow of mortar will reduce by increasing 

the concentration of sodium hydroxide and sodium silicate. It was also stated that the 

flow of mortar in geopolymer was in the range of 110 mm ± 5 mm to 135 mm ± 5%.  

Bhavsar et al. (2014) concluded that using accelerator admixture like silica fume 

decrease workability of geopolymer concrete. 



 

23 

 

2.9.2 Setting Time 

Having knowledge of the time available to cast a geopolymer into forms is critical 

for successful planning and execution of a project. A standard method for measuring 

the available time to work with cement pastes exists (ASTM C191) and has been 

shown to work well for determining available working time of geopolymer pastes. 

Since the setting of the paste in geopolymers occurs when the rate of network growth 

in the geopolymer begins to exceed the rate of dissolution, the set time can also be 

used as a relative measure of the reaction rate. 

It is well established that calcium present in the mix will result in a faster set time. A 

small addition of calcium into the mix will result in a large reduction in set time with 

further additions resulting in smaller reductions. The main reason for this is the Ca2+ 

ions are able to act as charge balancers in addition to the Na+ and K+ ions present in 

the system. A higher quantity of available charge balancers will result in faster 

formation of aluminosilicate networks (Fillenwarth, 2013). 

A second possible explanation for the reduced set time is that calcium silicate glasses 

are more reactive in water compared to glasses with higher silicate concentrations 

(Dombrowski et al., 2007). So, as the calcium content in the base material is 

increased, the calcium silicate glass phases present will dissolve faster than the 

phases with higher silicate concentrations making the species needed for network 

formation available sooner. The presence of compounds other than Al2O3 and SiO2 in 

the source material may also delay the setting (Hardjito et al., 2004). 

The study done by Hardjito et al. (2008) came to conclude that the start setting time 

and final setting time were in the range 129 minutes and 270 minutes. It was also 

observed by increasing the temperature of curing, caused increase the rate of 

geopolymerization and it will result less setting time is required. 

2.9.3 Mechanical Properties 

Davidovits et al. (1988) stated that mechanical properties of geopolymer binder 

hardened quickly at room temperature, while the compressive strength increases up 

to 20 MPa after only 4 hours at 20
o
C, and around 70-100 MPa after 28 days.  
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Comrie et al. (1988) following physical tests conducted on unconfined cubes made 

from mortar mixes of sand and geopolymer. In their research, the 40 MPa of 

compressive strengths was obtained over a period of 28 days of curing. Furthermore, 

during the first two days of curing, they were able to attain strengths of 30 MPa, 

which represents 75% of the final strength. Therefore, when comparing concrete 

mortars manufactured from ordinary Portland cement with geopolymer mortars it 

appeared that strengths were acquired more quickly with the latter. 

According to Palomo et al. (1999), temperature is a reaction accelerator in 

geopolymeric binders. Geopolymer materials are likely to gain in mechanical 

strengths when the temperature increases. Generally, the type of activator and the 

temperature are important factors affecting the mechanical strengths of geopolymer 

materials as well as the longer the time of curing.  

Joseph and Mathew (2012) demonstrated that the development in strength of 

geopolymer concrete at early age can be obtained by choosing the appropriate curing 

temperature and the curing period. They also concluded that 96.4 % of 28th day 

compressive strength can be achieved in 7 days’ time with 24 hrs of curing at 100°C. 

Hardjito and Rangan (2005) reported that splitting tensile strength of geopolymer 

concrete is very close to OPC concrete, it was stated that splitting tensile strength is 

only a fraction of the compressive strength. Also, they mentioned that the splitting 

tensile strength of fly ash geopolymer concrete was greater than the values 

recommends by Australian standards (2001).  

Mishra et al. (2008) pointed out that compressive strength and split tensile strength 

increases with the increase of alkaline activators, curing time, and period of curing. 

But, at 48 to 72 hours, increase rate of strength not significant. 

 2.9.4 Density of Geopolymer   

The density of OPC concrete mainly relies on the unit mass of aggregates utilized in 

the mixture. Moreover, the aggregate content, the amount of entrained air, the 

cement content, and water have effect on density of concrete. Density is a key to 

figure out how one material is compacted compared to another one, because of the 

different mix designs (Najmabadi, 2012). 
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Also, the density of geopolymer concrete depend on a unit mass of aggregate, it was 

found that density of low calcium fly ash based geopolymer concrete was ranged 

from 2330 - 2430 kg/m
3
 (Hardjito and Rangan, 2005).  

An investigation on the strength and density of fly ash geopolymer mortar was done 

by Wazien et al. (2016). In their study, it was reported that density of geopolymer 

mortar was in the range of 2.0 to 2.23 g/cm
3
, and the density of geopolymer paste 

was below 2.0 g/cm
3
 observed, it was also concluded that the aggregate content has 

effect on the density of geopolymer mortar, by decreasing level of aggregate the 

density of geopolymer mortar was decreased. 

Kotwal et al. (2015) carried out an investigation on the characterization and early age 

of physical properties of class C fly ash geopolymer mortar cured at ambient 

temperature. It was concluded that the fresh density ranged between 2.084 to 2.254 

kg/m
3
, while the hardened density ranged from (2.041 - 2.220) kg/m

3
, it was 

observed that density does not vary with the age of mortar, However high content of 

aggregate resulted denser geopolymer mortar. 

Olivia and Nikraz (2011) wrote that density of fly ash geopolymer concrete close to 

normal concrete. In their study, hardened density between (2248 – 2315) kg/m
3
 were 

obtained, which was close to ordinary concrete (2200 to 2600 kg/m
3
). 

2.9.5 Thermal Properties of Geopolymer 

A 28-storey building caught fire and at least 42 people were killed and 90 more 

people were critically injured on November 15th 2010 in Shanghai, China, which 

aroused a great concern on the fire performance of structures. Another tragedy in this 

century is the twin towers in New York destroyed in 9/11 attacks, 2001. The steel 

building collapsed quickly within two hours in fire. Moreover, most organic matrix 

cannot bear the temperature more than 200
o
C and will issue poison gas when on 

heat/fire. Therefore, there is an urgent necessity to enhance the fire/heat resistant 

performance of structures. Geopolymer concrete, coating, and matrix may resolve 

these problems. The geopolymers discovered recently are reported to possess 

excellent fire resistant performance due to their ceramic like characteristics and they 

are prepared using alkali activation and alumino-silicate raw materials. 
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Geopolymer binder are superior in term of the heat and fire resistance of compared to 

Portland cement, geopolymer materials have shown a better behavior (Davidovits, 

1988 & 1994). Basically, OPC materials when exposed to temperature up to 300°C 

underwent rapid deterioration in their compressive strength (explode above this 

temperature), while geopolymeric binders remained stable at 600°C. Geopolymer 

cements also demonstrated extremely low shrinkage in comparison to Portland 

cement (Wallah and Rangan, 2006). 

One application geopolymer based concretes are well suited for that Portland cement 

based concretes are not is in high temperature applications. Portland cement based 

concretes lose their entire load bearing capabilities between 300°C and 400°C. 

Geopolymer based concrete however doesn’t start losing strength until 600°C, and 

gradually decreases from that point until it loses most load bearing capabilities 

around 1100°C (Davidovits, 2005). This particular property also makes geopolymers 

well suited for high temperature composite applications as well as fire insulation 

applications. 

2.9.6 Absorption Properties of Geopolymer 

Absorption properties in much circumstance are very important especially for 

durability criteria. Geopolymer material is superior to Portland cement with respect 

to water sorptivity and water absorption. Luhar and Khandelwal (2015) studied water 

absorption and water sorptivity of geopolymer concrete and results compared with 

control concrete. The results showed that the sorptivity curve is less linear as 

compared to that of control concrete. That means the rate of absorption of 

geopolymer is less. Test results of water absorption showed that the porosity of 

geopolymer concrete is less as fly ash is finer than OPC which resulted in less water 

absorption than control concrete.  

Olivia et al. (2008) conducted an investigation on strength and water penetrability of 

fly ash geopolymer concrete, In their research, sodium based activator and fly ash 

were used for synthesize of geopolymer, the compressive strength test was measured 

to address the strength, water penetrability properties was measured by water 

permeability and water absorption. 100x200 mm cylinders were used for casting 

seven mixes, specimens were cured at 60°C for 24 hours in a chamber steam curing. 
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Results indicated low water sorptivity, and water absorption. It was also observed 

that water sorptivity and water absorption of class F fly ash geopolymer concrete are 

lower compared to corresponding OPC concrete mixes. Moreover, it was found that 

using low ratio of water to binder, and well graded aggregate have significant impact 

to obtain low permeability of geopolymer concrete. 

Mishra et al. (2008) executed an investigation on effect of alkaline activator 

concentration and curing time on the strength and water absorption of fly ash based 

GPC. Three concentration 8M, 12M, and 16M were used for preparing nine mixes, 

with a curing time as 24, 48, and 72hrs. Compressive, splitting tensile strength and 

water absorption were measured on each of the nine mixes. Test results showed that 

both splitting tensile strength and compressive strength increased, by increasing the 

concentration of NaOH. Also, strength was increased by increasing curing time. 

Moreover, after 48 hours of curing, the increase in compressive strength was not 

significant. With curing at 60°C, the 46MPa compressive strength was obtained. The 

results of water absorption test indicated that by increasing the NaOH concentration 

and curing time, water absorption will be reduced. 

Soren (2013) concluded that fly ash geopolymer mortar has very low sorptivity with 

high water absorption. It was found that water absorption was in the range (6.61 to 

12.617%) with different parameters, in case of sorptivity, it was evaluated that 

sorptivity was in the range (0.000427 to 0.0007 mm/min
0.5

) with different 

parameters, after curing at 80
o
C for 72 hours. It was demonstrated that both water 

absorption and sorptivity decreased by increasing the ratio of SiO2 to Na2O in the 

range (0.8 to 1.8). It was also observed by increasing the ratio of sand to fly ash in 

the range (1/1 to 2/1) resulted in decrease water absorption and sorptivity.  

2.9.7 Chemical Properties of Geopolymer 

Besides their mechanical and physical properties, geopolymer materials have shown 

excellent chemical properties. Geopolymer pastes and mortars have been proven to 

perform adequately when exposed to sulfates, acidic media, seawater attack, and 

akali-silica reaction (Edouard, 2011).  
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Comrie et al. (1988) stated that the ability of geopolymer to resist the chemical attack 

can be credited to the fact that, unlike Portland cement, lime does not have an 

important role in the lattice structure of geopolymers.  

One of the common causes in OPC concrete deterioration is the alkali-aggregate 

reaction, which is a chemical reaction between alkalis from the Portland cement and 

certain types of aggregates. Usually, this chemical reaction may be either an alkali-

silica reaction or an alkali-carbonate reaction. Under specific circumstances, the 

result of this reaction can be damaging expansion and cracking in the concrete 

structure. Therefore, the absence of factors such as reactive aggregate, alkalis in the 

cement, calcium-rich phases can prevent the chemical process to take place. 

Davidovits (1994) used the standard Accelerated Mortar Bar Test to demonstrate the 

alkali-aggregate resistance of geopolymeric cements compared to OPC, while using 

much higher alkali content for the geopolymer pastes. It was revealed that 

geopolymer samples to be healthy, whereas the Portland cement specimens did 

generate alkali-aggregate reaction.  

Another appealing property of geopolymer binder depicted by past researches is its 

resistance to acid attack. Almost all of them asserted that alkali-activated binders 

performed way better than OPC when subjected to chemical aggression by acid, 

because of the high calcium content of OPC (Wallah and Rangan, 2006). 

 Also, Davidovits et al. (1999) stated only 7% mass loss in metakaolin based 

geopolymer, after the specimens were submerged for four weeks in 5% solution of 

sulfuric acid (Provis and van Deventer, 2009). 

Fernandez-Jimenez et al. (2007) conducted research on the behavior of alkali-

activated fly ash and OPC specimens totally immersed in HCl solution. The test 

results demonstrated that the specimens manufactured with the alkali-activated fly 

ash revealed to be healthy after 90 days of exposition to acid solutions, whereas the 

OPC samples were deteriorated after only 56 days of immersion. 

Similarly, Bakharev (2005); Fernandez-Jimenez et al. (2007) and many other authors 

concluded that fly ash geopolymer mortar and paste have a reasonable performance 

when exposed to sulfates and seawater. 
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2.10 Factor Affecting Properties of Geopolymer  

There are many different opinions as to which main parameters that affect the 

properties of geopolymer concrete. This segment presents the review of the research 

studies done worldwide about the factors affecting geopolymer concrete properties. 

Palomo et al. (1999) stated that the curing temperature was an acceleration reaction 

of fly ash based geopolymers, its’ substantially influence the development of the 

mechanical strength, with alkaline activator and the time of curing. It was also found 

that higher temperature curing and longer curing time were resulted in higher 

compressive strength. 

Jiang et al. (1992) explained the reason for the need of the heat treatment is that the 

activation of the fly ash is an endothermic reaction so that the heat curing is very 

important for the geopolymerization of the fly ash based geopolymer cement. 

Hardjito (2005) concluded that by increasing the concentration of (NaOH) solution in 

term of molar, the compressive strength of geopolymer concrete was also increased. 

On the other hand, Compressive strength improved by increasing the ratio of 

Na2SiO3 to NaOH by mass of geopolymer concrete. Increasing the temperature of 

curing from (30 to 90), the compressive strength of geopolymer concrete as well 

increased. Longer time of curing from 4 to 96 hours resulted in higher compressive 

strength of geopolymer concrete. Nonetheless, after 48 hours of curing, the increase 

in compressive strength was not significant. Also, they demonstrated that the 

addition of high-range of superplasticizer up to about 4% by mass of fly ash, the 

workability of fresh geopolymer improved with a little influence on the strength of 

geopolymer concrete at hardening stage. 

Panias et al. (2007) concluded that water content is important parameter in the 

production of fly ash based geopolymer concrete for the mechanical strengths 

development. Water plays important role during dissolution. Also, water and 

superplasticizer have great effect on workability of geopolymer, but superplasticizer 

has adverse effect on compressive strength of geopolymer. 
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In addition, source material possesses effect on geopolymer properties. Xu and Van 

Deventer (2003) concluded that using different type of source material will be 

resulted in improving the compressive strength.  

Temuujin et al. (2009) conducted that adding calcium compounds Ca(OH)2 and CaO 

improves the mechanical strength of the fly ash geopolymers cured at room 

temperature (ambient curing). Adding Ca(OH)2 is accounted to be a more beneficial 

than the addition of CaO.  

De Silva (2007) conducted an experimental study on the role of Al2O3 and SiO2 on 

the metakaolin based geopolymer, he stated that setting time will increase by 

increasing the ratio of SiO2/Al2O3. Moreover, the ratio of SiO2/Al2O3  was found out 

to be responsible for higher strength gain especially at later age.  

According to study that was done by Xu and Van Deventer (2000) on the 

geopolymerization of sixteen natural Si-Al minerals, it was observed that several 

factors such as the percentage of, K2O, CaO, the ratio of Si-to-Al in the source 

material, the extent of dissolution of Si, the molar Si-to-Al ratio in solution and the 

type of alkaline activator considerably impacted the compressive strength of 

geopolymers. 
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CHAPTER 3 

EXPERIMENTAL WORK 

3.1 Introduction 

This chapter provides the methods and details of the experimental process employed 

for producing fly ash based geopolymer mortar. The properties and specifications of 

the materials, the mixture proportions, the manufacturing and curing of the test 

specimens are described. It is also includes the experimental techniques, where the 

specimen types, the test program, and the test parameters are explained. It is to be noted 

that geopolymer paste is used as 100% substitution to Portland cement. ASTM standard 

tests performed to analyze the material properties. 

3.2 Materials 

The materials utilized for producing geopolymer mortar are fly ash as a source 

material, the combination of sodium silicate and sodium hydroxide as alkaline liquid 

activator, superplasticizer in liquid form for improving workability and two types of 

aggregate which are natural sand and crushed limestone were used as well as the 

combined sand which includes (50% of the natural river sand and 50% of crushed 

limestone). 

3.2.1 Fly Ash 

In the present study low calcium fly ash (ASTM Class F) from local sources was 

utilized as a base and a source material. Table 3.1 shows chemical and physical 

compositions of fly ash. 
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Table 3.1 Physical and chemical properties of fly ash 

Physical and chemical analysis (%) FA 

CaO 2.2 

SiO2 57.2 

Al2O3 24.4 

Fe2O3 7.1 

MgO 2.4 

SO3 0.3 

K2O 3.4 

Na2O 0.4 

Loss on ignition 1.5 

Specific gravity 2.25 

Specific surface area (m
2
/kg) 379 

3.2.2 Alkaline Activator 

Sodium based activator (a combination of sodium silicate and sodium hydroxide 

solution) was chosen as the alkaline activator for activating fly ash. Sodium activator 

was picked because they were cheaper than potassium activators. The sodium 

hydroxide in flakes or pellets in form (3mm) was used, with a specific gravity of 

2.15, as well as 97% purity. Alkaline activator was purchased from local supplier 

(Delta kimya), Adana, Turkey. 

In order to prepare sodium hydroxide (NaOH) solution, the flakes or the pellets of 

solid sodium hydroxide was dissolved in water. The mass of NaOH solids in a 

solution varied depending on the concentration of the solution expressed in terms of 

molar, M. For instance, NaOH solution with a concentration of 12M consisted 12x40 

= 480 grams of NaOH solids per liter of the solution, where 40 is the molecular 

weight of NaOH. The mass of NaOH was evaluated as 361 gram per 1 kg of NaOH 

solution of 12M concentration.  

Note that the mass of NaOH solids was only a fraction of the mass of NaOH 

solution, and water is the major compound. 
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Sodium silicate was also purchased from a Delta kimya, Adana, Turkey. The 

chemical composition of the Na2SiO3 solution was water 55.9%, Na2O=14.7%, and 

SiO2=29.4% by mass. Besides, the specific gravity=1.48, and viscosity = 400 cp at 

20°C.  

 

Figure 3.1 Preparing alkaline activator 

3.2.3 Aggregate 

Two types of aggregates were used as a fine aggregate locally in western part of 

Turkey's Southeastern Anatolian Region, Gaziantep for producing fly ash based 

geopolymer mortar.  

3.2.3.1 Crushed Fine Limestone 

Local crushed limestone consist (0 to 4) mm, four different grades of these 

aggregates were used. (0-4, 2-4, 1-2 and 0-1) mm were used separately for producing 

fly ash-based geopolymer mortar. Specific gravity of each grade was (2.53, 2.56, 

2.51 and 2.48) respectively. With fineness modulus was 2.83. Figure 3.3 illustrated 

different grading of crushed limestone. 

The physical and mechanical properties of local limestone have been reported in a 

previous study (Marangoz, 2005). The results are summarized in Table 3.2. 

 

 

 

 

https://en.wikipedia.org/wiki/Turkey
https://en.wikipedia.org/wiki/Southeastern_Anatolia_Region
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Table 3.2 Physical and mechanical properties of Gaziantep limestone (Marangoz, 

2005) 

Bulk density 1.42 g/cm
3
 – 2.62 g/cm

3
 

water absorption 1.24 % – 26.89 % 

Brazilian tensile Strength 0.99 MPa – 15.06 MPa 

Direct shear strength 1.36 MPa – 6.20 MPa 

friction angle 40
o
- 57

o
 

Cohesion 15 MPa – 2.1 MPa 

Residual friction angle 38
o
 - 54

o
 

Uniaxial compressive 

strength 
3.75 MPa – 49.8 MPa 

Young’s modulus 1.76 GPa – 14.62 GPa 

Ultrasonic velocity 1950 m/s – 5910 m/s 

 

3.2.3.2 Natural Sand  

Local natural fine sand comprising (0 to 4) mm, four different grades of these fine 

aggregates were used. (0-4, 2-4, 1-2, and 0-1) mm were used separately for 

producing fly ash-based geopolymer mortar, specific gravity of each grade was 

(2.64, 2.68, 2.62, and 2.58) respectively. With fineness modulus was 3.48, Figure 3.4 

illustrated different grades of sand 

3.2.3.3 Combined Sand  

Combined sand includes (50% of crushed limestone and 50% of natural sand). 

Similarly, four grades of aggregate (0-4, 2-4, 1-2, and 0-1) mm were also used.  

Table 3.3 shows particle size distribution of each type of aggregates. 

Figure 3.2 shows grading curve for each type of aggregate. 
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Table 3.3 Particle size distribution of aggregates 

Sieve Size 

 mm 

Passing % 

Crushed Limestone Natural Sand Combined Sand 

4 100 100 100 

2 72.4 65.6 69 

1 57 46 51.5 

0.5 45.4 28.2 36.8 

0.25 33.6 8.7 21.1 

0.125 22.3 2.8 12.6 

pan 0 0 0 

 

 

Figure 3.2 Grading curves for aggregates 
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3.2.4 Superplasticizer 

Workability of fly ash based- geopolymer mortar was adjusted by adding (Glenium 

51), and specific gravity was 1.07 as a superplasticizer in a liquid form by 6% of fly 

ash weight in all mixtures. 

Table 3.4 Properties of superplasticizer 

Properties Superplasticizer 

Name Glenium 51 

Color tone Dark brown 

State Liquid 

Specific gravity (kg/1) 1.07 

Chemical description Polycarboxilate ether 

3.3 Manufacture Geopolymer Mortar 

Sodium based activator was prepared by mixing sodium hydroxide and sodium 

silicate one day in advance to ensure it to cool down in a room at temperature (25°C). 

Fly ash and the aggregates were first mixed together in the 2.5-litre capacity 

laboratory mortar mixer for about 3 minutes to ensure homogeneity of the mixture. 

Then, mortar mixer stopped. The liquid components that contain sodium hydroxide 

solution, sodium silicate,   and superplasticizer were added to the dry materials and 

the mixing continued for further about 5 minutes to produce the fresh fly ash based 

geopolymer mortar as shown in Figure 3.5. 

Then, the fresh geopolymer mortar was poured into 50x50x50 mm cube molds 

directly after mixing in to two layers, as described in the ASTM C109 standard. 

Moreover, for the compaction of the specimens the rod was employed, and each 

layer of geopolymer mortar was tamped 25 times with a rod. To remove air voids, all 

the cast specimens were vibrated on a vibrating table for 2 minutes. 
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Figure 3.3 Preparing geopolymer mortar constituents 

 

Figure 3.4 Geopolymer mortars constituent 

 



 

38 

 

 

Figure 3.5 Adding alkaline activator to the dry components 
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Figure 3.6 Casting geopolymer mortars 
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3.4 Curing  

After casting, for minimizing water evaporation, the test specimens were wrapped 

with vacuum bagging film at high temperature. In this study dry heat curing was 

used, the specimens were cured in oven dry for (90°C), for the period 24 hours. 

After the curing period, the test specimens were left in the molds. Some specimens 

immediately after demolding cubic specimens were tested and the other specimens 

were left to air- dry (ambient curing) in the laboratory room at (25°C) until the day of 

the test. 

 

Figure 3.7 Curing cubic specimens by oven dry 

3.5 Mixture Proportion 

Following Table 3.5, 3.6, and 3.7 respectively, summarized the detail of three 

mixtures proportions based on types of aggregate that were tried during the 

experimental research for producing geopolymer mortar. Main feature are: 

1- In all mixtures low calcium fly ash was used (ASTM-Class F) 

2-NaOH molarity was kept constant at 12 M. 

3- Water just used for dissolution NaOH pellets. 

4- Na2SiO3 /NaOH=2.5 in all mixtures. 

5- Fly ash to Alkaline activator kept at (2/1) by weight. 
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6- Superplasticizer was kept constant at 6% in all mixtures 

7- Curing temperature kept at (90°C). 

8- Curing period was 24 hrs. 

9- Oven dry curing was used. 

Table 3.5 Mix proportions of geopolymers produced by crushed limestone aggregate  

Materials 

Weight (kg/m
3
) 

Mixture 1         

( 0-4 ) mm 

Mixture 2        

( 2-4 ) mm 

Mixture 3        

( 1-2 ) mm 

Mixture 4           

( 0-1) mm 

Fly ash 799.92 799.92 799.92 799.92 

Crushed 

Limestone 
796.61 806.06 790.31 780.87 

Sodium Hydroxide 

Solution 
114.24 114.24 114.24 114.24 

Sodium silicate 

Solution 
285.6 285.6 285.6 285.6 

Superplasticizer 47.99 47.99 47.99 47.99 
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Table 3.6 Mix proportions of geopolymers produced by natural river sand 

Materials 

Weight (kg/m
3
) 

Mixture 5         

( 0-4 ) mm 

Mixture 6           

( 2-4 ) mm 

Mixture 7            

( 1-2 ) mm 

Mixture 8      

( 0-1) mm 

Fly ash 799.92 799.92 799.92 799.92 

Natural Sand 831.24 843.84 824.95 812.35 

Sodium Hydroxide 

solution 
114.24 114.24 114.24 114.24 

Sodium silicate 

solution 
285.6 285.6 285.6 285.6 

Superplasticizer 47.99 47.99 47.99 47.99 

 

Table 3.7 Mix proportions of geopolymers produced by combined aggregate 

Materials 

Weight (kg/m
3
) 

Mixture 9          

( 0-4 ) mm 

Mixture 10              

( 2-4 ) mm 

Mixture 11            

( 1-2 ) mm 

Mixture 12           

( 0-1) mm 

Fly ash 799.92 799.92 799.92 799.92 

Crushed Limestone 406.96 412.47 403.81 398.3 

Natural Sand 406.96 412.47 403.81 398.3 

Sodium Hydroxide 

solution 
114.24 114.24 114.24 114.24 

Sodium silicate 

solution 
285.6 285.6 285.6 285.6 

Superplasticizer 47.99 47.99 47.99 47.99 
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3.6 Experimental Tests for Geopolymer Mortar 

3.6.1 Flow Table  

In accordance to ASTM C1437, the workability of fresh geopolymer mortar 

determined by using flow table test shown in the Figure 3.8, the cone dimensions are 

bottom diameter 100 mmm, top diameter 70 mm and height diameter 60 mm. The 

cone is placed on a center of flow table instrument, and then mold cone filled with 

fresh mortar in to two layers each layer tamped 20 times with a tamper, tamping 

pressure should be sufficient to compact the mortar uniformly. After the top surface 

of mold wiped and leveled the mold instantly lifted vertically, then the flow table is 

dropped 25 times in 15 sec. The percentage of flow table mortar can be measured by 

computing four symmetrically measured diameters in two axes. Then, the flow table 

percentage can be founded by (long diameter minus short diameter divided by short 

and multiply by 100). Workability of geopolymer mortar can be classified as high, 

moderate, and stiff. 

 

Figure 3.8 Flow table test of geopolymer mortar 
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3.6.2 Unit Weight  

The unit weight of the concrete was measured following ASTM Cl38. The cubic 

mold for the unit weight test was utilized to measure the unit weight of mortar. The 

volume of the cubic mold was known. It was filled with freshly mixed mortar and 

leveled with the plainer. The weight of the empty mold and the mold filled with 

mortar was measured separately. The unit weight was calculated using the following 

equation: 

Unit weight =  
     

 
 

Where Mf = weight of the container full with mortar 

Me = w eight of the empty mold 

V = volume of the mold 

3.6.3 Compressive Strength 

In the study of strength of materials, the compressive strength is the capacity of a 

material or structure to withstand loads tending to reduce. According to ASTM C109 

for cement mortar cubes were followed. Each mix was cast into several cube molds, 

by filling the mold halfway and vibrating for 30 seconds, filling the mold the rest of 

the way and vibrating again for 30 seconds, then leveling off the top. The molds were 

then covered in plastic and covered again in vacuum wrapping to keep a humid 

environment during curing. Molds were placed in the oven at 90°C for 24 hours after 

mixing. A load 3000 kN capacity digital compressive testing machine as shown in 

Figure 3.9 with a loading rate 0.5 kN/sec was used. Three identical specimens were 

tested, then, the results of compressive strength were reported in a table and graphs 

after 24 hours of curing at 90°C, and the compressive strength at 7, 28, and 56 days 

age of room temperature (ambient curing) at 25°C were also presented. For each 

parameter investigation, three identical samples were tested in accordance with 

ASTM C-109 and the mean values of compressive strength are reported in relevant 

tables and graphs. The compressive strength of the samples was evaluated by using 

the following equation: 

       = 
 

 
 

https://en.wikipedia.org/wiki/Strength_of_materials
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Where    is compressive strength in (MPa), P is ultimate load during the test in (N), 

and A = loading area in square millimeter (mm
2
). 

 

Figure 3.9 Compressive strength test 

3.6.4 Splitting Tensile Strength 

Hardening fly ash geopolymer mortar specimens after 24 hours curing at 90
o
C, 

splitting tensile strength was performed on 3000 kN capacity digital machine in 

accordance to ASTM C37 with a loading rate 0.1 kN/sec. For every mixture three 

identical specimen cubic 50x50x50 mm  were tested, the result value are given and 

was reported  in various figures and graphs. 

Splitting tensile strength of the specimen was calculated using the expression below 

2

2

a

P
f s


  

Where    is splitting tensile strength (MPa), P is splitting load (N), a is dimension of 

cubic specimen (mm) 
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3.6.5 Water Absorption 

The main factor for evaluating the durability of concrete and mortar is permeability. 

The durability in mortar largely depends on ease entering and moving the liquid 

components through the specimen matrix. Water absorption can be described by it’s 

the amount of water can be absorbed by materials under a specific condition. Also, it 

is the volume of pore space in specimen matrix that liquid components can penetrate 

in. Generally, water absorption test is carry out by drying a specimen to a constant 

mass, immersing the specimen in to the water up to fully saturation, and computing 

the specimen mass increases as the dry mass percentage. 

 

Figure 3.10 Water absorption test by total immersion 

 In the present research, at 7 day’s age water absorption of specimens have been 

determined. For each mix three identical specimens were dried for 24 hours at 100°C 

until constant mass, and then the mortar specimens were immersed in water for 24 

hours to become a fully saturate, after that, the specimens wiped cleanly, and 

immediately, the increase in mass evaluated in a saturated-surface-dry (SSD) 

condition.  
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Water absorption can by find by this method: 

Water absorption = 
     

  
 x100 where: 

W1 is weight of specimen in grams at drying condition. 

W2 is weight of specimen in grams at saturate surface condition. 

3.6.6 Water Sorptivity 

Sorptivity can be considered as one of the easier test for evaluating permeability of 

mortar/concrete. Water can penetrate into the concrete or mortar specimens by 

capillary suction. In addition, it can measure the rate of absorption fluid that was 

entering the mortar/concrete by capillary suction. Sorptivity will be determined by 

measuring the capillary water sorption by sorption depends on both the capillary 

pressure and effective porosity. Capillary pressure connected to the size of pores 

according to Young-Laplace equation, as well as effective porosity relate to the pore 

space in the gel pores and capillary according to Neville (2000). The sorptivity test 

evaluates the amount of capillary rise absorbed by mortar or concrete specimens. At 

7 days age, for each mix, three identical specimens were dried in oven at 100°C for 

24 hours, then the specimen take out in oven and their side coated with silicone 

sealing in order to ensure that water can ingress only in bottom of specimen, then the 

mortar specimens were immersed in water as shown in Figure 3.11. It should be 

observed that water level not more than 3-5 mm above the base of specimen. The 

increase in the mass gain weighted at different time intervals of the prism at 1, 4, 9, 

16, 25, 36, 49, and 64. The absorbed water volume was determined by dividing the 

mass gained by the nominal surface area of the sample and by the water density. 

Then, the square root of time versus these values was plotted and the sorptivity index 

of mortar was calculated by the slope of the line of the best fit. 
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Figure 3.11 Sorptivity test for geopolymer mortar 

Sorptivity can be determining by: 

I= S √  

Sorptivity = I/√  

I =  
(     )

    
 

W2 is the weight of specimen after capillary suction at the end of each time interval. 

W1 is oven dry weight of specimen in grams. 

A is a surface area of the specimen through which water penetrated. 

 t is a time in minute, at which the mass is determined. 

S: Sorptivity in mm
3
/mm

2
/min

0.5
. 

Dw is the density of water in g/mm
3
. 

Then by plotting I against √  , the sorptivity can be determined by slope index of a 

line of best fit. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

4.1 Flow  

Workability is a combination of several proportion including plasticity, consistency 

and cohesion. Plasticity and cohesions are difficult to measure in situ. However, 

consistency is frequency used as the measured of the workability. Aggregate grading 

and material property largely affect the workability of geopolymer mortar, in the 

present study several test have been carried out for finding the effect of type of 

aggregate and grading of aggregate of each type on the workability of geopolymer 

mortar, test results presented in Table 4.1 and Figure 4.1. 

Table 4.1 Effect of type and grading of aggregates on flow  

Mix ID 
Type of 

Aggregate 

Grading of 

Aggregate 

mm 

 

Flow Table 

% 

GPM 1 CL  0-4 32 

GPM 2 CL  2-4 89.5 

GPM 3 CL  1-2 87.5 

GPM 4 CL  0-1 25 

GPM 5 NS 0-4 102 

GPM 6 NS 2-4 137 

GPM 7 NS 1-2 127.5 

GPM 8 NS 0-1 91.5 

GPM 9 CS 0-4 78.5 

GPM 10 CS 2-4 118 

GPM 11 CS 1-2 105 

GPM 12 CS 0-1 45.5 
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Figure 4.1 Effect of type and grading of aggregate on flow of geopolymer mortar 

It was observed that all mixtures were cohesive and stiff due to having high content 

of alkaline activator (mixing sodium hydroxide and sodium silicate). Figure 4.1 

shows that the type of aggregate has great effect on workability of geopolymer 

mortar, it was found that geopolymer mortar with natural sand has higher workability 

in comparison to other types of aggregate due to natural sand’s rounded particle 

shape and consequently lower specific surface area. Nonetheless, grading of 

aggregate affected the flow of fly ash based geopolymer mortar as well. Higher flow 

of geopolymer mortar was obtained when larger particle size distribution (2-4) mm 

without depending on type of aggregate were used. Also, it was found that 

geopolymer mortar with finer sand (0-1) mm has a low mortar flow, it needs more 

alkaline activator to achieve a good flow compared to other grades because of finer 

sand has high surface area compared to coarse sand.  

4.2 Unit Weight  

Fresh unit weight of fly ash geopolymer mortar carried out directly after casting the 

geopolymer mortar, and hardened unit weight executed during the tests. The test 

results were presented in Table 4.2, Figure 4.2 and Figure 4.3. 
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Table 4.2 Effect of type and grading of aggregate on density 

MIX ID 
Type of 

Aggregate     

Grading of 

Aggregate 

(mm) 

                                          

Unit Weight               

(kg/m
3
) 

Fresh Hardened 

GPM 1 CL 0-4 2145.55 2054.00 

GPM 2 CL 2-4 2158.88 2067.20 

GPM 3 CL 1-2 2140.67 2048.00 

GPM 4 CL 0-1 2124.67 2030.90 

GPM 5 NS 0-4 2205.00 2112.30 

GPM 6 NS 2-4 2216.00 2129.33 

GPM 7 NS 1-2 2193.20 2103.24 

GPM 8 NS 0-1 2178.00 2085.60 

GPM 9 CS 0-4 2174.00 2089.86 

GPM 10 CS 2-4 2191.33 2098.40 

GPM 11 CS 1-2 2172.00 2081.07 

GPM 12 CS 0-1 2161.67 2072.73 

 

 

Figure 4.2 Effect of type and grading of aggregate on fresh unit weight 
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Figure 4.3 Effect of type and grading of aggregate on hardened unit weight 

Table 4.2 and Figure 4.2 shown that fresh unit weight is varying because, the unit 

weight of geopolymer concrete and mortar are depend on the unit mass of aggregate 

(Hardjito, 2005). In the present study, the fresh unit weight (density) is ranged 

between 2216.00 and 2124.67 kg/m
3
. Geopolymer mortar with natural sand has 

higher fresh unit weight because the density (specific gravity) of natural sand is 

greater than the other two aggregates. Nonetheless, aggregate grading has an effect 

on the unit weight of geopolymer mortar. In all type of aggregates, geopolymer 

mortar with the coarser sand (2-4) mm has a higher fresh unit weight compared to 

other grades because the specific gravity of sand (2-4) mm is greater than the other 

grades.  

Table 4.2 and Figure 4.3 indicated that the type and grading of aggregate 

significantly affected hardened unit weight, ranged between 2129.33 to 2030.90 

kg/m
3
. Geopolymer mortar with coarser natural sand grade (2-4) has a high hardened 

unit weight (density), due to specific gravity of the natural sand and grade (2-4) are 

higher than other sands. However, geopolymer mortar with limestone and grade (0-1) 

has a low density due to lower specific gravity compared to the other sands. 
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 4.3 Compressive Strength 

4.3.1 Effect of Type and Grading of Aggregate on Compressive Strength 

Compressive strength is considered as one of the most important properties of 

hardened concrete. It is generally the main property value used to investigate the 

quality of concrete according to ASTM C109. That is why it is important to evaluate 

whether changes in the mixture composition will affect the early and late 

compressive strength of concrete. Compressive strength results of GPM for cubic 

molds 50x50x50 at age 1day given in Table 4.3 and Figure 4.4. 

Table 4.3 Effect of type and grading of aggregate on compressive strength at 1 day  

Mix ID 
Type of 

Aggregate 

Grading of 

Aggregate 

(mm) 

Compressive Strength 

(MPa) 

GPM 1 CL  0-4 46.52 

GPM 2 CL  2-4 47.83 

GPM 3 CL  1-2 44.20 

GPM 4 CL  0-1 40.25 

GPM 5 NS 0-4 35.51 

GPM 6 NS 2-4 39.37 

GPM 7 NS 1-2 34.73 

GPM 8 NS 0-1 28.25 

GPM 9 CS 0-4 42.10 

GPM 10 CS 2-4 44.93 

GPM 11 CS 1-2 41.18 

GPM 12 CS 0-1 38.09 
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Figure 4.4 Effect of type and grading of aggregate on compressive strength at 1 day 

The most important characteristic of fly ash geopolymer mortar is compressive 

strength (Kotwal, 2015). The results shown in Table 4.3 and Figure 4.4, compressive 

strength of geopolymer mortar after 1 day was in the range (47.83 to 28.25). It was 

observed that using crushed limestone for producing fly ash based geopolymer 

mortar resulted in a higher compressive strength after 1day compared to other 

aggregates. The reason of higher compressive strength is due to crushed limestone 

include much more angular which provides a higher surface-to-volume ratio leading 

to better bond characteristics and strong interlock between particles. However, it 

requires more binder to produce a workable mixture. Furthermore, in the present 

study results indicated that fine aggregate with a coarser grade (2-4) mm has a higher 

compressive strength (47.83) after 1day. Natural river sand shows lower compressive 

strength due to its rounded and smooth surface particles of river sand. The rounded 

shape of river sand causes less bonding strength with the matrix. 

4.3.2 Effect of Age on Compressive Strength 

Age is considered to be important to figure out the mechanical properties of fly ash 

geopolymer mortar over time. The chemical reaction of the high temperature-cured 

geopolymer concrete is considerably fast polymerization process (Davidovits, 1999; 

1994). The compressive strength of geopolymer does not change with age of 
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concrete. This observation is unlike to OPC concrete behavior, which the hydration 

process continues gain strength with time (Hardjito and Rangan, 2005). In the 

present study, several tests have been carried out to find the effect of age on the 

compressive strength of geopolymer mortar with different type of aggregate and with 

different age, the test results summarized in Table 4.4 and Figure 4.5, Figure 4.6 and 

Figure 4.7. 

Table 4.4 Compressive strength of geopolymer mortar with different age 

Mix ID 
Type of 

Aggregate 

Grading of 

Aggregate 

mm 

Compressive Strength (MPa) 

1 day 7 days 28 days 56 days 

GPM 1 CL 0-4 46.52 46.80 46.85 47.10 

GPM 2 CL 2-4 47.83 48.20 48.3 48.9 

GPM 3 CL 1-2 44.20 44.60 44.72 44.88 

GPM 4 CL 0-1 40.25 41.00 41.4 41.9 

GPM 5 NS 0-4 35.51 36.48 36.9 37.15 

GPM 6 NS 2-4 39.37 40.15 40.42 41.2 

GPM 7 NS 1-2 34.73 35.43 35.7 36.15 

GPM 8 NS 0-1 28.25 30.52 31 31.32 

GPM 9 CS 0-4 43.10 43.50 43.60 43.9 

GPM 10 CS 2-4 44.93 45.16 45.45 45.68 

GPM 11 CS 1-2 41.18 42.18 42.5 42.9 

GPM 12 CS 0-1 38.09 38.76 39.4 39.72 
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Figure 4.5 Effect of age on compressive strength of GPM with crushed limestone 

 

Figure 4.6 Effect of age on compressive strength of GPM with natural sand 
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Figure 4.7 Effect of age on compressive strength of GPM with combined sand 

Figure 4.5, 4.6, and 4.7, indicate that compressive strength of all types of fine 

aggregates and all grades slightly increase till 7 days (Kotwal, 2015). then the gain of 

strength in 7days to 56 days is very little, therefore, the test results confirms a good 

agreement of previous researches that compressive strength does not vary with age 

(Hardjito; Hardjito and Rangan , (2005) 

4.4 Relationship between Compressive Strength and Hardened Density 

The correlation of hardened density and compressive strength based on type and 

grading of aggregate illustrated in Figure (4.8) 
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Figure 4.8 Correlation of compressive strength and hardened density  

Figure 4.8 confirms that in all type of aggregate, denser material caused high 

compressive strength of fly ash geopolymer mortar (Kotwal, 2015). But, in case of 

changing the type of aggregate, the denser material does not cause higher strength 

because the compressive strength of fly ash geopolymer mortar depending on the 

bond between binder and aggregates, surface area, surface texture and angularity. 

Natural sand is a denser material but the bond between binder and aggregate not 

strong, this cause low compressive strength, differently, the density of crushed 

limestone is low compare to natural sand but because the bond between binder and 

aggregate are strong as well as high surface area and angular particles resulted in 

high compressive strength. 

4.5 Splitting Tensile Strength 

The concrete and mortar is very weak in tension due to its hard brittle nature and is 

not expected to resist the direct tension. The cracks of concrete improve when 

subjected to tensile forces. Therefore, it is needed to find out the split tensile strength 

of concrete for determining the load at which the members of concrete may crack. 

Results of split tensile strength summarized in Table 4.5 and Figure 4.9. 
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Table 4.5 Effect of type and grading of aggregate on splitting tensile strength  

Mix ID 
Type of 

Aggregates 

Grading of 

Aggregate 

mm 

Split Tensile 

Strength 

MPa 

GPM 1 CL  0-4 6.83 

GPM 2 CL  2-4 6.91 

GPM 3 CL  1-2 6.78 

GPM 4 CL  0-1 6.67 

GPM 5 NS 0-4 6.49 

GPM 6 NS 2-4 6.60 

GPM 7 NS 1-2 6.45 

GPM 8 NS 0-1 6.31 

GPM 9 CS 0-4 6.64 

GPM10 CS 2-4 6.70 

GPM 11 CS 1-2 6.61 

GPM 12 CS 0-1 6.51 

 

 

Figure 4.9 Splitting tensile strength of geopolymer mortar versus aggregate 

properties 
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Table 4.5 and Figure 4.9 show that splitting tensile strength varies when, type and 

grading of aggregate changes. The results shown that splitting tensile strength is 

higher in geopolymer mortar with crushed limestone sand followed by combined 

sand and natural river sand, better splitting tensile strength in crushed limestone, due 

to the particles of crushed limestone are angular caused a better bond between 

particles.  

Semilarly, Kataria and Shah (2015) studied using manufactured sand as a 

replacement for natural sand in fine aggregate for producing concrete, they 

demonstrated that concrete made with manufactured sand showed higher splitting 

tensile strength compared to natural sand. Also, Figure 4.8 shows that coarse sand 

grade (2-4) mm gives higher splitting tensile strength of fly ash geopolymer mortar 

in all type of aggregates.  

4.6 Relationship between Compressive Strength and Splitting Tensile Strength 

There was a direct relationship between compressive strength and splitting tensile 

strength. However, more investigation is required to plot and introduce a correlation 

with high accuracy which was not in the scope of this research. 

 

Figure 4.10 Correlation of compressive strength and splitting tensile strength  
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Based on the test results that shown in Figure 4.10, with the increase of compressive 

strength geopolymer mortar in all type of aggregate and each grade of aggregate that 

were used, the splitting tensile strength also increased gradually. 

4.7 Water Absorption 

Water absorption is amount of water can be absorbed by material. The results of 

water absorption test are presented in Table 4.6 and Figure 4.11. 

Table 4.6 Effect of type and grading of aggregate on water absorption 

Mix ID 
Type of 

Aggregate 

 

 

Grading of 

Aggregate 

mm 

Dry Unit 

Weight 

kg/m
3
 

Saturated 

Unit Weight  

kg/m
3
 

Absorption 

% 

 

GPM 1 CL 0-4 1907.40 2075.5 8.81 

GPM 2 CL 2-4 1932.43 2103.67 8.86 

GPM 3 CL 1-2 1922.33 2097.00 9.09 

GPM 4 CL 0-1 1901.12 2083.50 9.59 

GPM 5 NS 0-4 1959.60 2149.33 9.68 

GPM 6 NS 2-4 1999.13 2194.33 9.76 

GPM 7 NS 1-2 1978.20 2175.93 10.05 

GPM 8 NS 0-1 1927.86 2136.10 10.80 

GPM 9 CS 0-4 1945.40 2102.00 8.05 

GPM 10 CS 2-4 1980.67 2141.43 8.12 

GPM 11 CS 1-2 1939.73 2106.00 8.57 

GPM 12 CS 0-1 1925.00 2099.00 9.04 
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Figure 4.11 Effects of grading and type of fine aggregate on water absorption 

Table 4.6 and Figure 4.11 show that water absorption of geopolymer mortar was in 

the range 8.05 to 10.80%. Better results was found in geopolymer mortar with 

combined aggregate (crushed limestone 50% and natural sand 50%) has lower values 

in comparison to others, ranged between (8.05 to 9.04%). The possible reason for 

this decrease may be due to the water absorption depending on the porosity of the 

mortar. When crushed limestone mixed with natural sand, which contain high 

amount of finer particles lead to reduce the spaces between particles and the pores 

become less and pore sizes decreases. Moreover, the workability of combined 

aggregate mortars are better as a result of the fact that alkaline activator disperse 

among particles. 

It was also observed that grading of aggregate effect the water absorption of 

geopolymer mortar, grade (0-4) mm of aggregates shows less water absorption of fly 

ash based geopolymer mortar compared to other aggregates, due to grade (0-4) mm 

is uniformly graded, it has a lower void content than single-sized aggregate due to 

proper particle packing. 

Irrespective to type and grading of aggregate, the results of water absorption was 

shows a good agreement with a research by Soren (2013), he concluded that water 

absorption was in the range 6.61 to 12.617% with different parameters. 
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4.8 Water Sorptivity 

The sorptivity of a mortar is a measure of the rate of water absorbed by mortar over a 

time period of determined time. Specifically, it is the gradient of the straight line 

fitted to the plot of water absorbed by the mortar unit against the square root of time. 

A major objective in the development of the sorptivity test was to better account for 

the critical period in mortar bond development, namely the first few minutes when 

the free water in the mortar can migrate to the pores carrying the early hydration 

products (Goodwin and West, 1982). This process cannot continue for the 24 hours 

allowed for in the total absorption test, nor can it be represented by a 1 minute time 

period of the IRA test (RedaTaha et al., 2001). Results of sorptivity tests are 

summarized in Table 4.7. The plot of sorptivity versus grading and type of aggregate 

is shown in Figure 4.12. 

Table 4.7 Effect of type and grading of aggregate on water sorptivity  

Mix ID 
Type of 

Aggregates 

Grading of 

Aggregate 

mm 

Sorptivity 

(mm/min
0.5

) 

GPM 1 CL  0-4 0.0240 

GPM 2 CL  2-4 0.0244 

GPM 3 CL  1-2 0.0246 

GPM 4 CL  0-1 0.0251 

GPM 5 NS 0-4 0.0253 

GPM 6 NS 2-4 0.0256 

GPM 7 NS 1-2 0.0258 

GPM 8 NS 0-1 0.0262 

GPM 9 CS 0-4 0.0222 

GPM10 CS 2-4 0.0224 

GPM 11 CS 1-2 0.0227 

GPM 12 CS 0-1 0.0233 
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Figure 4.12 Effect of type and grading of aggregate on sorptivity  

Figure 4.12 shows that fly ash based geopolymer mortar has very low water 

sorptivity for all type of mortars without depending on the type and grading of 

aggregate. The values are ranged between’ (0.0222 to 0.0262) mm/min
0.5

. 

Geopolymer mortar with combined sand shows better result (0.0222 to 0.0233) 

mm/min
0.5

, compared to others. Better results may be attributed to their denser 

structure which was obtained from filling of the pores by various size particles. 

Furthermore, the aggregate grading (0-4) mm had better results in all types of sand, 

this may be due to grade (0-4) mm has all sizes of particles and more fines fill the 

pores. 

 Irrespective the type and grading of aggregate, the sorptivity results were low 

compared to cement mortar and concrete.  

Similarly, Soren (2013) concluded that that fly ash geopolymer mortar has very little 

water sorptivity ranged between (0.000427 to 0.0007) mm/min
0.5

, with different 

parameters. 
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CHAPTER 5 

CONCLUSION 

The primary focus of this thesis is to evaluate the strength and absorption of fly ash 

based geopolymer mortar experimentally. By utilizing three types of aggregate 

including natural river sand, crushed limestone, and combined sand (50% natural 

river sand and 50% crushed limestone) different mixtures of geopolymer mortars 

were produced. Four grades (0-4, 2-4, 1-2, and 0-1) mm for each type of aggregate 

were also used.  

By analyzing and comparing the behavior and properties of each types of aggregate, 

it was observed that: 

1. Type of aggregate shows great effect on flow table test results of geopolymer 

mortar. Using crushed limestone resulted in low mortar flow while combined sand 

shows better flow. On the other hand, geopolymer mortar including natural sand 

shows better flowability compared to ones with other aggregates. The effect of 

grading was also verified experimentally. Differences in grading resulted in 

differences in flow, coarse grading of sand caused higher flow as a result of lower 

specific surface area. 

2. The highest compressive strength of geopolymer mortar (47.83 MPa) was obtained 

in crushed limestone and grade (2-4) mm after 1day of curing, and the lowest 

compressive strength (28.25 MPa) was observed in natural river sand and grading of 

(0-1) mm. 

3. The effects of age on the compressive strength of the geopolymer mortar are 

different from those of the OPC. It was found that the geopolymer mortar, actually 

possesses high early compressive strength, and in all type of sand aggregate does not 

vary with age.   



 

66 

 

4. According to the results, the splitting tensile strength is only a fraction of 

compressive strength in all types and all grades of each aggregate. It was observed 

that splitting tensile strength gradually increased with the increase of compressive 

strength. 

5. Based on the results, the combined sand which includes (50% river sand and 50% 

crushed limestone) shows less water absorption than other aggregates, it was also 

stated that grade (0-4) mm has low water absorption compared to other grades in 

each type of aggregate. 

6. Water sorptivity in geopolymer mortar for all type of sand aggregate is very low 

compare to OPC Concrete and mortar, combined sand shows very low sorptivity, 

Also, the grading 0-4 mm shows less sorptivity than the other grades in all type of 

aggregate. 

 

 



 

67 

 

REFERENCES 

ACI 226-3R-87 (1987). Use of Fly Ash in Concrete: reported by ACI Committee 

226. ACI MATERIALS JOURNAL, 381-409. 

ASTM C109 (2011). Standard test method for compressive strength of hydraulic 

cement mortars. West Conshohocken, PA: ASTM International. 

ASTM C128 (2012). Standard test method for density, relative density (specific 

gravity) and absorption of fine aggregate. 

ASTM C1437 (2007). Standard test method for flow of hydraulic cement mortar. 

West Conshohocken, PA: ASTM International. 

Bakharev, T. (2005). Resistance of geopolymer materials to acid attack. Cement and 

Concrete Research, 35 (4), 658-670. 

Balaguru, P., (1997), Geopolymer-Carbon Composite for Repair and Rehabilitation 

of Reinforced Concrete Beams, Rutgers The State University of New Jersey, 

Piscataway, NJ -08855-0909, U.S.A. 

Bhavsar, G. D., Talavia, K. R., DPSMB, A., & Parmar, A. A. (2014). Workability 

properties of geopolymer concrete using accelerator and silica fume as an 

admixture, International Journal for Technological Research in Engineering, 1 (8). 

Chindaprasirt, P., Chareerat, T., & Sirivivatnanon, V. (2007). Workability and 

strength of coarse high calcium fly ash geopolymer, Cement and Concrete 

Composites, 29 (3), 224-229. 

Comrie, D. C., Paterson, J. H., & Ritcey, D. J. (1988, June). Geopolymer 

technologies in toxic waste management. In Proceedings of Geopolymer, ( 107-123). 

Concrete, I. Farmington Hills, Michigan, ACI Committee 232 (2004). Use of Fly Ash 

USA, American Concrete Institute, 41.  

Cramer, S. M., Hall, M., & Parry, J. (1995). Effect of optimized total aggregate 

gradation on Portland cement concrete for Wisconsin pavements, Transportation 

research record, 100-106. 

Davidovits, J. (1988a). Geopolymer Chemistry and Properties, Paper presented at the 

Geopolymer ’88, First European Conference on Soft Mineralurgy, Compiegne, 

Franc. 

Davidovits, J. (1988b). Geopolymers of the First Generation: SILIFACE-Process 

Paper presented at the Geopolymer ’88, First European Conference on Soft 

Mineralurgy, Compiegne, France.                                                                  . 



 

68 

 

Davidovits, J. (1991). Geopolymers: Inorganic Polymeric New Materials, Journal of 

Thermal Analysis, 37, 1633-1656. 

Davidovits, J. (1994). Properties of Geopolymer Cements. In Kiev (Ed.), First 

International Conference on Alkaline Cements and Concretes, 1, 131-149. 

Davidovits, J. (1999). Chemistry of Geopolymeric Systems, Terminology. Paper 

presented at the Geopolymere ’99 International Conference, Saint-Quentin, France. 

Davidovits, J. (2005). Geopolymer chemistry and sustainable development. The poly 

(sialate) terminology: a very useful and simple model for the promotion and 

understanding of green-chemistry. In Proceedings of 2005 geopolymer conference , 

1,  9-15. 

Davidovits, J., Buzzi, L., Rocher, P., Gimeno, D., Marini, C., & Tocco, S. (1999). 

Geopolymeric cement based on low cost geologic materials. Results from the 

european research project geocistem. In Proceedings of the 2nd International 

Conference on Geopolymer,  99, 83-96. 

De Silva, P., Sagoe-Crenstil, K., & Sirivivatnanon, V. (2007). Kinetics of 

geopolymerization: role of Al2O3 and SiO2. Cement and Concrete Research, 37 (4), 

512-518. 

Deb, P.S., Nath, P. and Sarker, P.K., (2014). The effects of ground granulated blast-

furnace slag blending with fly ash and activator content on the workability and 

strength properties of geopolymer concrete cured at ambient temperature, Materials 

& Design, 62, 32-39. 

Dombrowski, K., Buchwald, A., & Weil, M. (2007). The influence of calcium 

content on the structure and thermal performance of fly ash based 

geopolymers, Journal of Materials Science, 42 (9), 3033-3043. 

Edouard, J. B. (2011). Experimental evaluation of the durability of fly ash-based 

geopolymer concrete in the marine environment, FLORIDA ATLANTIC 

UNIVERSITY. 

Fathi, I. S. (2014). Effect of Using Crushed Limestone in Concrete Mixes as Fine 

Aggregate on Compressive Strength and Workability. 

Fernández-Jiménez, A. and A. Palomo (2003). Characterisation of Fly Ash: Potential 

Reactivity as Alkaline Cements, Fuel, 82 (18), 2259-2265. 

Fernández-Jiménez, A., Garcia-Lodeiro, I., & Palomo, A. (2007). Durability of 

alkali-activated fly ash cementitious materials, Journal of Materials Science, 42 (9), 

3055-3065. 

Fillenwarth, B. A. (2013). Development of optimization models for the set behavior 

and compressive strength of sodium activated geopolymer pastes. 

Folliard, K. J., & Kreger, M. E. (2003). The effect of the aggregates characteristics 

on the performance of Portland cement concrete. 

Galloway, J. E. (1994). Grading, shape, and surface properties, ASTM special 

technical publication, 169, 401-410. 



 

69 

 

Goodwin, J. F., & West, H. W. H. (1982). A review of the literature on brick/mortar 

bond. In Proc. Br. Ceram. Soc. 30, 23. 

Görhan, G., & Kürklü, G. (2014). The influence of the NaOH solution on the 

properties of the fly ash-based geopolymer mortar cured at different 

temperatures. Composites part b: engineering, 58, 371-377. 

Gourley, J. T. (2003). Geopolymers, opportunities for environmentally friendly 

construction materials, conference, adaptive materials for a modern society, Sydney, 

Institute of materials engineering Australia, 49, 1455-61. 

Hardjito, D. (2005). Studies of fly ash-based geopolymer concrete, Curtin University 

of Technology. 

Hardjito, D. and Rangan, B. V. (2005). Development and Properties of Low-Calcium 

Fly Ash Based Geopolymer Concrete., Research report GC1, Australia, Perth: Curtin 

University of  Technology, 103 s. 

Hardjito, D., Cheak, C. C., & Ing, C. H. L. (2008). Strength and setting times of low 

calcium fly ash-based geopolymer mortar, Modern applied science, 2(4), 3-11 

Hardjito, D., Wallah, S. E., Sumajouw, D. M. J., & Rangan, B. V. (2004, May). Brief 

review of development of geopolymer concrete. In Invited Paper, George Hoff 

Symposium, American  Concrete Institute. Las Vegas, USA. 

He, J. (2012). Synthesis and characterization of geopolymers for infrastructural 

applications (Doctoral dissertation, Nottingham University, UK). 

Hudson, B. P. (1999). Modification to the fine aggregate angularity test investigation 

into the way we measure fine aggregate angularity, In Proceedings of the 7th Annual 

Symposium, International Center for Aggregate Research (ICAR) Symposium. 

Jadhav, P. A., & Kulkarni, D. K. (2013). Effect of replacement of natural sand by 

manufactured sand on the properties of cement mortar. International Journal of Civil 

and Structural Engineering, 3 (3), 621-628. 

Jiang, W., & Roy, D. M. (1992). Hydrothermal processing of new fly ash 

cement, American Ceramic Society Bulletin;(United States), 71(4), 642-647. 

Joseph, B., & Mathew, G. (2012). Influence of aggregate content on the behavior of 

fly ash based geopolymer concrete. Scientia Iranica, 19 (5), 1188-1194. 

Kaplan, M. F. (1959). Flexural and compressive strength of concrete as affected by 

the properties of coarse aggregates. In Journal Proceedings, 55 (5), 1193-1208. 

Kataria .B . M & Shah .S.U (2015). A Behavioral Study of Cement Concrete with 

Manufactured Sand, .International Journal of Science Technology & Engineering, 2 

(01), 77-82. 

Khale, D., & Chaudhary, R. (2007). Mechanism of geopolymerization and factors 

influencing its development: a review, Journal of Materials Science, 42 (3), 729-746. 

Kosmatka, S. H., Kerkhoff, B., & Panarese, W. C. (2011). Design and control of 

concrete mixtures: fifteenth edition, Inc. 95.p , Portland Cement Association. 



 

70 

 

Kotwal, A. R., Kim, Y. J., Hu, J., & Sriraman, V. (2015). Characterization and early 

age physical properties of ambient cured geopolymer mortar based on class C fly 

ash, International Journal of Concrete Structures and Materials, 9 (1), 35-43. 

Lafrenz, J. L. (1997). Aggregate grading control for PCC pavements: improving 

constructability of concrete pavements by assuring consistency of mixes. 

In Proceedings, Fifth Annual International Center for Aggregates Research 

Symposium, Austin, Texas. 

Lim, S. K., Tan, C. S., Chen, K. P., Lee, M. L., & Lee, W. P. (2013). Effect of 

different sand grading on strength properties of cement grout. construction and 

Building materials, 38, 348-355. 

Luhar. S & Khandewel . U (2015). A Study on Water Absorption and Sorptivity of 

Geopolymer Concrete, Civil Engineering Systems, 3, 19-28. 

Malhotra, V. M. (2002). High-performance high-volume fly ash concrete, Concrete 

International, 24 (7), 30-34. 

Malhotra, V. M., & Mehta, P. K. (2002). High-Performance, High-Volume Fly Ash. 

Mane, S., & Jadhav, H. S. (2012). Investigation of geopolymer mortar and concrete 

under high temperature. Magnesium, 2, 384-390. 

Marangoz, L. (2005). Correlation of geotechnical properties of limestone with 

ultrasonic velocity in Gaziantep region.  

Mccaffrey, R. (2002). Climate change and the cement industry, Global cement and 

lime magazine (environmental special issue), 15-19. 

Mishra, A., Choudhary, D., Jain, N., Kumar, M., Sharda, N., & Dutt, D. (2008). 

Effect of concentration of alkaline liquid and curing time on strength and water 

absorption of geopolymer concrete, ARPN Journal of Engineering and Applied 

Sciences, 3 (1), 14-18. 

Najmabadi, A. D. (2012). Strength properties of fly ash based geopolymer concrete 

containing bottom ash. 

Nawy, E. G. (2008) .Concrete construction engineering handbook. CRC press. 

Nazari, A., Khalaj, G., & Riahi, S. (2013). ANFIS-based prediction of the 

compressive strength of geopolymers with seeded fly ash and rice husk–bark 

ash,  Neural Computing and Applications, 22 (3-4), 689-701. 

Neville, A.M. (2000). Properties of Concrete. Longman scientific and Technical 

Nicholson, C., Fletcher, R., Miller, N., Stirling, C., Morris, J., Hodges, S. & 

Schmucker, M. (2005). Building innovation through geopolymer 

technology, Chemistry in New Zealand, 69 (3), 10-12. 

Nuaklong, P., Sata, V., & Chindaprasirt, P. (2016). Influence of recycled aggregate 

on fly ash geopolymer concrete properties, Journal of Cleaner Production, 112, 

2300-2307. 



 

71 

 

Nuruddin, M. F., Demie, S., Ahmed, M. F., & Shafiq, N. (2011). Effect of 

superplasticizer and NaOH molarity on workability, compressive strength and 

microstructure properties of self-compacting geopolymer concrete, World Academy 

of Science, Engineering and Technology, 5 (3), 1378-1385. 

Olivia, M., & Nikraz, H. R. (2011). Strength and water penetrability of fly ash 

geopolymer concrete. Parameters, 6, 70-78. 

Olivia, M., Sarker, P., & Nikraz, H. (2008). Water penetrability of low calcium fly 

ash geopolymer concrete, Proceedings ICCBT 2008, 46, 517-530. 

Pacheco-Torgal, F., Moura, D., Ding, Y., & Jalali, S. (2011). Composition, strength 

and workability of alkali-activated metakaolin based mortars. Construction and 

Building Materials, 25 (9), 3732-3745. 

Palomo, A., M. W. Grutzeck, M.T. Blanco (1999). Alkali-Activated Fly Ashes, A 

Cement for the Future, Cement and Concrete Research, 29 (8), 1323-1329. 

Panias, D., Giannopoulou, I. P., & Peraki, T. (2007). Effect of synthesis parameters 

on the mechanical properties of fly ash-based geopolymers. Colloids and Surfaces A: 

Physicochemical and Engineering Aspects, 301 (1), 246-254. 

Praveen, K. K., & Krishna, R. (2015). Strength and workability of cement mortar 

with manufactured sand. International Journal of Research in Engineering and 

Technology, 4, 186-189. 

Provis, J.L. and van Deventer, J. S. J., (2009), Geopolymers: Structure, Processing, 

Properties and Industrial Applications, Woodhead Publishing Limited, Cambridge, 

UK. 

Rangan, B. V. (2008). Fly ash-based geopolymer concrete. 

Reda Taha, M. M., El-Dieb, A. S., & Shrive, N. G. (2001). Sorptivity: A Surface 

absorption criterion for brick units: A proposal for the Canadian masonry standard. 

In 9th Canadian Masonry Symposium. 

Reddy, B. V., & Gupta, A. (2008). Influence of sand grading on the characteristics of 

mortars and soil–cement block masonry, Construction and Building Materials, 22 

(8), 1614-1623. 

Sathia, R., Babu, K. G., & Santhanam, M. (2008, November). Durability study of 

low calcium fly ash geopolymer concrete, In Proceedings of the 3rd ACF 

International Conference-ACF/VCA. 

Shilstone, J. M. (1994). Changes in Concrete Aggregate Standards: Coarse and fine 

aggregates complying with ASTM C33 can contribute to problem concrete 

mixtures. CONSTRUCTION SPECIFIER, 47, 118-118. 

Shilstone, J. M. (1999). The aggregate: The most important value-adding component 

in concrete, In Proceedings of the Seventh Annual Symposium International Center 

for Aggregates Research, Austin, Texas. 

Soren, A. (2013). Effect of Elevated Temperature on Fly Ash Based Geopolymer 

Mortar (Doctoral dissertation, JADAVPUR UNIVERSITY). 



 

72 

 

Sreenivasulu, C., Jawahar, J. G., Reddy, M. V. S., & Kumar, D. P. (2016). effect of 

fine aggregate blending on short-term mechanical properties of geopolymer 

concrete, asian journal of civil engineering (BHRC), 17 (5), 537-550. 

Swanepoel, J. C. and C. A. Strydom (2002). Utilisation of fly ash in a geopolymeric 

material, Applied Geochemistry, 17 (8), 1143-1148. 

Temuujin, J., van Riessen, A., & MacKenzie, K. J. D. (2010). Preparation and 

characterisation of fly ash based geopolymer mortars. Construction and Building 

Materials, 24 (10), 1906-1910. 

Temuujin, J., Van Riessen, A., & Williams, R. (2009). Influence of calcium 

compounds on the mechanical properties of fly ash geopolymer pastes, Journal of 

hazardous. 

Van Jaarsveld, J. G. S., Van Deventer, J. S. J., & Lorenzen, L. (1997). The potential 

use of geopolymeric materials to immobilise toxic metals: Part I. Theory and 

applications, Minerals Engineering, 10 (7), 659-669. 

Van Jaarsveld, J. G. S., Van Deventer, J. S. J., & Lukey, G. C. (2003). The 

characterisation of source materials in fly ash-based geopolymers. Materials 

Letters, 57 (7), 1272-1280. 

Wakchaure, M. R., Shaikh, A. P., & Gite, B. E. (2012). Effect of types of fine 

aggregate on mechanical properties of cement concrete. International Journal of 

Modern Engineering Research, 2 (5), 3723-3726. 

Wallah, S. E., & Rangan, B. V. (2006). Low-calcium fly ash-based geopolymer 

concrete, long-term properties. Res. Report-GC2, Curtin University, Australia. pp, 

76-80. 

Wazien, A. W., Abdullah, M. M. A. B., Razak, R. A., Rozainy, M. M. R., & Tahir, 

M. F. M. (2016, June). Strength and Density of Geopolymer Mortar Cured at 

Ambient Temperature for Use as Repair Material. In IOP Conference Series: 

Materials Science and Engineering, 133, 1, (012042). IOP Publishing. 

Xu, H., & Van Deventer, J. S. (2002). Geopolymerisation of multiple 

minerals. Minerals Engineering, 15 (12), 1131-1139. 

Xu, H., & Van Deventer, J. S. (2003). Effect of source materials on 

geopolymerization, Industrial & engineering chemistry research, 42 (8), 1698-1706. 

Xu, H., & Van Deventer, J. S. J. (2000). The geopolymerisation of alumino-silicate 

minerals. International Journal of Mineral Processing, 59 (3), 247-266. 

Yao, X., Zhang, Z., Zhu, H., & Chen, Y. (2009). Geopolymerization process of alkali 

metakaolinite characterized by isothermal calorimetry, Thermochimica Acta, 493 (1), 

49-54. 

  


