
Document no: ENS.FR.32 Yayin Tarihi: 26.03.2018 Rev no/ Date: 00/--

H
A

W
K

A
R

 H
A

M
A

S
A

L
IH

M

A
R

C
H

, 2
0

1
9

M
.S

c
. in

 E
lec

tr
o

n
ics a

n
d

 C
o
m

p
u

te
r
 E

n
g
in

e
e
r
in

g

HASAN KALYONCU UNIVERSITY

GRADUATE SCHOOL OF

NATURAL & APPLIED SCIENCES

DATABASE MIGRATION PROCESSES AND OPTIMIZATION

USING BSMS (BANK STAFF MANAGEMENT SYSTEM)

M. Sc. THESIS

IN

ELECTRONICS AND COMPUTER ENGINEERING

BY

HAWKAR HAMASALIH

MARCH 2019

Document no: ENS.FR.32 Yayin Tarihi: 26.03.2018 Rev no/ Date: 00/--

Database Migration Processes and Optimization Using BSMS (Bank Staff

Management System)

M.Sc. Thesis

in

Electronics and Computer Engineering

Hasan Kalyoncu University

Supervisor

Asst. Prof. Dr. Mohammed MADI

by

Hawkar HAMASALIH

March, 2019

Document no: ENS.FR.32 Yayin Tarihi: 26.03.2018 Rev no/ Date: 00/--

© 2019 [Hawkar Kakaawla Hamasalih, HAMASALIH]

Document no: ENS.FR.32 Yayin Tarihi: 26.03.2018 Rev no/ Date: 00/--

GRADUATE SCHOOL OF NATURAL &

APPLIED SCIENCES INSTITUTE

M.Sc. ACCEPTANCE AND APPROVAL FORM

Electronics-Computer Engineering M.Sc. (Master of Science) programme student

Hawkar HAMASALIH prepared and submitted the thesis titled "Database Migration

Processes and Optimization Using BSMS (Bank Staff Management System)" defended

successfully on the date of 22/03/2019 and accepted by the jury as a M.Sc. thesis.

This thesis is accepted by the jury members selected by the institute management board and

approved by the institute management board.

Prof. Dr.Mehmet KARPUZCU

Position Title, Name and Surename

Department/University

Signature:

M.Sc. Supervisor

Jury Head

Assoc. Prof. Dr. Mohammed. MADI

Computer Engineering Department

Hasan Kalyoncu University

Jury Member Assoc. Prof. Dr. Ahmet Mete VURAL

Electrical and Electronics Engineering

Department

Gaziantep University

Jury Member

Assist. Prof. Dr. Saed ALQARALEH

Computer Engineering Department

Hasan Kalyoncu University

Document no: ENS.FR.32 Yayin Tarihi: 26.03.2018 Rev no/ Date: 00/--

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also

declare that, as required by these rules and conduct, I have fully cited and

referenced all material and results that are not original to this work.

Hawkar HAMASALIH

Document no: ENS.FR.32 Yayin Tarihi: 26.03.2018 Rev no/ Date: 00/--

ABSTRACT

DATABASE MIGRATION PROCESSES AND OPTIMIZATION USING

BSMS (BANK STAFF MANAGEMENT SYSTEM)

HAMASALIH, Hawkar Kakaawla Hamasalih

M.Sc. in Electronic and Computer Engineering

Thesis Supervisor: Assist. Prof. Dr. Mohammed MADI

March, 2019, 59 pages

Databases are essentially a storage technology designed to handle complex data

dependent tasks, and to perform these tasks, data-integrity is important. For many

companies, their database is literally an electronic representation of the company’s

business and records and losing any bit of data during migration is unacceptable.

There are several business reasons for moving data, some of these are archiving,

data-warehousing, moving to new environment, platform, or technology. Database

migration is a complex, multiphase process, which usually includes assessment,

database schema conversion, data migration, and functional testing. Online

Transaction Processing (OLTP) databases are usually much normalised for efficiency

by performing tasks like providing data Integrity, eliminating data redundancy and

lowering record locking. But this database design system presents us very numerous

tables, and each of these tables and its foreign-key constraints must be accounted for

at the point of data migration. Also, the Acceptance criterion for a data-movement

job unlike conventional tasks is purely 100% because errors are not tolerated in

databases and quality is important. This thesis demonstrates the challenges and

considerations during the migration of data from a slow, inefficient and obsolete

database-platform called Paradox database into a much more advanced database

called Oracle that has successfully migrated the data. Indexing technique was used to

improve the performance of a query by retrieving the data at a rapid speed without

any inconsistency and loss of data.

Keywords: Data Migration, DBMS, Data Integration, Database Migration Tools.

Document no: ENS.FR.32 Yayin Tarihi: 26.03.2018 Rev no/ Date: 00/--

ÖZET

ALMA SİSTEMLERİNE İLİŞKİN BİR KARŞILAŞTIRMA ÇALIŞMASI

HAMASALIH, Hawkar Kakaawla Hamasalih

Yüksek Lisans Tezi, Elektronik ve Bilgisayar Mühendisliği

Tez Yöneticisi: Yrd.Doç. Dr. Mohammed MADI

Mart, 2019, 59 sayfa

Veritabanları temel olarak karmaşık verilere bağlı görevleri yerine getirmek ve bu

görevleri gerçekleştirmek için tasarlanmış bir depolama teknolojisidir, veri bütünlüğü

önemlidir. Pek çok şirket için, veritabanları kelimenin tam anlamıyla şirketin işinin

elektronik bir temsilidir ve göç sırasında herhangi bir veri parçasını kaybeder ve

kaybeder kabul edilemez. Verilerin taşınmasının çeşitli ticari nedenleri vardır,

bunlardan bazıları arşivleme, veri depolama, yeni ortama, platformlara veya

teknolojiye geçmedir. Veri tabanı geçişi, genellikle değerlendirme, veri tabanı şeması

dönüşümü, veri geçişi ve işlevsel testi içeren karmaşık, çok fazlı bir işlemdir.

Çevrimiçi İşlem İşleme (OLTP) veritabanları genellikle veri bütünlüğü sağlama, veri

fazlalığını ortadan kaldırma ve kayıt kilitlemesini azaltma gibi görevleri yerine

getirerek verimlilik için çok normalize edilir. Ancak bu veritabanı tasarım sistemi

bize çok sayıda tablo sunar ve bu tabloların ve yabancı anahtar kısıtlamalarının her

biri veri taşıma noktasında dikkate alınmalıdır. Ayrıca, geleneksel görevlerden farklı

olarak veri taşıma işi için Kabul kriteri tamamen% 100'dür, çünkü hatalar

veritabanlarında tolere edilmez ve kalite önemlidir. Bu tez, verilerin Paradox

veritabanı adı verilen yavaş, verimsiz ve eski bir veritabanı platformundan, verileri

başarıyla geçiren Oracle adı verilen çok daha gelişmiş bir veritabanına aktarılması

sırasında ortaya çıkan zorlukları ve kaygıları göstermektedir. Herhangi bir tutarsızlık

ve veri kaybı olmadan verileri hızlı bir şekilde alarak, bir sorgunun performansını

iyileştirmek için indeksleme tekniği kullanılmıştır.

Anahtar Kelimeler: Veri Taşıma, DBMS, Veri Entegrasyonu, Veritabanı Taşıma

Araçları.

Document no: ENS.FR.32 Yayin Tarihi: 26.03.2018 Rev no/ Date: 00/--

To My Parents

VIII

ACKNOWLEDGEMENT

My deepest gratitude goes to Asst. Prof. Dr. Mohammed Madi for his constant

encouragement and guidance. He has walked me through all the stages of the writing

of my thesis. Without his consistent and illuminating instructions, this thesis could

not have reached its present form. I would like to thank all the lecturers in electronics

and computer engineering department in Hasan Kalyoncu University.

I would also like to acknowledge Mr. Sirwan the second reader of this thesis, and I

am gratefully indebted to his valuable comments on this thesis. Also, I appreciate my

both dear brothers Mr. Hoshang and Mr. Hersh who were too tired and supported me

in every step.

Finally, I would like to thank my family and friends to support, encouragement and

contribution they have made for my research to be successful.

IX

TABLE OF CONTENTS

ABSTRACT ... VI

ÖZET... VII

ACKNOWLEDGEMENT ... VIII

LIST OF FIURES .. VIII

LIST OF ABBRIVIATIONS ... VIII

CHAPTER 1: INTRODUCTION ...1

1.1 Introduction ..1

1.2 Problem Statement ..2

1.3. Objectives of the Project ...2

1.4. Significant of the Thesis ...3

1.5. Organization of the Thesis ..3

CHAPTER 2: LITERATURE REVIEW ...4

2.1. Introduction ..4

2.2. Background of the Problem...5

2.3. Literature Related to the Problem ..5

2.3.1. Migration Strategies ..5

2.3.2. Essential Steps to Success ...7

2.4. ETL ..9

2.5. SSIS ...9

2.6. BSMS Utilities.. 10

2.6.1. DATA Migration Tools and Solution Overview 10

2.7. Data .. 11

2.8. Databases and Database Management System (DBMS) 11

2.8.1. Database Management System components .. 12

2.9. Paradox Database ... 13

2.9.1. Characteristics of Paradox ... 13

2.10. Oracle database server ... 14

CHAPTER 3: METHOD OF EVALUATION ... 15

3.1. Data Migration.. 15

VIII

3.1.1. Scenario 1: .. 15

3.1.2. Scenario 2: .. 15

3.1.3. Scenario 3: .. 15

3.2. Set-up of Experiment .. 15

3.3. Scenarios and Experiment ... 16

3.3.1. Preparing for Primary-Key Maintenance after Data-Movement 16

3.3.2. Experement 1 – Moving Data with SQL-Loader 17

3.3.3. Experiment 2 - Migrating from Paradox to Access and Finally to Oracle . 23

3.3.4. Experiment 3 - Moving Data Microsoft Sql-Server Integration Services . 27

3.3.5. Experiment 4 - Migrating Data to Oracle Using Full Convert 30

CHAPTER 4: FINDINGS AND PERFORMANCE TUNING 35

4.1. Introduction .. 35

4.2. Performance Tuning: .. 35

4.3. Findings .. 37

4.3.1. From Paradox to Access to Oracle .. 38

4.3.2. From Paradox to Oracle Using SQL-Loader .. 39

4.3.3. From Full-Convert to Oracle ... 39

4.4. Optimization of Database in Oracle .. 40

4.4.1. Indexing Technique .. 40

4.4.2. Utilization of Views .. 41

4.4.3. Bind Variables Technique ... 41

4.5. Monitoring Execution Path with Explain Plan ... 41

CHAPTER 5: RECOMMENDATION AND CONCLUSION 43

5.1. Recommendation .. 43

5.2. Conclusion .. 43

5.3 Future Work ... 44

REFERENCES ... 45

APPENDIX 1: DETAILS OF THE PARADOX DATABASE TABLES 47

VIII

LIST OF FIURES

Figure 2. 1 [12] : Big Bang Migration Principle ..6

Figure 2. 2 [12] : Phased Implementation ..7

Figure 2. 3 [13] : An effective data migration project ..8

Figure 3.1 : Database Table Moving Process. .. 17

Figure 3.2 : Moving Data with SQL-Loader .. 17

Figure 3.3 : Creating Oracle Table. ... 19

Figure 3.4 : Control File for Person Table Data Load .. 20

Figure 3.5 : Requirement Table From notepad to Oracle ... 21

Figure 3.6 : Person Table From notepad to Oracle ... 22

Figure 3.7 : Selecting query .. 23

Figure 3.8 : Data migration of person table from access to oracle via ODBC 24

Figure 3.9 : Transforms integer data types to varchar2 .. 25

Figure 3.10 : Required table data types for managing clean-up and data-quality 25

Figure 3.11 : Codes of required table... 26

Figure 3.12 : Transferring query code ... 26

Figure 3.13 : Person table during modification .. 28

Figure 3.14 : SSIS-BIDS Interface to perform a data movement and integration...... 29

Figure 3.15 : Welcome screen for the trial version of the Full Convert tool. 30

Figure 3.16 : Selecting database type and location folder of the source data. 31

Figure 3.17: Selecting the destination database and entering the username and

password for the Oracle database .. 31

Figure 3.18 : Creating tables in Oracle to hold paradox database tables. 32

Figure 3.19 : Displaying number of moved tables and a number of errors 32

Figure 3.20 : Displaying summary of migrated tables .. 33

Figure 3.21 : Checking inconsistencies of transferred data using SQL Utility 33

Figure 4. 1: Cost of table requirement before indexing technique 36

Figure 4. 2: Cost of table requirement after indexing technique 37

file:///C:/Users/PCLORD/Desktop/FRV06.docx%23_Toc4096255
file:///C:/Users/PCLORD/Desktop/FRV06.docx%23_Toc4096260
file:///C:/Users/PCLORD/Desktop/FRV06.docx%23_Toc4096261
file:///C:/Users/PCLORD/Desktop/FRV06.docx%23_Toc4096263
file:///C:/Users/PCLORD/Desktop/FRV06.docx%23_Toc4096264
file:///C:/Users/PCLORD/Desktop/FRV06.docx%23_Toc4096265
file:///C:/Users/PCLORD/Desktop/FRV06.docx%23_Toc4096266

VIII

LIST OF ABBRIVIATIONS

BSMS Bank Staff Management System

CSV Comma Separated Value

DB Database

DBMS Database Management System

DDL Data Definition Language

ETL Extract Transform and Load

NHS National Health Service

ODBC Open Database Connectivity

PAL Paradox Application Language

RDBMS Relational Database Management System

SQL Structured Query Language

SSIS Server Integration Service

1

CHAPTER 1

INTRODUCTION

1.1 Introduction

Moving data which is sometimes called ETL (Extract Transform and Load) is a core

area of database administration and the backbone of data-warehouses [1]. In this

thesis, we will try to work with an existing commercial database system originally

designed by Key-IT systems for its hospital clients. The software tool called BSMS

(Bank Staff Management System) was developed by Key IT System Ltd and

delivered to NHS in order to manage the availability of temporary nursing staff in

cases of emergency [2]. The original database designed for this commercial software

is called Paradox, the task is to transfer the hospital staff data which is stored in the

form of Paradox tables from existing BSMS database to a new instance of Oracle

database without loss of data. The details of the Database are attached to this project

as an Appendix.

One of the Primary reasons for data movement in Databases is Business Intelligence

and this is because most Organizations have both a development database and a

production database that constantly need to exchange data. Like several Database

vendors, Oracle has many utilities that facilitate the movement of data between

environments such as data-pump and SQL-Loader. The main function of an ETL

system such as SQL-Loader is to help insert a CSV (comma separated value) file into

an RDBMS and catch bugs during data insertion.

The three steps in ETL process are designed to complement each other, in the extract

step, we are pulling the data from the file, then during the Transform Step, the

system is filtering rows to possibly discard unwanted rows, the transform stage can

also attach or bind data-types, bind variables and even rename columns. The “L” in

ETL stands for load; this is the final step where we insert the rows into the

destination Oracle table

2

1.2 Problem Statement

Due to the heavy operational, performance and maintenance costs involved in

maintaining the Paradox databases and their inflexibility to support new business

creativities, the client wanted to migrate the data from these various mainframes to a

common consolidated repository under Oracle Database [2]. The existing client

applications then will start communicating from Oracle instead of Paradox. This

thesis seeks to employ empirical epistemology in the evaluation of the claims made

to the public by Oracle Corporation that its own SQL-Loader is the best tool to be

used for data migration. It has decided to employ the dataset of an English-Hospital

that houses its dataset in a commercial software system. The software uses Paradox

as its DBMS, but in today’s time using this DBMS causes such problems of data

inconsistency and inaccuracy. Furthermore, the huge cost of maintaining these

legacy-systems keeps on growing [3]. Given the immense challenges of migrating

over to a newer technology, the custodians of this software want to migrate to a new

database-platform which is efficient, consistent and reliable.

Given the challenges inherent in the dataset, the objective of this thesis is to conduct

a detailed data-migration experiment using the various publicly available data-

migration tools, then advice ETL professionals on the benefits and sacrifices to be

made in choosing one tool over the other.

1.3. Objectives of the Project

Over the years, various ETL vendors have incorporated certain common-place

processes into the system of data-migration. But in this thesis, focus on sequential

migration, this technique is the most commonly used technique for data migration in

the retail business [4].

The objectives of this thesis can be broken into three parts.

1. Move an entire database system from a desktop RDBMS (Paradox) to a

Client/Server RDBMS (Oracle).

2. Research and perform testing on the various methods of moving the database.

3. Make recommendations on the best way of carrying out this task by evaluating

various data-quality criteria.

3

After the project was completed, the following are the project questions that were

answered:

1. What is the requirement for organizations to migrate their databases?

2. What are end profits of data migration for the owners?

3. What can be done to make all data is transferred during data migration?

4. What was the performance improvement of an application after the data

migration?

5. What tools and solutions are available to do the migration process?

1.4. Significant of the Thesis

[5] Mentioned that most IT projects today worry some kind of corrective measure at

the platform level, they all involve moving data from database to database or

application to application due to migrating data and applications from old to modern

platforms. In this thesis different tools and platforms has been tasted to do the

migration after the data has been moved from the source to the destination some

technics implemented to improve the performance of the data.

1.5. Organization of the Thesis

This thesis is divided into five Chapters. The First Chapter is the introductory

Chapter which presents the problem of stamens and objectives of the project. The

second chapter is about the background information on the Data Migration process

and it shows the essential steps to success the migration and explains the different

methodology’s which exist. Also the explanation of the tools and technology which

used in this project has been written.

Chapter three has discussed the research methodology which starts with the logical

attitudes that guided the research. It describes the research design, scenarios of the

study and different experiments have been tested.

Chapter four presents result testing and performance tuning, after the migration

process takes place two tools are used to see the consistency and correctness of the

data and we made use of Indexing technique in order to improve the performance of

a query. Chapter Five focuses on the summary of the findings, conclusion and

recommendations of the research. It presents the implications of the study in

accordance to theory, policy, management practice, methodology and limitations of

the study.

4

CHAPTER 2

LITERATURE REVIEW

2.1. Introduction

Planning of migration methodology and implementing smooth migration for the

whole project is the main task of the project. Nowadays technology is emerging

rapidly and new database applications available in a more customized and organized

manner. Because of the quickly improving technology for computers and changes in

business requires the normal life cycle for a database application is less than 10 years

[6]. After this time the ability of applications to manage data will not match the

needs of the organizations or the technology on which it operates will have become

out-of-date. Therefore the organizations will be required to implement a new

database application which leads to data migration from legacy systems to modern

applications.

The direct impact of a poor data migration procedure is usually very poor data-

quality. A Survey conducted by [7], indicates that many managers and business

owners are oblivious to the fact that the data in which their business decisions are

based on are flawed and inaccurate. Poor data quality could be catastrophic and

possibly lead to expensive lawsuits and according to the [7]. Redman; there has been

an increase in operational cost in organisations with poor quality data because a lot

of time and other resources are devoted to detecting and correcting errors. He states

that in the business world, “Decisions are no better than the Information in which

they are based”. Database correctness has to do with the integrity and consistency of

stored data, and Integrity is usually expressed in terms of constraints, and these

constraints are consistency rules that the database is not permitted to violate. [8]

Shows that error rate of up to five percent are not unusual, with a projected

immediate loss of about ten percent in revenue. Every facet of business is negatively

affected by poor data

5

quality. And the trend of poor data quality is worsened in huge organisational

databases with several sources of data inputs.

The importance of quality to database design is very important and [9] states that the

wrong Information impedes deductive and inductive thoughts. Over the years,

experience has shown that even the best decisions involve some degree of

uncertainty; so, it is obvious that decisions based on the most relevant, complete,

accurate and timely data have a better chance of advancing the enterprise’s goal.

According to the journal by [7], Shipping and mailing Industries are some of the

hardest hit businesses because of poor data quality, and this often lends itself to poor

job satisfaction among the employees of these businesses. In a survey conducted in

the United States, [7] concluded that a data inaccuracy of about five percent can

increase the operational cost by twelve percent, increase organisational mistrust,

cause gridlocks in decision making and make implementation of a data-warehouse

very difficult.

2.2. Background of the Problem

The process of transferring data from one system to another is called Data migration

and it varies from data movement. [5] Mentioned that due to the complexity and

similarity to related techniques, data migration suffers a few myths and

misconceptions, for example, Data migration is not a matter of copying data because

the term migration misleads some people to think they can simply copy data from

system A to system B. But the systems usually have different data models, so

mapping and copying data without transforming it is rare. Moving data from one

system, or domain, to another without compromising security or losing any of the

data is known as domain migration, it happens when servers are upgraded and the

data (including any authentication and authorization information) must be moved to a

new system.

2.3. Literature Related to the Problem

2.3.1. Migration Strategies

According to [10], the Chicken Little Methodology is One of the earliest migration

approaches It is a gateway-based eleven-step approach which allows both the legacy

and target system operate in parallel during the migration operations. The approach is

6

also incremental as the target system though small at the onset, continues to grow as

the migration progresses until it replaces the legacy system.

Another approach challenged the iterative and approach of the Chicken Little which is

The Butterfly Methodology. This required the definition of a five-phase approach which

involves the following steps:

Step 1: Determination of the semantics of the candidate legacy system and development

of the target schema;

Step 2: Construction of a sample data store in the target system based upon target sample

data;

Step 3: Migration of all the information system components while leaving out the data;

Step 4: Migration of the legacy data to the target system and the training of users

Step 5: Decommissioning of the legacy system and switch over to the new system

Each of these steps is further broken down into sub-steps and specific activities [4].

[11] Mentioned that generally there are two principal types of migration: big bang

migrations and trickle migrations. Depending on the project requirements and

available processing window, any Organization wants to migrate their data should

consider which style of migration is most suitable for their needs. Big bang

migrations involve completing the entire migration in a small, defined processing

window. In the case of a systems migration, the system interruption while the data is

extracted from the source system(s), processed, and loaded to the target, followed by

the transferring of processing completed to the new environment.

Figure 2. 1 [12] : Big Bang Migration Principle

7

This method is more attractive it can complete the migration in the shortest possible

time with carrying several risks, it is hard for organizations to wait to do the

migration and see the core system’s being unavailable for long. Trickle migrations

take an additional approach to migrating data instead of completing the whole

process in a short period window. In this approach, the old and new system is

running in parallel and the data will be migrated in parts. The system with this

method never stops working and it will still be working 24/7.

Figure 2. 2 [12]: Phased Implementation

To move data with real-time processes a trickle migration can be implemented, to

maintain the data these processes can also be used by passing upcoming changes to

the target system.

2.3.2. Essential Steps to Success

[13] has written some essential steps to success the migration process, in the article

six different phases have been mentioned which they are Planning, Understanding

the Data, Designing, and Building, Executing, Testing, Follow-Up and Maintenance.

After the business has given the data migration project a broad migration scope, in

the planning phase the first stage is to define what is viable in terms of what the data

sources will support and what is reasonable.

8

Figure 2. 3 [13]: An effective data migration project

Data migration projects are not an easy process it is too complex, the scope should be

defined clearly and a timeline, resource plan, and budget can be put in place. Arrange

scoping decisions in line with the importance to the organization by applying a top-

down, target-driven rationale and using criteria such as region, the line of business,

and product type. Times and effort could be saved by refining data outward from the

core. In the third phase which is Designing and Building phase, the planning

specifications and supporting documentation should be clearly agreed and signed off

by the business, before writing any code. After segmenting into increments Data

migration projects run more professionally, in staggered phases the source data could

be audited, mapped, tested, and transferred. The budget and deadline are reduced and

it will deliver better results. After converting the mapping specifications into

migration code the rules could be verified independently, it helps to identify errors in

the test environments and making key decisions for going live with migrated data. In

the executing phase data from the source is extracted and then the process of

transformation and cleansing on data are done, after that, it loaded into the target

system. Before the conversion can be signed off by the business a collection

application tests essential to be done, this approach benefits avoid storing up issues

until too late in the development cycle. The data in the source systems is changing

while the migration is in development, this could be a major risk.at the end phase of

data migration data, the review can be done at any time to check whether the project

is on track and still within its range.

9

2.4. ETL

These are processes that perform extract, transform and load operations on data

which is called ETL in data-warehousing [14]. Recall that a Data warehouse is a

repository of integrated enterprise data collected from different source systems

within and possibly outside the enterprise. It consists of three main steps as indicated

by its name. To extract means to pull data from a Source, to transform refers to

manipulating the data as it moves from the source to the destination. In the transform

step, changes are applied that make the data fit the schema of the destination

database [15]. The transformation can be as simple as copying columns from one

table to another or it can be more involved like removing duplicates, substituting

values from look-up tables or changing the casing of strings as well as other forms of

data cleansing. Loading means inserting the data into a destination store [16]. While

the purpose and tasks of the ETL may sound to be well-understood and easy, the

opposite is, in fact, the case. In virtually any data migration project, most of the time

is spent on getting the ETL right. A lot of time is needed to understand when, where,

and how to extract data from the different sources and to understand what the data

from different sources mean and how the data can be successfully integrated.

2.5. SSIS

SSIS which stands for SQL-Server Integration Service is one of the members of the

Microsoft Business Intelligence package. It helps us move data from one place to

another changing its shape along the way if desired.

"Microsoft Integration Services is a platform for building enterprise-level data

integration and data transformations solutions. You use Integration Services to solve

complex business problems by copying or downloading files, sending e-mail

messages in response to events, updating data warehouses, cleaning and mining data,

and managing SQL Server objects and data. The packages can work alone or in

concert with other packages to address complex business needs. Integration Services

can extract and transform data from a wide variety of sources such as XML data

files, flat files, and relational data sources, and then load the data into one or more

destinations" [17].

According to [14], SSIS is an enterprise-grade tool for the extraction, transformation,

and loading of data. It is designed to handle the migration and manipulation of data

throughout the life-cycle of a Business Intelligence operation. It also has usefulness

10

outside the Microsoft environment because it could move data between other

software applications; it supports almost every popular data-storage-source and

destinations including Oracle, Excel etc. SSIS is Microsoft’s tool for ETL, ETL

stands for extraction, transformation, and loading. SSIS solutions typically consist of

one or more packages. A typical SSIS package consists of several components, the

control flow, and some number of data-flows, connection managers and

configuration elements [17]. SSIS provides various drivers and configurations for

many types of data sources. So almost irrespective of where the data is stored, we

could use SSIS to pull it out, so we could work with data sources, data source views

and connection managers to connect to those sources and pull data in various ways

and we also have a lot of flexibility in the way we could configure that process. A

typical SSIS-package can simultaneously extract data from various soft-wares like

Oracle, excel etc.

SSIS supports a wide variety of destinations; this means we can output our data into

spreadsheets, databases, flat-files etc. Although we can use SSIS to load data from

external sources into a relational store, a data warehouse or an Analysis cube, we are

not restricted to that intention; we can also use SSIS to move data to any type of

database software [14].

2.6. BSMS Utilities

These were the tools for understanding the design of the Paradox database, and

understanding the database to help make a smooth database migration project. The

tools include the following

 P20: This tool has great functionalities with a powerful graphical user

interface. This tool can also be used to generate a ‘.CSV’ file.

 SQL Launch: This tool is also used to analyze the Paradox database tables.

With the help of this tool, it is possible to write SQL queries and the knowledge

obtained from the queries, it helps to reverse engineer the database in the Oracle

interface

2.6.1. DATA Migration Tools and Solution Overview

These were the tools employed in the migration of data from Paradox into Oracle.

The processes that perform extract, transform and load operations on data is called

ETL in Data-Migration. The transformation can be as simple as copying columns

11

from one table to another or it can be more involved like removing duplicates,

substituting values from look-up tables or changing the casing of strings as well as

other forms of data cleansing. Loading means inserting the data into a destination

store [16]. The following tools played a pivotal role in our migration process.

 MS Access: This tool was used as a middleware to transform the data from

Paradox table to Oracle database.

 SQL-Server Integrated Services: This is one of the members of the Microsoft

Business Intelligence package. It helps us move data from one place to another

changing its shape along the way if desired (Guy and Langit 2011).

 SQL-Loader: This is Oracle’s main tool for migrating data from flat-file

sources [18].

 Full Convert: Full Convert will quickly and easily copy the data from source

to the target database. It will create all the tables, copy all of the data, and then

create indexes and foreign keys (Spectral Core 2018).

2.7. Data

[19] Mentioned that data in computing is information that can be changed into a form

that has the ability to move and process, all information is converted into a binary

digital system. Data represents as binary values on the computer; only two numbers

1 and 0 are used as a pattern to store video, sound, text, and images. The smallest

unit of measuring data is a bit that is only a single value, the bigger unit which is

eight binary digits called byte, usually, computer storages and memory are measured

in megabytes and gigabytes. In mainframe systems, data can be stored in file formats

but in better specialization developed a database, database management system and

the relational database technology arose to organize information.

2.8. Databases and Database Management System (DBMS)

A database is a collection of information organized to provide efficient retrieval. The

collected information could be in any number of formats (electronic, printed,

graphics, audio, statistical, combinations). The relational database management

system is a set of technologies designed to store soft copies of information in a

structured and specific format. With many companies or organizations, the database

holds the structure and data of the entire business. Users of the system are given

facilities to perform several kinds of operations on such a system for either

12

manipulation of the data in the database or the management of the database structure

itself [20]. Some examples of well-known database software are

 IBM DB2

 Microsoft Access

 Microsoft Excel

 Microsoft SQL Server

 MySQL

 Oracle RDBMS

 Paradox Database

 QuickBase

[21] Explains the main objectives which are used in DBMS as the following:

 Data availability: cost performance and the data updating are the

responsibility of the data availability. Availability functions make the

database available to users helps in defining and creating a database and

getting the data in and out of a database.

 Data integrity-The data integrity provides protection for the existence of

the database and maintaining the quality of the database.

 Data independence- DBMS provides two types of data independence.

First is a physical data independence program, which remains unaffected

from the changes in the storage structure or access method, and the

second is the logical data independence program, which remains

unaffected from the changes in the schema.

2.8.1. Database Management System components

The main five components of DBMS are hardware, software, data, procedures

and database access language. The first component is hardware which includes

the computer, hard disks, I/O channels for data, and any other physical

component involved before any data is successfully stored into the memory. And

the second component is software, it is the program for controlling everything

and it will be responsible for easy-to-use interface to store, access and update

data. The third component is data, DBMS was mainly created to store and

manage it. Another component is procedures, it is including all instructions to

use a database management system such as setup and install a DBMS, login and

log out of DBMS software, manage databases, take backups, generating reports

13

etc... The last component of DBMS is database access language, it is a language

designed to write commands to access, insert, and update and delete data stored

in any database [22], [20].

2.9. Paradox Database

The paradox was an early desktop relational database management system (RDBMS)

that was first released by Ansa Software in 1985. It was originally written in C, but

later ported to C++, and was initially offered for Microsoft’s DOS operating system.

Ansa Software was purchased by Borland in 1987, and today Paradox is one of the

smaller RDBMS offerings, although one with a dedicated group of users and

supporters.

2.9.1. Characteristics of Paradox

[21] Said that the Characteristics of Paradox are:

 Connectivity- Paradox is connected virtually transparently with database

and enables different ODBC databases, you can change Paradox tables in

any relational database management system supported database, such as

Oracle, SQL, and Microsoft.

 Data Converting- Paradox fully supports data converting, but conduction

is another database which supports to RDBMS. Paradox offers great

compatibility with other database applications. You can open a Paradox

table in any ODBC-compliant application.

 Database Size- Paradox provides great flexibility; with the size of its

database you can create up to two billion records per table and up to 255

fields per record.

 Query Expert- SQL is a Structured Query Language, which stores and

manipulates information in relational databases. Paradox creates four

different methods (Select, Insert, Update and Delete). The Query Expert

is easiest for new database users. It takes you through a step-by-step

process to create commonly used query models.

 PAL Object-PAL (Paradox Application Language Object) is an object-

based event-driven and visual programming language, which can be used

to completely customize applications with entirely new buttons, menus,

dialog boxes, prompts, warnings, and online help. Object PAL can be

14

used to extend the regular Paradox functions or to create non-database

applications.

2.10. Oracle database server

Oracle database server is a relational DBMS, the data collection is treated as a

unit, it used to store and retrieve related data, it uses a server to manage its

information, it can manage a huge amount of data in a connected environment

which a number of users can use the same data concurrently with high-

performance delivery, the server avoids unauthorized access and provides well-

organized solutions for failure recovery. The first database was designed for

enterprise grid computing is Oracle Database. The database has logical

structures and physical structures. The physical storage of data can be managed

without affecting the access to logical storage structures due to the separation of

the physical and logical [23].

15

CHAPTER 3

METHOD OF EVALUATION

3.1. Data Migration

In this chapter, the intended migration path and the rationale behind the choices

made have been explained.

The intention of this thesis is to take a qualitative assessment of the three different

data migration techniques and ascertain which is better in a production environment.

3.1.1. Scenario 1:

The first migration is more of a manual process with a lot of human interactions and

interventions in its actualization. It will involve a procedure of accessing the paradox

database-tables, and after pulling the data into an Excel environment, Excel-

functions are leveraged to clean the data until it conforms to desired destination

constraints.

3.1.2. Scenario 2:

The second migration is also a manual process, but more sophisticated in approach

than the first technique. In this technique, we leveraged an industry standard data-

connector called ODBC data-connection systems to connect Access database to

Oracle database.

3.1.3. Scenario 3:

The third technique is more of a data-migration automated process. In this approach,

we leverage SSIS data-connectors both to pull and drop data to desired data-

locations.

3.2. Set-up of Experiment

For this experiment, an Oracle Enterprise Class database has been installed in a test

Computer. This software obtained by registering with the Oracle website and getting

download permission from Oracle. Then a user account named exp1 (of elevated

16

privilege) created and granted the inbuilt HR account SYSDBA privilege for testing

purposes. Also, SQL-Developer from the Oracle Website has been downloaded,

SQL-developer is a free utility tool for administering the Oracle 11g Instance.

Microsoft office 2007 already installed and running on the test PC, and finally

Microsoft SQL-Server 2008 RDBMS and the BSMS software installed as well.

All tables are migrated in the Paradox database to Oracle successfully but we would

be focusing on the three key tables in the Paradox database to avoid the repeating

process in this thesis writing, these are:

 Person Table

 Availability Table

 Requirement Table

3.3. Scenarios and Experiment

The primary objective of this phase of the project is to move the entire data and

RDBMS configuration from PARADOX files into ORACLE without compromising

data quality and avoiding data loss during the migration. And we would be exploring

three different ways of doing data movement.

These are the four methods that decided to try-out and observe which of them

produces an effective solution for future use.

1. Migrating from paradox to Excel, then proper cleaning and saving as CSV

file format, and finally move data to Oracle with the help of SQL-LOADER.

2. Migrating from Paradox to Access and finally to Oracle via ODBC

connection between Access and Oracle, then using SQL Statements in Oracle

for data cleansing and assisting error-fixes.

3. Opening the various database tables with Excel, and then using Microsoft

SSIS to import data, make data-transformation and finally push the data into

Oracle 11g.

4. Using a Graphical User Interface tool called Full Converter to move the

database tables from the source to the destination.

3.3.1. Preparing for Primary-Key Maintenance after Data-Movement

We need to enforce the row-level uniqueness of the primary-key after the data

movement into Oracle. Unlike most RDBMS, Oracle does not automatically generate

17

primary key integers, but Oracle provides us with the ability to generate our new

primary-key Integers with the sequence command. Sequences are schema objects, a

single sequence would never repeat an already dispensed value, and this makes it

perfect for primary-keys.

The sequence created below would be applied to the database table after it has been

moved.

Figure 3.1: Database Table Moving Process.

3.3.2. Experement 1 – Moving Data with SQL-Loader

Figure 3.2: Moving Data with SQL-Loader

SQL-LOADER can be run from the Oracle Enterprise Manager or from the

command line. The SQL-LOADER is our entry level bulk load utility. What this

means is that we are taking data from an external source which is usually called the

Feeder file. We are taking the Feeder-file and bringing its data content into an Oracle

table. SQL-LOADER has two modes of operation which are known as paths, these

are the conventional path and the direct path. The conventional path is basically a

faster way of doing multiple insertion statements into a table. SQL-LOADER will

CREATE SEQUENCE
person_seq

START WITH 2205
INCREMENT BY 1
NOMAXVALUE
NOCACHE;

CREATE SEQUENCE
avail_seq
START WITH 21330
INCREMENT BY 1
NOMAXVALUE
NOCACHE;

CREATE SEQUENCE
req_seq
START WITH 15233
INCREMENT BY 1
NOMAXVALUE
NOCACHE;

Getting familiar with the
Paradox Tables that we plan
to move and doing a row-
count with the Sql-launch
tool-kit for future quality
check

Creating the
Database Tables in
Sqlplus

Opening the Source
Table in Excel

Applying Critical Data
Cleaning techniques in Excel
such as the "Find & Replace
feature", Removing of
unwanted special
characters like (') that were
generated by the BSMS
software

Using the Sqlloader
Control file to
manually inject the
csv feeder-file into
the Oracle tables

Automating certain cleaning
jobs with the help of Excel
MACRO tool. Applying
complex functions to format
date fields Finally, saving
the cleaned-out excel file in
a CSV format.

18

construct an insert statement and use a bind variable to read the source data and

insert each row with a separate insert statement.

The Conventional path is the more stable way of achieving data insertion, but its

major disadvantage is that it is much slower than the other paths. The direct path is

like an injection into the source data files. When using the direct path, SQL-

LOADER by-passes the database buffer cache. SQL-LOADER requires three files to

succeed in its data movement, these are

a) INPUT DATA FILE: This is a standard delimited text file that contains our

stored data. This is the feeder-file and is always usually a CSV file.

b) CONTROL FILE: This contains the loading instructions and sequence for the

Oracle-engine. The control file is what we would likely be spending most of

our time on. Because getting this right is critical because we can use the

control files for subsequent SQL-LOADER jobs with similar data-set

c) LOG FILES: These are produced because of issuing the SQL-LOADER

statement or running a bulk import Job. Log files might include a bad file

which is a file where source data from the feeder-file that have violated some

predefined constraints and the target table will be stored somewhere for

debugging reasons. Log files also contain reject files which contain rows

from the feeder-file that are out of scope.

There are some features or advantages of using SQL-LOADER which listed

below:

1. SQL-LOADER is a data loading utility that loads records from an external

text file into Oracle database tables at very high speed.

2. During the one load session, it can load the data into multiple database

tables.

3. Different SQL functions can manipulate the data fields before inserting the

data into database tables.

4. The user can fix the data errors quickly because it generates a report of

errors during the data load.

5. It has the capability to perform the filtering operation and it can accept a

different kind of input data formats during the load.

6. It can generate unique sequential key values for the specified columns such

as a primary key.

19

7. It supports the client-server architecture and it can perform the data load

across the network.

3.3.2.1. Creating Oracle Tables To Hold Our Proposed Tables

The diagram shown below are 2 different screen captures showing the describe

statements on the Person table and the requirement tables. These statements were

issued after table creation. This image also shows the enforced column constraints

and data-type chosen to conform with the data-type previously been used in Paradox

RDBMS. Figure 3.3 : Creating Oracle Table.

20

3.3.2.2. Preparing the CSV Files

These were the steps taken to produce an error-free CSV file from PARADOX

database. This process was done with the help of Microsoft-excel 2007. Much of

excel inbuilt functions were leveraged in making data cleansing possible such as

"FIND & REPLACE", and I also wrote custom functions to put the date columns in

the Oracle accepted format. For a continuous repetitive task of the data-cleansing

same structure of paradox tables, an excel macro could be set up to automate some of

the routine tasks. A macro is a recorded set of activities that can be replayed on

demand.

3.3.2.3. Coding the Control File

Figure 3. 4 : Control File for Person Table Data Load

The above Control file contains the DDL statements that are part of the Oracle

specifications. It was created with Microsoft-WordPad and saved as "Text

Document-Ms-Dos Format", and then it appended the extension of "ctl" on the file.

load data
infile 'pers.txt'
badfile 'pers.bad'
discardfile 'pers.disc'
append
into table PERSON_TABLE1
fields terminated by ','
trailing nullcols
 (personid integer external, title, fname,
sname, nurseid, agencyid, payrollid, nino,
personnelref, ukccno, phoneno, faxno,
mobileno, pagerno, email, altphone,
address1,
address2, town, county, postcode, showspec,
showpref, showkin, showtype, schemeid,
gradeid, scaleid, salary, scalestart, info,
active, wcid, bankstart, inactivedt, dob,
origin,
sex, maritalstatus, wtdwaiver, nworker, dap,
leavequal, qualstart, prequal, trained,
inactivereason, reactivedt, bankid,
bankacnumber, bankrollno, bankacname,
workcatid, clothier)

Instructs sql-loader to
commence operation

Name of source file

Destination for faulty data

Destination table

Table delimiter

21

Saving the Control file in this format is very critical because 2 days have been spent

trying to resolve the problem saving the Control file in the acceptable format.

3.3.2.4.Performing the SQL-Loader Operation

In these screen-captures, SQL-Loader used to take data from the CSV file and

inserted them into an already created database table in ORACLE 11g.

Figure 3.5: Requirement Table From notepad to Oracle

22

Figure 3.6: Person Table From notepad to Oracle

23

3.3.2.5. Final Table Clean-up and Data-Quality Management for Experiment1

Since steps were taken to ensure absolute data cleansing and gradual data migration

into Oracle with SQLLOADER, the clean-up steps necessary for Experiment1 were

very minimal.

 After Loading the database into Oracle, all rows counted by issuing the SQL

statement of "SELECT COUNT(*) FROM PERSON_TABLE1; " and the

result was compared with the record- count obtained from the SQL-launcher

utility of bsms. A similar check was done on the two remaining tables to

ensure that the record is complete.

 Also, different SQL-query issued to compare the results obtained from

destination Oracle tables to the same query that is obtained from the SQL-

launcher utility database of BSMS, one of them is shown.

 Figure 3.7: Selecting query

 The necessary column-constraints were maintained during the data loading

stage to ensure data integrity. But after data transfer was completed, to ensure

that the Oracle primary-key technology is enforced in regard to future

records, the sequence command displayed in the introductory section was

enforced on the table. The number which begins the sequence is chosen

because of the current last number of the primary key

3.3.3. Experiment 2 - Migrating from Paradox to Access and Finally to Oracle

In this Scenario, the database table imported from the paradox program folder into an

access database that already specifically created for this task. Next, then set up an

Oracle ODBC driver to export from Access into Oracle. These steps are shown in the

Screen capture below.

24

Figure 3. 8: Data migration of person table from access to oracle via ODBC

25

The Oracle ODBC engine automatically transforms the INTEGER data-types in this

table into VARCHAR2 and also creates a table with no Constraints. And this requires

SQL statements and functions to fix the table.

3.3.3.1.Final Table Clean-up and Data-Quality Management for Experiment2

The ODBC engine does a fairly good job in converting most of the date column data

into the default Oracle standard, and whatever field is left unconverted would have to

be done manually. The consequence of this method of data transfer is that the

resulting oracles table will have to function as a staging table, and from this table, we

would transform the data-set and insert it into a well-crafted database-table. A new

table created (shown below) with the correct constraints and bigger field-column data

-types. Next, the command shown in the image below issued to create a new table in

the same schema that contains the old table.

Figure 3. 10: Required table data types for managing clean-up and data-quality

Figure 3. 9: Transforms integer data types to varchar2

26

As shown in the Sqlplus image below, the data will be move from the table created

by ACCESS-ODBC to the table created before with an Oracle "INSERT INTO"

command that contains functions for data-type transformations. The arrows indicated

in the table below clearly shows the intention on which column would be mapped

into the final table columns.

As the above diagram shows, our goal is to move data from this staging data on the

left to the one on the right

This type of insertion command caused a lot of problems when used in the other 2

tables because they contained a lot of faulty data that Oracle functions could not

INSERT INTO AVAILABILITY_TABLE1
SELECT to_number('AvailID', 9999999), to_number('NurseID', 99999999), Date, Start,
End, AnyEarly, AnyMiddle, AnyMiddle, AnyLate, AnyNight, Allocated, ToWhat, Status,
AnyW, AnyY, AnyZ ;

CREATE TABLE AVAILABILITY_TABLE1

 (availid NUMBER(8,0) NOT NULL ,

 nurseid NUMBER(35,0) NOT NULL ,

 dates DATE,

 starting DATE,

 ending DATE,

 anyearly VARCHAR2(10 BYTE) NOT NULL,

 anymiddle VARCHAR2(10 BYTE) NOT NULL,

 anylate VARCHAR2(10 BYTE) NOT NULL,

 anynight VARCHAR2(10 BYTE) NOT NULL,

 allocated NUMBER(16,0) NOT NULL ,

 towhat NUMBER(32,0),

 status VARCHAR2(1 BYTE),

 anyw VARCHAR2(10 BYTE) NOT NULL,

 anyx VARCHAR2(10 BYTE) NOT NULL,

 anyy VARCHAR2(10 BYTE) NOT NULL,

 anyz VARCHAR2(10 BYTE) NOT NULL,

 CONSTRAINT REQUIREMENTS_TABLE1_PK PRIMARY KEY (availid));

Figure 3. 11: Codes of required table

Figure 3. 12: Transferring query code

27

transform, and so the rows were only partially inserted or never inserted. But with

every attempt, Oracle reveals the row that is faulty, and then manually track it down

and correct it with the UPDATE command.

3.3.4. Experiment 3 - Moving Data Microsoft Sql-Server Integration Services

SSIS or SQL-SERVER INTEGRATION SERVICES is robust data integration and

filtering application that accompanies Microsoft SQL-server. It contains a set of

functionalities that we can use to build enterprise-grade database migration and

transformation solutions. This application can do very complex operations on raw

data such as standardizing data, transforming and merging data into a single database

file system. The most useful ability of SSIS is that it could take all these complex

operations and package it as an executable file for future repetition if needed. Two

techniques of data movement tried-out with SSIS technology, the first is the "SQL-

server import and export wizard".

a) Import and Export Wizard: - This is the simpler method of using SSIS, but its

weakness is that you cannot build a complicated package that leverages the T-SQL

programming. It is a straight-forward method of getting the job done, and it only

gives you some control of specifying data-type and data-sizes during the mapping-

stage of the utility. After Importation into SQL-server, T-SQL functions used to

modify some of the table columns, and then finally the Import and Export Wizard

used again to export the database table to Oracle using the OLEDB driver provided

by Microsoft.

28

This Screen-shot shows the Person table during its modification in Sql-Server 2008.

In this Scenario, it’s been prepared for export to Oracle 11g

b) Using the SSIS-BIDS Interface: - This Interface allows us to engineer a data

movement and integration solution. This interface requires that we specify both a

data source and a destination file or RDBMS. In this project, the data source was the

excel files that were obtained by opening the Paradox database in excel. The diagram

below shows some of the various configuration steps we must enforce on the BIDS

Interface to ensure a successful data transformation and insertion into the destination

folder.

Figure 3. 13: Person table during modification

29

3.3.4.1. Final Table Clean-up and Data-Quality Management for Experiment3

During the setup process for experiment3, the platform configured to ignore any

errors; it was done to prevent breaks in the process due to faulty data. So, after the

data-movement, the error-report took and searched-out the faulty rows and then

manually made corrections. Finally altered the Oracle tables and inserted the

necessary column constraints. Data-quality checks like those carried-out on

experiment1 were also done.

Setting-up the execution-path in SSIS

Using the Data conversion feature of SSIS to alter data-
type

Setting-up the Connection with Oracle RDBMS

Mapping Source-columns to destination-columns

Figure 3. 14: SSIS-BIDS Interface to perform a data movement and integration

30

3.3.5. Experiment 4 - Migrating Data to Oracle Using Full Convert

This is a Graphical User Interface tool that reduces the burden of database

movement. This software migrates our database tables with high efficiency, creates

indexes, and maintains the foreign key relationship on the destination database.

These are some unique features of Full Convert listed by its vendor (Spectral Core,

2011).

 Powerful Graphical User Interface

 Easy to use wizard

 Global data type translation rules

 Support for SQL expressions

 Command line support

 Error logging

 Built-in Scheduler

Figure 3. 15: Welcome screen for the trial version of the Full Convert tool.

31

Figure 3. 16: Selecting database type and location folder of the source data.

Figure 3. 17: Selecting the destination database and entering the username and

password for the Oracle database

32

Figure 3. 18: Creating tables in Oracle to hold paradox database tables.

Figure 3. 19: Displaying number of moved tables and a number of errors

33

Figure 3. 20: Displaying summary of migrated tables

Figure 3. 21: Checking inconsistencies of transferred data using SQL Utility

Figure 3.15: displays the welcome screen for the trial version of the Full Convert

tool. We choose the option of new database conversion by double-clicking that

option. In Figure 3. 16: we choose the type of database that holds our current

database, and then choose the folder location of the source data. Figure 3. 17 here we

choose the destination database, and we are prompted to enter the Username and

password for the Oracle database we have chosen. Figure 3. 18 shows our software

creating tables in Oracle to hold our paradox database tables. Figure 3. 19 shows Our

data been migrated, it also displays the number of tables moved and a number of

errors encountered. after the full migration, the Software displays a summary of

tables migrated Figure 3.20 . Last Figure 3. 21 shows the checking of transferred data

for inconsistencies by using SQL utility.

34

Full Convert like many graphically oriented Softwares performs well in an ideal

situation of a perfectly cleansed database. It made several errors such as skipping

records that had faulty data types, and it also limited our ability to make conditional

choices in the event of faulty data.

35

CHAPTER 4

FINDINGS AND PERFORMANCE TUNING

4.1. Introduction

During the performance testing stage of this data migration, we made use of various

tools to ensure the data was transferred without inconsistencies. For this, we adopted

two testing methods which are used to test whether the transferred data is accurate

and gives the appropriate results. They are

 SQL Plus

 Keep Tool

These two tools are used to see the consistency and correctness of the data after the

migration process takes place.

The tools used to export the data are

 Oracle SQL Plus Utility

 Keep’s Tool Hora Utility

SQL plus Utility helps identify the number of rows transferred to Oracle database

effectively and efficiently. This could be achieved by using the following query on

SQL plus Utility.

Select Count(*) from Person;

4.2. Performance Tuning:

Performance Tuning is more than making an attempt to improve the performance of

a query. We made use of Indexing technique in order to improve the performance of

a query by retrieving the data from Oracle database at a rapid speed without any

inconsistency and loss of data.

36

Figure 4. 1: Cost of table requirement before indexing technique

Total cost on table Requirement = 9 + 9 =18 before creating Index. The cost is an

estimated value proportional to the expected resource use needed to execute the

statement with a particular plan. The optimizer calculates the cost of access paths and

joins orders based on the estimated computer resources, which includes I/O, CPU,

and memory [24].

Partitioning is useful for very large tables. By splitting a large table's rows across

multiple smaller partitions, we could make the queries faster because Oracle may

have to search only one partition (one part of the table) instead of the entire table to

resolve a query. The table might also become easier to manage because the

partitioned table's data is stored in multiple parts, it may be easier to load and delete

the partitions than in a large table with no partition. From my observation, the largest

table in the BSMS database is the Availability table, if we had the benefit of time, we

would have tried to perform partitioning testing on the Availability table.

Indexing is a database technology that is usually applied to the columns in a database

that is most used during table searches. Oracle uses indexes to decrease the amount

of time we consume in finding particular information in a database. The Indexing

technology would have been useful in the Person table because it will help us a query

and extract nurses names very quickly. The index normally helps the Oracle-

optimizer to retrieve queries very fast and efficiently, this technique prevents a full

37

table scan. Also, Oracle gives us several indexing types that will fit into the

particular situation we find ourselves.

Another method of improving speed in our database is through the use of views. A

View is a different way of looking at a table or tables. They are representations of the

underlying tables that are generated by a query. The use of an indexed materialized

view will prevent the database from doing joins every time, and this speeds up

efficiency.

The figure below shows the total cost taken to retrieve data from the database after

creating Indexing technique.

Figure 4. 2: Cost of table requirement after indexing technique

Total Cost for table Requirement is 7 + 7 + 1 = 15 which is less after creating Index.

Hence we have seen the total cost for retrieving data from the database is less after

creating an index which leads to improving the performance of the database.

4.3. Findings

The intention of this Section is to document and explain what happened during the

data migration and optimization project.

The premise of the activities carried out in the Physical Database Design module is

to perform ETL operations on the BSMS software, so that the database tables can be

moved into an Oracle database environment. ETL means extract, transform and Load

38

operations. Oracle's centerpiece technology for moving data is called Data Pump.

Migrating data using different available technologies has been examined.

4.3.1. From Paradox to Access to Oracle

Moving data into Oracle with the help of Microsoft-Access technology was a

relatively comfortable operation. After carefully researching the structure of the three

database tables (Person table, Availability table, and Requirement table) that we

planned to migrate, we then had to build an ODBC connection between the

Microsoft-Access software and the Oracle database platform. For researching the

structure of the Paradox database, we made use of the Table Documenter and P20

software; these two applications enabled us to understand the table design and data-

types which subsequently allowed for verification of success when the tables were

inserted into the Oracle database.

The greatest fascination with this type of data migration is the very important role

that the ODBC driver had to perform during the entire process. It really fascinated

me that this 20-year-old API technology that was originally designed to access any

type of data source still manages to perform at a highly efficient level during data

migration tasks, and it seems the ODBC driver will remain a powerful ETL tool for

years to come.

The most significant problem has encountered during the whole process of data

movement into Oracle was the problem of data-type consistency after migration.

This is a really troubling feature of ODBC driver that adds a lot of additional time to

completely fix. The ODBC platform also removes any table constraint that existed in

the Original Paradox tables. So this implied that manually inserted the table

constraints such as primary keys on the destination tables. Getting the Paradox

database tables into the Microsoft-Access software. This task required to first use

two utility software named Table documenter and P20 to evaluate and document the

column data-types and constraints on the source database. What discovered from this

particular migration operation was the ease of moving data from one database to

another could be made much simpler by simply using a basic tool like Microsoft

access and sometimes using Microsoft-excel as a cleaning tool.

Retrospectively, if the process needed to be repeated, would try and reduce the very

difficult task of cleaning and repairing tasks that happened in Oracle environment

39

after the data movement. This will achieve by attempting to make the data types

conform to Oracle data types when the data are still in the Microsoft-access database

software. Would probably copy the tables from Microsoft-access database and use

Microsoft-excel to clean it and also search for inconsistencies. the excel will use to

change the Boolean data-types into a data-type that Oracle will easily work with, and

then return the data to Microsoft-access before moving it to Oracle.

4.3.2. From Paradox to Oracle Using SQL-Loader

This was a very technically challenging operation. This operation required that we

convert the tables of the Paradox database into a CSV format before using SQL-

Loader to import the tables to the Oracle database. The difficulty comes mainly from

the fact that the CSV file must be in a perfect condition before we import the data

into Oracle, any little imperfection in data causes serious compromises in the final

data and sometimes leads to a complete collapse of the migration operation.

In order to prevent the constant problems we faced during the SQL loader operation,

first move the necessary Paradox tables into excel, and then use the built-in functions

of excel to clean up the data. After the necessary cleaning is done, then saved the

table in CSV format, so it can be in a format necessary for use in PowerPivot.

The most important lesson acquired from this method of data movement is how to

accurately prepare a control file. Then carefully explore the Oracle website to obtain

the details of the syntax of the control file, and even with all these researches done,

still there is lots of issues with SQL loader until perfected the data loading routine.

Also, a lot of challenges we experienced during the process of SQL loader operation

was because we lacked the ability to interpret the error messages being presented to

us by the error log-files after each attempt.

4.3.3. From Full-Convert to Oracle

This application helped move the database tables from the Paradox database into the

Oracle database. But like most automated applications, mistakes and skipped rows

were prevalent in the final tables. The conclusions reached after numerous problems

were that databases are very complex systems and attempting to automate the

processes that a human database administrator carries out by using an application is

40

very difficult and often times will lead to a collapse of the migration process or very

faulty data in the destination tables.

A very poignant example of this was the Full convert application transforming the

Boolean data-types in Paradox to character data-types in Oracle. Another sad

example is the complete loss of referential integrity and primary key integrity that

happened to the database tables after the moving operation had been completed.

the process of using automated tools in data movement is that after the database has

been moved into the destination database, verification tests on the destination

databases should always done to ensure that the data transfer is efficient. And if it

happen to encounter a partially flawed database table, then manually rely on the

relevant SQL queries to fix the problems.

4.4. Optimization of Database in Oracle

The data - pump is a utility that was introduced in Oracle 11g to comprehensively

move Oracle databases between Oracle platforms These following topics are a

reflection of the various optimization activities that we carried-out and also on some

performance optimization that we could have performed but did not have the

required time to accomplish it.

4.4.1. Indexing Technique

Indexes are usually used to dramatically increase the performance of some queries;

they are schema objects that are used to speed up data retrieval. By indexing a

frequently queried table like the nurse person-table on the queried column, we would

have reduced the disk input-output operation, thus making the database instance

more efficient at data retrieval.

The highest cost method to satisfy a query is to run a table to scan where the oracle is

going through the tables and fetching the table row by row, and column by column,

Due to the fact that leveraging a “where” and “join” clauses in extracting data from

most of the columns, critical indexing tests made on those columns that contain the

“where” data and criteria.

Also, the Bitmap Indexing system would have liked to experiment; this is because

this indexing system sometimes has a lower cost index of non-numeric search

parameters like names.

41

4.4.2. Utilization of Views

A view is a stored SQL-select query, if there is enough time for more comprehensive

testing routines; the high-cost SQL statements would converted into materialized-

views and then re-engineered the BSMS software codes to query the materialized-

views instead of performing complex join operations on-demand. Adding indexes

would have also attempted to the materialized views; this would have contributed to

the significant performance increase.

4.4.3. Bind Variables Technique

In the world of performance optimization, it is necessary to avoid ad-hoc queries as

much as humanly possible. Also, due to the fact that splitting the BSMS software

into a client-server system, a very positive performance increment will be realized if

transformed the most constantly used queries into “Bind variables”. A massive

increase would experience in performance because Oracle will then have to rely on

soft parses for its execution plan. The query statement that extracts the details of

nurses by using their names is a great candidate for a query that should utilize a bind

variable. This is because, with a networked architecture, the various client systems

will be querying the Oracle database, and with no bind variables in the execution

plan, Oracle will have to do hard parses, and this is very inefficient for the database

engine.

4.5. Monitoring Execution Path with Explain Plan

The SQL explain plan statement used to discover the execution path of some of the

frequently used SQL queries. This can sometimes be a very tricky procedure because

interpreting the results of an explain-plan statement requires some skill and finesse to

accomplish. When using this explain plan method, two principal objectives focused,

and they are

 How best to eliminate table scans

 trying to ensure that Oracle chose the optimal table joining order

Due to the time constraints that experienced during this work, the sufficient time to

make modifications could not find that on some slow execution-plan was chosen by

Oracle. According to documentation in the Oracle website, the Oracle Optimizer-

42

hints could leverage to make forced modifications to the Oracle execution path, but

the constraints in time that experienced made it impractical during this work.

Another critical performance boosting method is the Oracle SQL profiles technology,

this would have allowed us to store a persistent execution plan that have determined

is better than what the Oracle execution plan is currently utilizing.

43

CHAPTER 5

RECOMMENDATION AND CONCLUSION

5.1. Recommendation

We have used various types of tools for migrating data from Paradox table to Oracle

database. After going through the entire migration process and keeping all tools in

mind, we recommend SQL Loader tool will be the best to use for migration purpose.

This tool is considered an integrated utility of the Oracle database. This tool is used

to transfer heterogeneous data in a friendly manner. We got the desired accuracy and

correctness of data after the migration process by using SQL Loader tool. The

following are the advantages of using this tool

 Generate Error Report that helps to identify the error easily and rectify them.

 Generate Report containing information related to a number of records

transferred, time take to transfer the data etc.

5.2. Conclusion

After careful consideration and using different types of tools for the migration

process, we have successfully migrated the data without inconsistency and loss of

data. However, we came across different issues during migration using different

tools. The most common error we found in using every tool is data types are not

matching when compared to Oracle Database data types. But we have rectified this

data types issue by changing or modifying data types according to Oracle database.

We have recommended SQL Loader as one of the best tools to be used for the

migration process. However, we don’t recommend Full Convert because only trial

version of this tool is available. We used Indexing technique to improve the

performance of the database. Hence we are able to migrate the data successfully and

test it after the migration process done and we achieved an accurate result.

44

5.3 Future Work

Since a majority of cloud applications are data driven, database management systems

(DBMSs) powering these applications form a critical component in the cloud

software stack. One of our future work could be using cloud platforms for

performing database migration, using the concepts of data fission and data fusion,

enabling lightweight elasticity using low cost live database migration.

On the other hand, as a future work and extension to this study, other Indexing

techniques will be used for the purpose of comparison and measurement the

performance of migration method. A comparative study could be done in order to

come out with the suitable indexing technique, in a specific scenario.

45

REFERENCES

[1] Anand, N. (2014). ETL and its impact on Business Intelligence, International

Journal of Scientific and Research Publications, 4(2), 1.

[2] Brian Fretwell (2018) Linked in profile. Available at:

https://www.linkedin.com/in/brian-fretwell-b658aa5/. Accessed April 10, 2018.

[3] Levine R. (2009). Data migration strategies. Retrieved from

“http://wikibon.org/wiki/v/Data_migration_strategies”.

[4] Wu, B., Lawless, D., Bisbal, J., Richardson, R., Grimson, J., Wade, V., &

O'Sullivan, D. (1997, September). The butterfly methodology: A gateway-free

approach for migrating legacy information systems, In Proceedings. Third IEEE

International Conference on Engineering of Complex Computer Systems (Cat. No.

97TB100168) (pp. 200-205). IEEE.

[5] Russom, P. (2006). Best practices in data migration, Renton/USA.

[6] Velimeneti, S. (2016). Data Migration from Legacy Systems to Modern

Database.

[7] Redman, T. C. (1995). Improve data quality for competitive advantage, Sloan

management review, 36(2), 99-108.

[8] Matthes, F., Schulz, C., & Haller, K. (2011, September). Testing & quality

assurance in data migration projects, In 2011 27th IEEE international conference on

software maintenance (ICSM) (pp. 438-447). IEEE.

[9] Rakov, I. (1997). Quality of Information in Relational Databases and Its Use for

Reconciling Inconsistent Answers in Multidatabases, Fourth Doctoral Consortium

on Advanced Information Systems Engineering.

[10] Brodie, M. L. (1995). Migrating legacy systems: gateways, interfaces & the

incremental approach, Morgan Kaufmann Pub.

[11] Oladipo, F. O., & Raiyetumbi, J. O. (2017). Re-Engineering Legacy Data

Migration Methodologies in critical sensitive systems, Journal of Global Research in

Computer Science, 6(11).

[12] International Business Systems. How to Implement ERP for Your Business: All

at Once or In Phases? 2013. Available at:

http://globial.com/globialtalksbusiness/how-to-implement-erp-for-your-business-all-

at-once-or-in-phases/ Accessed 29.3. 2018.

[13] Oracle Corporation, (2011). Successful data migration. Oracle white paper.

Available at: http://www.oracle.com/technetwork/middleware/oedq/successful-data-

migration-wp-1555708. Accessed 9.2.2018.

[14] Fouché, G., & Langit, L. (2011). Foundations of SQL server 2008 R2 business

intelligence. Apress.

46

[15] Jensen, C. S., Pedersen, T. B., & Thomsen, C. (2010). Multidimensional

databases and data warehousing, Synthesis Lectures on Data Management, 2(1), 1-

111.

[16] Harinath, S., Pihlgren, R., Lee, D. G. Y., Sirmon, J., & Bruckner, R. M.

(2012). Professional Microsoft SQL Server 2012 Analysis Services with MDX and

DAX, John Wiley & Sons.

[17] Nielsen, P., & Parui, U. (2011). Microsoft SQL server 2008 bible (Vol. 607).

John Wiley & Sons.

[18] Oracle Corporation, (2013). Express Mode Loading with SQL Loader in Oracle

Database12c. Available at:

https://www.oracle.com/technetwork/database/enterprise/edition/learnmore/sqlldr-

express-mode-wp-1991038. Accessed 15.12.2018.

[19] Rouse M. (2017, May). What is data? - Definition from WhatIs.com. Retrieved

from “https://searchdatamanagement.techtarget.com/definition/data”.

[20] IBM Corporation, (2010). What is a database management

system? https://www.usg.edu/galileo/skills/unit04/primer04_01.html. Accessed

15.5.2018.

[21] DbTalks (2016, March, 24). What Is Paradox Database? Retrieved from

“http://www.dbtalks.com/article/what-is-paradox-database2/”.

[22] Studytonight, (2018). What is a database? Available

at: https://www.usg.edu/galileo/skills/unit04/primer04_01.html. Accessed 18.3.2018.

[23] Oracle. (2005). Introduction to the Oracle Database. Retrieved from

“https://docs.oracle.com/cd/B19306_01/server.102/b14220/intro.htm”

[24] Moore, V. (2003). Oracle R Database Performance Tuning Guide 10g Release 1

10.1 Part No. B10752-01, December.

47

APPENDIX 1

DETAILS OF THE PARADOX DATABASE TABLES

Details for Table: absreason
Database Alias: SWABS

FIELD NAME FIELD TYPE

INDEX

AbsID Auto-incrementing
AbsSDesc String [15]

AbsLDesc String [40]

Record count: 11

Details for Table: ageactivity

Database Alias: SWABS
FIELD NAME FIELD TYPE

INDEX

ActID Auto-incrementing i

Activity String [25]
Record count: 3

Details for Table: ageexpect
Database Alias: SWABS

FIELD NAME FIELD TYPE

INDEX
ExpID Auto-incrementing i

ExpValue String [20]

Record count: 5

Details for Table: agelog

Database Alias: SWABS

FIELD NAME FIELD TYPE
INDEX

ALogID Auto-incrementing i

ARequestID integer(32bit)

ActivityID integer(32bit)
ContactID integer(32bit)

MethodID integer(32bit)

LogDate Date
LogTime Time

Record count: 8

Details for Table: agemethod

Database Alias: SWABS

FIELD NAME FIELD TYPE

INDEX

Details for Table: am_trackables
Database Alias: SWABS

FIELD NAME FIELD TYPE

INDEX

TrackableID Auto-incrementing i
Description String [40]

Record count: 3

Details for Table: am_trackdetail

Database Alias: SWABS

FIELD NAME FIELD TYPE
INDEX

AuditID integer(32bit) i

TrackableInfoID integer(32bit) i

Value integer(32bit)
Date Date

Record count: 4768

Details for Table: am_trackmaster

Database Alias: SWABS

FIELD NAME FIELD TYPE
INDEX

AuditID Auto-incrementing i

Date Date

Time Time
UserID integer(32bit)

UserShortName String [5]

TableName integer(32bit)
Action integer(16bit)

Key integer(32bit)

Record count: 5554

Details for Table: arequests

Database Alias: SWABS

FIELD NAME FIELD TYPE
INDEX

AgencyID integer(32bit) i

WardReqID integer(32bit) i
ARequest Auto-incrementing

RequesterID integer(32bit)

RequestedDate Date

BReason integer(32bit)

48

AgeMethodID Auto-incrementing i
AgeMethod String [25]

Record count: 1

Details for Table: agencies
Database Alias: SWABS

FIELD NAME FIELD TYPE

INDEX
AgencyID Auto-incrementing i

AgencyName String [50]

MainContact integer(16bit)
Address1 String [40]

Address2 String [40]

Town String [40]

County String [40]
Postcode String [20]

PhoneNo String [20]

FaxNo String [20]
PagerMobileNo String [20]

Email String [30]

Website String [30]
AltContact String [40]

AltPhone String [20]

Record count: 6

Details for Table: agencyntype

Database Alias: SWABS

FIELD NAME FIELD TYPE
INDEX

ANTypeID Auto-incrementing i

ANTDesc String [40]

Record count: 0

Details for Table: agencyrates

Database Alias: SWABS
FIELD NAME FIELD TYPE

INDEX

AgencyID integer(32bit) i
GradeID integer(32bit) i

ShiftTypeID integer(32bit) i

NurseTypeID integer(32bit) i

Fee Real
Commission Real

InclusiveCost Real

Record count: 0

Details for Table: agencystype

Database Alias: SWABS
FIELD NAME FIELD TYPE

HospID integer(32bit)
WardID integer(32bit)

WardShift integer(32bit)

Date Date

Specialism integer(32bit)
Grade integer(32bit)

Allocated integer(16bit)

WhoTo integer(32bit)
ActStart Time

ActEnd Time

ActHours Real
ActPay Real

AbsReason integer(32bit)

DisplayHistory Boolean

BreakT Real
AuthorisedBy integer(32bit)

AuthDate Date

AuthTime Time
PlacedWith integer(32bit)

PlaceDate Date

PlaceTime Time
Status integer(16bit)

Expectation integer(16bit)

Record count: 822

Details for Table: assdetail

Database Alias: SWABS

FIELD NAME FIELD TYPE
INDEX

NurseID integer(32bit) i

AssType integer(16bit) i

AssID Auto-incrementing i
AssDate Date

AssRenews Date

AssRef String [15]
AssLoc String [50]

Record count: 0

Details for Table: astaff

Database Alias: SWABS

FIELD NAME FIELD TYPE

INDEX
AgencyID integer(32bit) i

StaffID Auto-incrementing i

Name String [40]
Record count: 15

Details for Table: Availability
Database Alias: SWABS

49

INDEX
AShiftID Auto-incrementing i

ASTDesc String [25]

StartTime Time

EndTime Time
Record count: 0

Details for Table: agencystypes
Database Alias: SWABS

FIELD NAME FIELD TYPE

INDEX
AgencyID integer(32bit) i

AShiftID integer(32bit) i

ASTDesc String [25]

StartTime Time
EndTime Time

Record count: 0

Details for Table: am_authorisor

Database Alias: SWABS

FIELD NAME FIELD TYPE
INDEX

AM_AuthID Auto-incrementing i

AM_AuthTitle String [6]

AM_AuthInitials String [6]
AM_AuthFName String [20]

AM_AuthSName String [20]

Record count: 75

Details for Table: am_davailabilities

Database Alias: SWABS

FIELD NAME FIELD TYPE
INDEX

AvailID integer(32bit) i

NurseID integer(32bit)
Date Date

Start Time

End Time
AnyEarly Boolean

AnyMiddle Boolean

AnyLate Boolean

AnyNight Boolean
Allocated integer(16bit)

ToWhat integer(32bit)

Record count: 0

Details for Table: am_drequirements

Database Alias: SWABS
FIELD NAME FIELD TYPE

FIELD NAME FIELD TYPE
INDEX

AvailID Auto-incrementing i

NurseID integer(32bit)

Date Date
Start Time

End Time

AnyEarly Boolean
AnyMiddle Boolean

AnyLate Boolean

AnyNight Boolean
Allocated integer(16bit)

ToWhat integer(32bit)

Status String [1]

AnyW Boolean
AnyX Boolean

AnyY Boolean

AnyZ Boolean
Record count: 21329

Details for Table: bankdetails
Database Alias: SWABS

FIELD NAME FIELD TYPE

INDEX

BankID Auto-incrementing i
BName String [60]

Btype String [10]

BSort String [8]
BContact String [40]

BAdd1 String [60]

BAdd2 String [60]

BTown String [40]
BCounty String [40]

BPostcode String [12]

BPhone String [15]
BFax String [15]

BEmail String [60]

Record count: 1633

Details for Table: Banned

Database Alias: SWABS

FIELD NAME FIELD TYPE
INDEX

BannedID Auto-incrementing i

LetterRef String [15]
LetterDate Date

LetterSource String [30]

Surname String [30]
FirstName String [30]

50

INDEX
ReqID integer(32bit) i

RequesterID integer(32bit)

RequestedDate Date

BReason integer(32bit)
HospID integer(32bit)

WardID integer(32bit)

WardShift integer(32bit)
Date Date

Specialism integer(32bit)

Grade integer(32bit)
Allocated integer(16bit)

WhoTo integer(32bit)

ActStart Time

ActEnd Time
ActHours Real

ActPay Real

AbsReason integer(32bit)
DisplayHistory Boolean

BreakT Real

Record count: 0

Details for Table: am_informed

Database Alias: SWABS

FIELD NAME FIELD TYPE
INDEX

AM_InformedID Auto-incrementing i

AM_InformedTitle String [6]
AM_InformedInits String [6]

AM_InfFName String [20]

AM_InfSName String [20]

Record count: 7

Details for Table: am_preferences

Database Alias: SWABS
FIELD NAME FIELD TYPE

INDEX

TableID integer(32bit) i
ActionID integer(32bit) i

TrackableID integer(32bit) i

Record count: 6

Details for Table: am_reason

Database Alias: SWABS

FIELD NAME FIELD TYPE
INDEX

AM_ReasonID Auto-incrementing i

AM_ReasonSDesc String [15]
AM_ReasonLDesc String [40]

SecondName String [30]
ThirdName String [30]

MaidenName String [30]

Alias String [50]

DoB Date
Details Text memo

Record count: 1

Details for Table: breachreasons

Database Alias: SWABS

FIELD NAME FIELD TYPE
INDEX

BReasonID Auto-incrementing i

BRDescription String [30]

Record count: 10

Details for Table: breason

Database Alias: SWABS
FIELD NAME FIELD TYPE

INDEX

BReasonID Auto-incrementing i
BReasonShort String [15]

BReasonLong String [40]

Record count: 10

Details for Table: cancelled

Database Alias: SWABS

FIELD NAME FIELD TYPE
INDEX

CancelledID Auto-incrementing i

CDate Date

CTime Time
CancelledBy integer(32bit)

CReason String [30]

ByWard Boolean
CWardID integer(32bit)

CRequestorID integer(32bit)

CShiftStart Time
CShiftEnd Time

CGradeID integer(32bit)

CSpecID integer(32bit)

ReBooked Boolean
Informed String [30]

InformedBy String [30]

InfMethod String [20]
InfDate Date

InfTime Time

Record count: 0

51

PayNurseExtra Boolean
Amount Real

Record count: 8

Details for Table: am_reqactivity
Database Alias: SWABS

FIELD NAME FIELD TYPE

INDEX
RID integer(32bit) i

When Date and time i

Type integer(32bit)
Who String [5]

Record count: 20760

Details for Table: AM_Tables
Database Alias: SWABS

FIELD NAME FIELD TYPE

INDEX
TableID Auto-incrementing i

Description String [40]

TableName String [40]
Record count: 2

Details for Table: requirements

Database Alias: SWABS
FIELD NAME FIELD TYPE

INDEX

ReqID Auto-incrementing i
RequesterID integer(32bit)

RequestedDate Date

HospID integer(32bit)

WardID integer(32bit)
WardShift integer(32bit)

Date Date

Specialism integer(32bit)
Grade integer(32bit)

Allocated integer(16bit)

WhoTo integer(32bit)
NurseID integer(32bit)

ActHours Real

AbsReason integer(32bit)

DisplayHistory Boolean
BReason integer(32bit)

ActStart Time

ActEnd Time
ActPay Real

BreakT Real

LHoursWkd Real
LHoursEnt Real

Details for Table: comment
Database Alias: SWABS

FIELD NAME FIELD TYPE

INDEX

NurseID integer(32bit) i
CommentID Auto-incrementing i

CType integer(32bit)

Comment Text memo
MadeBy String [30]

TParty String [30]

CDate Date
CTime Time

SysOp String [6]

Record count: 1959

Details for Table: coursemaster

Database Alias: SWABS

FIELD NAME FIELD TYPE
INDEX

NurseID integer(32bit) i

CourseID integer(32bit) i
Renews Date

CourseDt Date

Record count: 90

Details for Table: courses

Database Alias: SWABS

FIELD NAME FIELD TYPE
INDEX

TrainID Auto-incrementing i

CourseName String [40]

CourseDate Date
CertRenewel Date

RenewDays integer(16bit)

Record count: 8

Details for Table: ctypes

Database Alias: SWABS
FIELD NAME FIELD TYPE

INDEX

CType Auto-incrementing i

CTypeShort String [15]
CTypeLong String [40]

Record count: 21

Details for Table: customer

Database Alias: SWABS

FIELD NAME FIELD TYPE
INDEX

52

WdContract Real
BankID integer(32bit)

BookingRef String [10]

EPgradeid integer(32bit)

EPscaleID integer(32bit)
BookedGrade integer(32bit)

BookedScale integer(32bit)

BookedStart Time
BookedEnd Time

BookedPaidBreak Boolean

BookedBreak Real
BookedAfterxHours Real

ReqPayYear integer(16bit)

ReqPayWeek integer(16bit)

TimePayYear integer(16bit)
TimePayWeek integer(16bit)

Status String [1]

TimeInput Date and time
Outcome integer(16bit)

Compensation Real

Altered Boolean
Record count: 15232

Details for Table: seqs

Database Alias: SWABS
FIELD NAME FIELD TYPE

INDEX

Table String [3] i
LastChanged Date

LastNum integer(32bit)

Record count: 2

Details for Table: shift_types

Database Alias: SWABS

FIELD NAME FIELD TYPE
INDEX

ShiftCode String [1]

ShiftType String [6]
ShiftStart Time

ShiftEnd Time

Record count: 8

Details for Table: specialism

Database Alias: SWABS

FIELD NAME FIELD TYPE
INDEX

SpecialismID Auto-incrementing i

ShortDesc String [15]
LongDesc String [80]

TrustID Auto-incrementing i
ShortName String [6]

LongName String [60]

UseCommP Boolean

CommR Real
CommP Real

ERNIP Real

Record count: 14

Details for Table: declinedreasons

Database Alias: SWABS
FIELD NAME FIELD TYPE

INDEX

DeclinedID Auto-incrementing i

Description String [30]
Record count: 6

Details for Table: dislike
Database Alias: SWABS

FIELD NAME FIELD TYPE

INDEX
DislikeID Auto-incrementing i

PersonID integer(32bit)

WardID integer(32bit)

HospID integer(32bit)
Record count: 40761

Details for Table: ep_changes
Database Alias: SWABS

FIELD NAME FIELD TYPE

INDEX

ReqID integer(32bit) i
NID integer(32bit) i

Uneek Auto-incrementing i

Code String [5]
PayPerHour Money

Rate Money

From Time
To Time

Duration Time

Cost Money

Type integer(16bit)
Record count: 21

Details for Table: ep_rules
Database Alias: SWABS

FIELD NAME FIELD TYPE

INDEX
Code String [5] i

53

Record count: 69

Details for Table: swabsusers

Database Alias: SWABS

FIELD NAME FIELD TYPE
INDEX

UserID Auto-incrementing i

UserName String [40]
UserInits String [4]

UserLevel String [10]

Password String [10]
InputTime Boolean

ModifyTime Boolean

Record count: 2

Details for Table: trusts

Database Alias: SWABS

FIELD NAME FIELD TYPE
INDEX

TrustID Auto-incrementing i

SName String [20]
LName String [50]

Record count: 3

Details for Table: Ward
Database Alias: SWABS

FIELD NAME FIELD TYPE

INDEX
HospitalID integer(32bit) i

WardID Auto-incrementing i

WardName String [60]

Costcode String [12]
WardPhone String [15]

Clothier Boolean

Notes Text memo
Record count: 602

Details for Table: ward_shifts
Database Alias: SWABS

FIELD NAME FIELD TYPE

INDEX

HospID integer(32bit) i
WardID integer(32bit) i

Shift_Code String [5] i

WardShiftID Auto-incrementing
Shift_Description String [25]

Shift_Type String [1]

ShiftStart Time
ShiftEnd Time

ScaleID integer(32bit) i
Type integer(16bit)

Date Date

Day integer(32bit)

StartTime Time
EndTime Time

ShiftPercent integer(16bit)

TrainedRate integer(16bit)
UnTrainedRate integer(16bit)

EnhancedRate Real

Comment String [30]
Record count: 330

Details for Table: ep_times

Database Alias: SWABS
FIELD NAME FIELD TYPE

INDEX

ReqID integer(32bit) i
NID integer(32bit) i

Uneek Auto-incrementing i

Code String [5]
PayPerHour Money

Rate Money

From Time

To Time
Duration Time

Cost Money

Type integer(16bit)
Record count: 21823

Details for Table: grade

Database Alias: SWABS
FIELD NAME FIELD TYPE

INDEX

GradeID Auto-incrementing i
ShortDesc String [15]

LongDesc String [50]

AvPay Real
Record count: 0

Details for Table: groupings

Database Alias: SWABS
FIELD NAME FIELD TYPE

INDEX

LOMGrpID Auto-incrementing i
GroupID integer(32bit)

UnitID integer(32bit)

Record count: 0

54

Breaktime Real
AfterXHours Real

PaidBreak Boolean

Record count: 692

Details for Table: wcentres

Database Alias: SWABS

FIELD NAME FIELD TYPE
INDEX

WCID Auto-incrementing i

WCDesc String [40]
Record count: 1

Details for Table: wcmaster

Database Alias: SWABS
FIELD NAME FIELD TYPE

INDEX

WCID integer(32bit) i
WardID integer(32bit) i

Record count: 0

Details for Table: wgroups

Database Alias: SWABS

FIELD NAME FIELD TYPE

INDEX
WGroupID Auto-incrementing i

GroupSDesc String [15]

GroupLDesc String [40]
LOMlevel integer(16bit)

Record count: 0

Details for Table: wkpatterns
Database Alias: SWABS

FIELD NAME FIELD TYPE

INDEX
NurseID integer(32bit) i

MaxDays integer(16bit)

Record count: 17

Details for Table: Worddots

Database Alias: SWABS

FIELD NAME FIELD TYPE
INDEX

LtrID Auto-incrementing i

Type String [5]
Desc String [40]

Path String [50]

Filename String [50]
Record count: 7

Details for Table: groups
Database Alias: SWABS

FIELD NAME FIELD TYPE

INDEX

GroupID Auto-incrementing i
GroupSDesc String [15]

GroupLDesc String [40]

LOM integer(16bit)
Record count: 1

Details for Table: groupward
Database Alias: SWABS

FIELD NAME FIELD TYPE

INDEX

GroupID integer(32bit)
WardID integer(32bit)

Record count: 0

Details for Table: group_master

Database Alias: SWABS

FIELD NAME FIELD TYPE
INDEX

LOM integer(16bit) i

GroupID integer(32bit) i

Unit integer(32bit) i
Record count: 0

Details for Table: hospital
Database Alias: SWABS

FIELD NAME FIELD TYPE

INDEX

TrustID integer(32bit) i
HospitalID Auto-incrementing i

HospitalName String [60]

ShortDesc String [15]
HUseCommP Boolean

HCommR Real

HCommP Real
HERNIP Real

Record count: 37

Details for Table: inactivereason
Database Alias: SWABS

FIELD NAME FIELD TYPE

INDEX
InactiveReasonID Auto-incrementing

i

InactiveReasonDesc String [40]
Record count: 9

55

Details for Table: workcat

Database Alias: SWABS

FIELD NAME FIELD TYPE

INDEX
WorkCatID Auto-incrementing i

WorkCatType String [6]

WorkCatDesc String [50]
Record count: 4

Details for Table: workoffered
Database Alias: SWABS

FIELD NAME FIELD TYPE

INDEX

RID integer(32bit) i
NID integer(32bit) i

When Date and time i

Accepted Boolean
Reason integer(32bit)

Record count: 13803

Details for Table: wtdbreach

Database Alias: SWABS

FIELD NAME FIELD TYPE

INDEX
BreachID Auto-incrementing i

NurseID integer(32bit)

WT integer(16bit)
Waiver Boolean

SDate Date

SFrom Time

STo Time
Chk1 Real

Chk2 Real

Chk3 Real
Chk4 Real

Chk5 Real

Chk6 Real
Chk7 Real

Chk8 integer(16bit)

Chk9 integer(16bit)

UserID integer(32bit)
BreachDt Date

BreachTime Time

BreachReason integer(32bit)
Record count: 35

Details for Table: nursewtdw
Database Alias: SWABS

Details for Table: informed

Database Alias: SWABS

FIELD NAME FIELD TYPE

INDEX
ReqID integer(32bit) i

AvailID integer(32bit) i

When Date and time i
NurseID integer(32bit)

NurseInfD Date

NurseInfT Time
NurseInfBy String [20]

WReqID integer(32bit)

WReqInfD Date

WReqInfT Time
WReqInfBy String [20]

AllocFlag integer(16bit)

Record count: 3200

Details for Table: like

Database Alias: SWABS
FIELD NAME FIELD TYPE

INDEX

LikeID Auto-incrementing i

PersonID integer(32bit)
WardID integer(32bit)

HospID integer(32bit)

Record count: 17258

Details for Table: loms

Database Alias: SWABS

FIELD NAME FIELD TYPE
INDEX

LOM1ID integer(32bit)

LOM1Name String [30]
LOM2ID integer(32bit)

LOM2Name String [30]

LOM3ID integer(32bit)
LOM3Name String [30]

Record count: 0

Details for Table: lom_master
Database Alias: SWABS

FIELD NAME FIELD TYPE

INDEX
LOM integer(16bit) i

Description String [20]

Record count: 2

56

FIELD NAME FIELD TYPE
INDEX

NurseID integer(32bit) i

RecID Auto-incrementing i

SignedDt Date
DocRef String [15]

DocLocation String [40]

Terms integer(16bit)
RenewDt Date

Notice integer(16bit)

TermDt Date
TermRef String [15]

TermLocation String [40]

Record count: 1

Details for Table: origin

Database Alias: SWABS

FIELD NAME FIELD TYPE
INDEX

OriginID Auto-incrementing i

Origin String [40]
Record count: 7

Details for Table: pcreason

Database Alias: SWABS
FIELD NAME FIELD TYPE

INDEX

PCReasonID Auto-incrementing i
PCReason String [30]

Record count: 8

Details for Table: Person
Database Alias: SWABS

FIELD NAME FIELD TYPE

INDEX
PersonID Auto-incrementing i

Title String [6]

FName String [25]
SName String [25]

NurseID String [10]

AgencyID integer(32bit)

PayrollID String [20]
Nino String [9]

PersonnelRef String [20]

UKCCNo String [10]
CCExpiry Date

PhoneNo String [20]

FaxNo String [20]
MobileNo String [20]

Details for Table: nextofkin
Database Alias: SWABS

FIELD NAME FIELD TYPE

INDEX

PersonID integer(32bit) i
NOKName String [30]

NOKTitle String [6]

NOKRel String [15]
NOKAdd1 String [50]

NOKAdd2 String [50]

NOKTown String [50]
NOKCounty String [50]

NOKPostcode String [12]

NOKPhone String [20]

NOKAltPhone String [20]
Record count: 1988

Details for Table: nursecontract
Database Alias: SWABS

FIELD NAME FIELD TYPE

INDEX
PersonID integer(32bit) i

WardID integer(32bit)

ContractHours Real

GradeonWard integer(32bit)
OpeningBalance Real

TrustID integer(32bit)

OtherHours Real
WTDW Boolean

Effective Date

Record count: 461

Details for Table: nursecontractmany

Database Alias: SWABS

FIELD NAME FIELD TYPE
INDEX

ContractID Auto-incrementing i

PersonID integer(32bit)
WardID integer(32bit)

CHours Real

WGrade integer(32bit)

CStartDt Date
CEndDt Date

Record count: 15

Details for Table: NurseLeave

Database Alias: SWABS

FIELD NAME FIELD TYPE
INDEX

57

PagerNo String [20]
Email String [50]

AltPhone String [20]

Address1 String [40]

Address2 String [40]
Town String [40]

County String [40]

Postcode String [20]
Showspec Boolean

Showpref Boolean

ShowKin Boolean
ShowType Boolean

SchemeID integer(32bit)

GradeID integer(32bit)

ScaleID integer(32bit)
Salary Real

ScaleStart Date

Info Text memo
Active Boolean

WCID integer(32bit)

BankStart Date
InactiveDt Date

DOB Date

Origin integer(32bit)

Sex String [1]
MaritalStatus String [15]

WTDWaiver Boolean

NWorker Boolean
DAP integer(16bit)

LeaveQual Boolean

QualStart Date

PreQual Boolean
Trained Boolean

InactiveReason integer(32bit)

ReactiveDt Date
BankID integer(32bit)

BankACNumber String [20]

BankRollNo String [20]
BankACName String [50]

WorkCatID integer(32bit)

Clothier Date

Record count: 2204

Details for Table: pm_grade

Database Alias: SWABS
FIELD NAME FIELD TYPE

INDEX

SchemeId integer(32bit) i
GradeID Auto-incrementing i

NurseID integer(32bit) i
LeaveDate Date i

HoursTaken Real

When Date and time

PayAvg Real
Cost Real

Record count: 0

Details for Table: NurseLeaveOpening

Database Alias: SWABS

FIELD NAME FIELD TYPE
INDEX

NurseID integer(32bit) i

LeaveYear Date i

OpeningBalance Real
Record count: 0

Details for Table: nursenwork
Database Alias: SWABS

FIELD NAME FIELD TYPE

INDEX
NurseID integer(32bit) i

Limit integer(16bit)

Every integer(16bit)

DAP integer(16bit)
Hazard Boolean

AssType integer(16bit)

AssDate Date
AssRef String [15]

AssLoc String [40]

Record count: 0

Details for Table: nurseowork

Database Alias: SWABS

FIELD NAME FIELD TYPE
INDEX

NurseID integer(32bit) i

TrustID integer(32bit) i
OHours Real

Record count: 2

Details for Table: nursepaymany
Database Alias: SWABS

FIELD NAME FIELD TYPE

INDEX
PersonID integer(32bit) i

SchemeID integer(32bit) i

GradeID integer(32bit) i
ScaleID integer(32bit) i

58

GradeLDesc String [40]
SDesc String [20]

Record count: 27

Details for Table: pm_payweek
Database Alias: SWABS

FIELD NAME FIELD TYPE

INDEX
weekending Date i

PWyear integer(16bit)

PWweek integer(16bit)
PWwkstart Date

PWtimesheetsBy Date

PWpayon Date

Frozen Boolean
Record count: 105

Details for Table: pm_scale
Database Alias: SWABS

FIELD NAME FIELD TYPE

INDEX
GradeID integer(32bit) i

ScaleID Auto-incrementing i

SDesc String [20]

StdRate Real
Record count: 108

Details for Table: pm_scheme
Database Alias: SWABS

FIELD NAME FIELD TYPE

INDEX

SchemeID Auto-incrementing i
SchemeLDesc String [50]

SDesc String [20]

Record count: 8

Details for Table: Preferences

Database Alias: SWABS
FIELD NAME FIELD TYPE

INDEX

TrustName String [60]

Default_Hospital integer(32bit)
AllocTolerence Time

BetweenShifts Real

WarnHours Real
LeaveYearStarts Date

LeaveYearEnds Date

EveryxHoursWorked Real
EntitledToxHoursOff Real

PStartDt Date i
PEndDt Date

PayID Auto-incrementing

Rate Real

ReasonCode integer(32bit)
SysUser String [5]

SysDate Date

SysTime Time
Record count: 2273

Details for Table: nursepref
Database Alias: SWABS

FIELD NAME FIELD TYPE

INDEX

NurseID integer(32bit) i
WardID integer(32bit) i

Record count: 0

Details for Table: nursespec

Database Alias: SWABS

FIELD NAME FIELD TYPE
INDEX

NurseID integer(32bit) i

SpecID integer(32bit) i

Record count: 6471

Details for Table: nursetype

Database Alias: SWABS
FIELD NAME FIELD TYPE

INDEX

NurseID integer(32bit) i

TypeID integer(32bit) i
Record count: 0

Details for Table: NurseWorkAreas
Database Alias: SWABS

FIELD NAME FIELD TYPE

INDEX
NurseID integer(32bit) i

HospID integer(32bit) i

Record count: 3764

Details for Table: reports2

Database Alias: SWABS
FIELD NAME FIELD TYPE

INDEX

GroupID integer(16bit) i
ReportID Auto-incrementing i

59

UnpaidBreak Real
AfterxHours Real

Audit Boolean

IncompleteShiftAllocationBoolean

MinComplete integer(16bit)
LockRetryInterval integer(16bit)

DemoData Boolean

LastVersion String [10]
Updating Boolean

DefaultView integer(16bit)

EPay Boolean
WeekStarts integer(16bit)

PaidBreaks Boolean

NormDAP integer(16bit)

NWLimit integer(16bit)
NWEvery integer(16bit)

NWDAP integer(16bit)

DRest integer(16bit)
WRest integer(16bit)

LeaveQP integer(16bit)

WTDAllocCheck Boolean
DisableHols Boolean

WTDBreachReasons Boolean

RegUser String [60]

RegKey String [25]
ALEntitlementWeeks integer(16bit)

ALAVGHrsWeek Real

ALMAXLeave Real
ALAVGPayOver integer(16bit)

ALShaftNurse Boolean

Record count: 1

RepName String [15]
RepDesc String [60]

SelectionC integer(16bit)

Record count: 28

Details for Table: reqcomments

Database Alias: SWABS

FIELD NAME FIELD TYPE
INDEX

ReqID integer(32bit) i

When Date and time i
Type integer(32bit)

MadeBy String [5]

Comment String [50]

Record count: 258

Details for Table: reqcommenttypes

Database Alias: SWABS
FIELD NAME FIELD TYPE

INDEX

Type Auto-incrementing i
Short String [15]

Long String [40]

Record count: 6

Details for Table: requesters

Database Alias: SWABS

FIELD NAME FIELD TYPE
INDEX

RequesterID Auto-incrementing i

HospID integer(32bit)

WardID integer(32bit)
Name String [40]

Initials String [6]

Record count: 2068

